
Domibus 5.1.5
eDelivery

Contents
1. Domibus Architecture . 1

1.1. Architecture Overview . 1

1.2. Use Case View . 3

1.3. Logical View. 5

1.4. Implementation View . 8

1.5. Data View . 10

1.6. Size and Performance . 14

1.7. Logging . 15

1.8. Caching . 23

1.9. Local cache. 23

1.10. Distributed cache . 23

1.11. Multitenancy . 24

2. Quick Start Guide . 30

2.1. Prerequisite . 32

2.2. Configure your environment. 32

2.3. Keystore . 39

2.4. Domibus Config location. 39

2.5. Launch the Domibus application . 40

2.6. Upload PModes . 41

2.7. Upload the PMode file on both Access Points . 41

2.8. Test . 43

2.9. Annex 1 - Parameters . 44

2.10. Annex 2 - Firewall Settings. 44

2.11. Annex 3 - Processing Mode . 47

2.12. Annex 4 - Domibus Pconf to ebMS3 mapping . 50

2.13. Annex 5 - Introduction to AS4 security . 56

3. Administration Guide . 57

4. Installing Domibus. 58

4.1. Pre-requisites. 58

4.2. Downloading Resources . 59

4.3. Databases . 61

4.4. Servers. 65

4.5. Secure Deployment Recommendations . 115

5. Configuring Domibus . 117

5.1. Security Configuration . 117

5.2. Domibus Properties . 124

5.3. PMode Configuration. 125

5.4. Two-way MEP Scenario. 144

5.5. Special Scenario: Sender and Receiver are the same . 149

5.6. Administration Tools . 150

5.7. Large files support . 178

5.8. eArchiving . 179

5.9. Database Partitioning . 198

5.10. Non repudiation . 200

5.11. TLS Configuration . 200

5.12. Dynamic Discovery of unknown participants. 207

5.13. Message pulling . 216

5.14. Multitenancy . 218

5.15. Alerts . 234

5.16. DSS extension configuration . 248

5.17. Setting Logging levels at runtime. 255

5.18. EU Login Integration . 256

5.19. Domibus statistics . 259

5.20. Payload Encryption . 265

5.21. Message Prioritization . 266

5.22. SSL Offloading. 269

6. Administration Tools. 271

6.1. Administration Console . 271

6.2. Message Log. 272

6.3. Message Filtering . 273

6.4. Application Logging. 275

6.5. PMode . 277

6.6. Queue Monitoring . 279

6.7. Configuration of the queues . 286

6.8. Truststores . 287

6.9. Users . 288

6.10. Plugin Users . 293

6.11. Audit . 294

6.12. Alerts . 294

6.13. Connection Monitoring. 296

6.14. Logging . 297

6.15. Domains . 297

6.16. Properties. 298

7. Operational Guides . 299

7.1. JMS Queue Management. 299

7.2. Log Management . 299

7.3. Capacity Planning. 300

7.4. Database Management . 300

7.5. Domibus Monitoring/Domibus IsAlive AP . 301

7.6. Useful Resources. 303

8. Testing Guide. 305

8.1. Prerequisites . 305

8.2. Test scenarios . 308

8.3. Verifying message status . 313

8.4. Multitenancy . 314

Plugins. 319

9. Default Plugins . 320

10. FS Plugin . 321

10.1. FS Plugin Interface . 321

11. WS Plugin . 365

11.1. WS Plugin Interface . 365

11.2. Security . 405

11.3. Plugin Notifications. 406

11.4. Push to Backend. 407

11.5. Backward compatibility . 409

11.6. Message Standards . 409

12. (Old) WS Plugin Interface . 441

12.1. Functional Specification . 443

12.2. Behavioural Specification . 458

12.3. Security . 478

12.4. Plugin Notifications. 479

12.5. Multitenancy. 480

12.6. Annexes . 480

13. JMS Plugin . 502

13.1. JMS Plugin Interface . 502

13.2. JMS Plugin Configuration. 519

13.3. Referencing Payloads . 520

13.4. Interface Policy Specification . 522

13.5. Error codes table . 525

14. Custom Plugins. 532

14.1. Custom Plugin Deployment . 532

14.2. Custom Plugin Configuration . 533

15. Plugin Development . 535

15.1. Target Audience . 535

15.2. Backend Integration . 535

15.3. Implementing a Plugin . 537

15.4. Plugin properties . 554

15.5. Plugin configuration and deployment . 556

15.6. API Documentation . 556

15.7. Multitenancy. 557

15.8. Removed API and Migrating . 562

Extensions . 566

16. Extension Development. 567

16.1. Functional information . 568

16.2. Technical information . 572

16.3. Building an extension. 583

16.4. Registering an extension . 585

16.5. POM samples. 586

17. Extension Validation. 587

17.1. Extension Validation Overview . 587

17.2. AS4 UserMessage validation . 587

17.3. Validation Extension Interface . 588

17.4. Implementing the Validation Interface . 589

17.5. Implementing an extension . 590

17.6. Registering an extension . 592

Properties Reference . 593

18. Domibus General Properties. 594

19. Domibus Super-User Properties. 634

20. WS Plugin Properties . 635

21. JMS Plugin Properties. 638

Support . 639

Chapter 1. Domibus Architecture
Domibus Access Point is a compliant implementation of the eDelivery profile of the OASIS
ebMS3/AS4 standard.

This content provides an overview and description of the most significant decisions underlying its
current architecture on different levels: Use Case, Logical, Process, Deployment, Implementation,
Data.

We also provide some considerations regarding Sizing, Performance and Quality.

NOTE
It’s not our goal with this content to explain the ebMS3/AS4 standards, the four-
corner model or any other concepts described in the provided references. For more
about this see OASIS AS4 Profile.

1.1. Architecture Overview
This overview is organized in the following views of the system:

Use Case

each relevant Use Case is described via a diagram and a short explanation of their impact on the
architecture.

Logical

provides a high-level view of the platform presenting the structure of the system through its
components and their interactions.

Implementation

describes the software layers and the main software components. A component diagram is used
in this view.

Deployment

view provides a description of the hardware components and how they are linked together. This
view gives a technical description of protocols and hardware nodes used.

Data

provides information about the data persistence. A class diagram will be used to model the main
system data.

Check the UML diagrams provided featuring the above mentioned views of the system.

1.1.1. Goals and Constraints

The following non-functional requirements that affect the architectural solution have been
identified:

1

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4+conformant+solutions
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/

Non-functional
requirement

Description

Adaptability The application shall be easy to be integrated
into existing business workflows using
different communication protocols and data
formats

Portability The application shall be able to be deployed on
a wide variety of software/hardware systems

Interoperability The system shall be interoperable with both
commercial and free alternative
implementations of the eDelivery profile.

1.1.2. Security

The Domibus Access Point provides built-in security in accordance to the implemented specification
and industry best practices. It can also be easily integrated into existing security domains.

SEE ALSO
☞ eDelivery AS4 Profile

☞ OASIS AS4 Profile

1.1.3. Communication

Corner 1 - Corner 2

As no assumptions can be made about the security architecture of corner 1/4 (backoffice), the
integration into the existing architecture has to be provided by the Domibus plugins. While the
default plugins do not include any security constraints, they can be easily extended to
accommodate most of the security requirements.

Corner 2 - Corner 3

The communication between corner 2 and corner 3 is able to fulfil all the security requirements
specified in the eDelivery AS4 profile. The configuration is handled via WS-Policy files and PMode
configuration. All webservice security is enforced by the Apache CXF/WSS4J/Santuario frameworks.

Certificate Configuration

The location and credentials of private and public certificates used by CXF are configured in the
domibus.properties property configuration file.

Client Certificate

The client certificate for use with client authentication (two-way SSL) is configured in the
“clientauthentication.xml” spring configuration file. Incoming TLS secured connections terminate
at the proxy server (e.g., Apache httpd) and must be configured according to the employed proxy
server’s documentation.

2

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4+conformant+solutions
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/
https://cxf.apache.org/

Corner 3 - Corner 4

The security between corner 3 and corner 4 is handled via the same mechanisms used in the
communication corner 1 – corner 2.

1.1.4. Administrative Sites

Access to the Domibus administration page is secured with username/password. The credentials are
managed by a Spring authentication manager and multiple authentication providers can be
plugged into it by default. The credentials are stored in the database and they are managed by an
authentication provider that uses a Bcrypt strong hashing function for encoding them. Integration
into an existing authentication scheme (i.e., LDAP) can be performed via Spring configuration.

IMPORTANT

SECURITY DISCLAIMER

On top of the security that Domibus provides, the user is responsible for
taking additional security measures according to best practices and
regulations. This includes, but is not limited to: using firewalls, IP whitelists,
and file system/database encryption. DIGIT shall not be held responsible for
any security breach that might occur due to User not respecting this
recommendation.

1.2. Use Case View
This section provides a representation of the use cases relevant for the architecture.

The use cases relevant for the architecture have been selected based on the following criteria:

• Use cases affecting the exchange between the backoffice system and the Domibus MSH.

• Use cases representing critical parts of the architecture, thereby addressing the technical risks
of the project at an earlier stage.

The following use cases have been selected:

• Backoffice integrations using pull communication (i.e., WebService)

• Backoffice integrations using push communication (i.e., JMS)

• Usage of the administrative GUI

3

4

1.3. Logical View
Here we describe the main application modules, how they interact and how they implement the
specification and profile.

1.3.1. Architecturally Significant Components

The following diagram provides a high-level view of the main components of the system.

You can find below a short description for each component:

• C1/C4 – the backend system integrating with Domibus.

5

• Domibus Plugin API – API used to implement a plugin.

• Plugins – the Domibus default plugins, WS Plugin, JMS Plugin and the FS Plugin or a custom
developed plugin.

• Domibus Ext Model – domain model used by Domibus plugins.

• Domibus Plugin Delegate – component that delegates calls from the plugins to the Domibus
core.

• Domibus Logger – custom logger used by Domibus Plugins and Domibus Core.

• Domibus MSH SPI – API used to implement a Domibus extension.

• Domibus API – domain and services used by the internal Domibus modules.

• Domibus Core – the core Domibus implementation

• Domibus Tomcat – implementation and configuration specific to the Tomcat server.

• Domibus WebLogic - implementation and configuration specific to the WebLogic server.

• Domibus WildFly - implementation and configuration specific to the WildFly server.

• Domibus JMS SPI – the internal API used to support a specific JMS broker implementation.

• ActiveMQ JMS SPI – implementation to support the ActiveMQ classic JMS broker.

• WebLogic JMS SPI – implementation to support the WebLogic internal JMS broker.

• WildFly JMS SPI- implementation to support the WildFly internal JMS broker.

• Domibus IAM SPI – the API used to implement an IAM extension.

• DSS IAM SPI – the implementation of the IAM extension using the DSS library.

1.3.2. Backoffice system (Corner 1 of 4)

The purpose of Domibus as an Access Point is to connect different backoffice systems via
structured, secure message exchange. While, regarding a single message exchange, corners 1 and 4
are usually different applications running in different environments, within a single deployment
the role of corner 1 and corner 4 (for different message exchanges) is usually taken by the same
application. Therefore, from a logical point of view, corners 1 and 4 are the same package.

1.3.3. Domibus plugin implementation

This module is responsible for the communication between the backoffice system and Domibus and
for the mapping from the backoffice internal data format to Domibus internal data format. The
communication and the mapping of the data can be done in both directions. Integration into
existing security architecture can also be implemented here.

As there can be made few assumptions about the backoffice system, this module is commonly
implemented by the Domibus user. Details on this process can be found inside the Domibus Plugin
Cookbook.

1.3.4. Domibus default plugins

Domibus provides three default plugins, which can be used to integrate a backoffice, acting as C1 or

6

C4, with Domibus: Web Service Plugin, File System Plugin and JMS Plugin.

A custom plugin can be implemented in case one of the default plugins do not accommodate the
needs of a backoffice.

1.3.5. Domibus plugin API

This package contains all necessary interfaces and classes required to implement a Domibus plugin.

1.3.6. Domibus MSH (Corner 2 of 3)

The Domibus MSH (Message Service Handler) is the main module, representing corner 2 and/or 3 in
a 4-corner message exchange. All the implementation relevant to the eDelivery profile is done
inside this package. It can be deployed on Tomcat, WebLogic and WildFLy.

1.3.7. Administrative GUI

This package contains of a Spring MVC web application providing basic monitoring and
configuration options. === Deployment View

Here you can find a description of the hardware nodes running the execution environment for the
system.

The diagram below provides a view of hardware components involved in this project. Note that the
diagram features a clustered environment is shown. Whenever a single server deployment is
sufficient (i.e., for testing purposes), a load balancer and multiple hardware nodes are not required.

7

NOTE

Not all physical nodes are represented in this diagram. Load balancers, database
servers and JMS servers can be multiplied for scalability and, performance and
availability improvements. Also, note that we are not featuring security
mechanisms like Firewalls.

These are the identified hardware nodes:

• Load balancers are responsible for distributing requests among multiple Domibus nodes. A
random round robbing/no sticky session setup is recommended.

• Java servlet containers with deployed Domibus instances are responsible for message
processing.

• A database server (MySQL or Oracle) is responsible for storing messages and PMode
configuration data.

• The shared file system contains shared Domibus configuration data, file based PMode data
(Keystores) and, depending on configuration, binary data of message attachments.

1.4. Implementation View
The following diagram describes the software layers of the system and their components.

The AS4 MSH Service is the web service which is exposed on the internet that accepts the AS4
requests, and called by the external systems.
The AS4 Message Dispatch Service, used by Domibus acting as C2, is a web service client capable
of sending AS4 requests and is responsible for sending messages to other C3 Access Points.
The Web Layer is accessed typically by a web browser. The MSH SOAP handling is implemented
using the Apache CXF framework.

Web Layer

is accessed typically by a web browser. The MSH SOAP handling is implemented using the
Apache CXF framework.

Integration Layer

uses the Spring framework and is responsible for the integration of custom plugins and all
communication processes and data format translations between backoffice systems and
Domibus.

Services Layer

offers access to the domain objects of the platform as well as to the platform data layer. These
services are Plain Old Java Objects relying on the Spring framework for dependency injection
and for transaction management.

Types Layer

contains all the java objects generated from the XSDs used by the platform. These are JAXB
generated objects.

Domain Layer

holds all the platform entities. The persistence of these entities is implemented using the Java

8

Persistence API version 2.0.

Data Persistence

relies on the database and the file system to persist the data. The file system is used to store
configuration data and the database to persist the incoming and outgoing messages.

All these layers run on a Java Servlet Container.

9

1.5. Data View

10

1.5.1. Data Model

The following diagrams show a high-level abstraction of the data entities, which must be
implemented by the system:

The above tables represent a mapping of the ebMS3 XSD to database tables.

TB_USER_MESSAGE

table containing information about the AS4 UserMessage metadata (both sent and received
ones).

TB_USER_MESSAGE_LOG

table containing runtime information about the User Message (both sent and received ones)
such the message status, retry information, etc.

TB_USER_SIGNAL_MESSAGE

table containing information about the AS4 SignalMessage metadata (both sent and received
ones).

TB_SIGNAL_MESSAGE_LOG

table containing runtime information about the Signal Messages(acknowledgements) for sent
User Messages.

11

The above tables represent a 1:1 mapping of the PMode configuration XSD to database tables.

Routing criteria contains the data that are needed to perform the routing of the messages to a
specific plugin implementation.

Backend filters are collections of routing criteria associated with a specific backend representation.

12

The above tables are used by the Quartz library which is used by Domibus for crontab like jobs.

Data Auditing

The database tables contain information which provide audit information about their entries
including the name of the user who created or last updated a particular entry or about the creation
time or the last update time of a particular entry. The stored values are the following:

CREATED_BY, MODIFIED_BY, CREATION_TIME, MODIFICATION_TIME

These values are not visible to the Domibus user and can be only inspected at the database level.
Data created or updated by the Domibus users will use their usernames for the CREATED_BY and
MODIFIED_BY columns. Data created using plugin users will use their plugin usernames for the
CREATED_BY and MODIFIED_BY columns. The rest of the entries (e.g., created during the invocation of
an asynchronous JMS listener) will use the username used to connect to the database for MySQL or
the Oracle user schema for the CREATED_BY and MODIFIED_BY columns.
There is one exception involving reference data (i.e., data that has to exist before the application
can be used) on MySQL where we use the value DOMIBUS for the CREATED_BY and MODIFIED_BY columns.

1.5.2. State Machines

Outgoing Message State Machine

The outgoing messages have the following state machine:

13

Incoming Message State Machine

The incoming messages have the following state machine:

Pull Messages State Machine

1.6. Size and Performance

1.6.1. Size

Size restrictions applied on the data that is exchanged by the backoffice systems, but not on the
application or its components themselves, have an impact on the architecture and on the
configuration of the system.

To support the exchange of large binary files, the plugin API supports payload submission by
reference, meaning that Domibus can download a payload from a given URI. Additionally, payloads
can be stored on the file system instead of the database to avoid the processing of huge blobs.

14

As the eDelivery AS4 profile provides no provisions for ebMS large file handling (split/join) the
transfer of data is limited by bandwidth and memory constraints.

Extra restrictions can be implemented via the business process PModes. These restrictions concern
the maximum size of a payload and the maximum number of payloads in a message.

1.6.2. Performance

An important architectural decision that benefits the performance of Domibus includes the
decoupling of the solution into corner 1/4 representing the backoffice systems and corner 2/3
representing the Domibus Access Point.

The backoffice systems (corner1/4) interact with the Domibus MSH (corner 2/3) via the interfaces
(web services, JMS, REST, etc.) exposed by the plugins deployed on the Domibus MSH side.

Domibus MSH is using internally JMS queues to perform the processing of the messages coming
from the backoffice systems via the plugins or from other access points.

All these architectural decisions lead to an improved throughput and load distribution of the
messages.

1.7. Logging

1.7.1. Implementation

The logging framework used by Domibus is SLF4J API together with Logback as the SLF4j
implementation.

The domibus-logging module provides the custom SLF4J logger DomibusLogger. This logger must be
used for all the logs within the Domibus application.

15

There are three types of logs:

• security logs

• business logs

• miscellaneous logs

Each log category has its own marker defined in the DomibusLogger class. By default, each category
will be logged in a separate file:

• domibus-security.log: This log file contains all the security related information. For example,
you can find information about the clients who connect to the application.

• domibus-business.log: This log file contains all the business-related information. For example,
when a message is sent or received, etc.

• domibus.log: This log file contains both the security and business logs plus miscellaneous logs
like debug information, logs from one of the framework used by the application, etc.

• error.log: This log file contains all the errors which occurred in Domibus including errors from
third party libraries used by Domibus.

16

The security and business logs require a code that is defined in the DomibusMessageCode class.

The logs pattern is defined in the logback.xml file.

Default pattern

%d{ISO8601} [%X{d_user}] [%X{d_messageId}] %5p %c{1}:%L - %m%n

Where:

• d_user is the authenticated user.

• d_messageId is the message id currently being sent/received.

• The values for the d_user and d_messageId properties can be set by calling the method
DomibusLogger.putMDC(String key, String value).

• The prefix d_ is added automatically by the DomibusLogger in order to easily identity the Domibus
specific MDC properties.

Example

LOGGER.putMDC(DomibusLogger.MDC_USER, authenticationResult.getName());

The MDC values need to be always cleaned after the thread execution. Otherwise, the thread might
be returned back to the thread pool with previously set MDC values and on the next thread
execution, the old MDC values will be used.

In order to easily clear the MDC values after a method execution a custom annotation, MDCKey, has
been created in order to mark a method that is setting values in the MDC. An AOP aspect is
detecting the methods annotated with the MDCKey annotation and after the execution of the method
it is clearing the MDC values.

Example

@MDCKey(DomibusLogger.MDC_MESSAGE_ID)
public String submit(final Submission messageData, final String backendName)

1.7.2. Domibus Log Codes

Security Log Codes

Event
code

Description

SEC-001 Unsecure login is allowed, no authentication will be
performed

SEC-002 Basic authentication is used

SEC-003 X509Certificate authentication is used

17

Event
code

Description

SEC-004 Blue coat authentication is used

SEC-005 The host [\{}] attempted to access [\{}]

SEC-006 The host [\{}] has been granted access to [\{}] with roles [\{}]

SEC-007 The host [\{}] has been refused access to [\{}]

SEC-008 Certificate is not valid at the current date [\{}].
Certificate valid from [\{}] to [\{}]

SEC-009 Certificate is not yet valid at the current date [\{}].
Certificate valid from [\{}] to [\{}]

SEC-010 No security policy (intended for testing alone) is used.
Security certificate validations will be bypassed!

SEC-011 User [\{}] is trying to access a message having final recipient:
[\{}]

SEC-012 X509Certificate invalid or not found

SEC-013 The user [\{}] is unknown

SEC-014 The user [\{}] is not active

SEC-015 The user [\{}] is suspended

SEC-016 The user [\{}] is trying to login with bad credentials

SEC-017 The user [\{}] is locked after trying to login for [\{}] wrong
attempts.

SEC-018 The certificate with alias [\{}] will be revoked on [\{}]

SEC-019 The certificate with alias [\{}] is revoked since [\{}]

SEC-020 The password for user [\{}] will expire on [\{}]

SEC-021 The password for user [\{}] expired on [\{}]

Business Log Codes

Event
code

Description

BUS-001 Message successfully received

BUS-002 Failed to receive message

BUS-003 Failed to validate message

BUS-004 Failed to notify backend for incoming message

BUS-005 Invalid charset [\{}] used

BUS-006 Invalid NonRepudiationInformation: no security header
found

18

Event
code

Description

BUS-007 Invalid NonRepudiationInformation: multiple security
headers found

BUS-008 Invalid NonRepudiationInformation: eb:Messaging not signed

BUS-009 Invalid NonRepudiationInformation: non repudiation
information
and request message do not match

BUS-010 There is no content inside the receipt element received by the
responding gateway

BUS-011 Reliability check failed, check your configuration

BUS-012 Reliability check was successful

BUS-013 Compression failure: no mime type found for payload with
cid [\{}]

BUS-014 Error compressing payload with cid [\{}]

BUS-015 Payload with cid [\{}] has been compressed

BUS-016 Decompression failure: no mime type found for payload with
cid [\{}]

BUS-017 Payload with cid [\{}] will be decompressed

BUS-018 Decompression is not performed: leg compressPayloads
parameter is false

BUS-019 Decompression is not performed: partInfo with cid [\{}] is in
body

BUS-020 Message action [\{}] found for value [\{}]

BUS-021 Message action not found for value [\{}]

BUS-022 Message agreement [\{}] found for value [\{}]

BUS-023 Message agreement not found for value [\{}]

BUS-024 Party id [\{}] found for value [\{}]

BUS-025 Party id not found for value [\{}]

BUS-026 Party [\{}] is not a valid URI [CORE] 5.2.2.3

BUS-027 Message service [\{}] found for value [\{}]

BUS-028 Message service not found for value [\{}]

BUS-029 Message service [\{}] is not a valid URI [CORE] 5.2.2.8

BUS-030 Leg name found [\{}] for agreement [\{}], senderParty [\{}],
receiverParty [\{}], service [\{}] and action [\{}]

19

Event
code

Description

BUS-031 Matching Process or Leg not found for agreement [\{}],
senderParty [\{}], receiverParty [\{}], service [\{}] and action
[\{}].
Process mismatch details:[\{}].
Leg mismatch details:[\{}].

BUS-032 Preparing to send message

BUS-033 Message sent successfully

BUS-034 Message send failure

BUS-035 No Attachment found for cid [\{}]

BUS-036 More than one Partinfo referencing the SOAP body found

BUS-037 Payload profile validation skipped: payload profile is not
defined for leg [\{}]

BUS-038 Payload profiling for this exchange does not include a
payload with CID [\{}]

BUS-039 Payload profiling for this exchange requires all message parts
to declare a MimeType property [\{}]

BUS-040 Payload profiling error, missing payload [\{}]

BUS-041 Payload profile [\{}] validated

BUS-042 Property profile validation skipped: property profile is not
defined for leg [\{}]

BUS-043 Property profiling for this exchange does not include a
property named [\{}]

BUS-044 Property profile [\{}] validated

BUS-045 Message persisted

BUS-046 Message receipt generated with nonRepudiation value [\{}]

BUS-047 Message receipt generation failure

BUS-048 Message status updated to [\{}]

BUS-049 All payloads data for user message [\{}] have been cleared

BUS-050 Policy [\{}] was not found for outgoing message

BUS-051 Policy [\{}] is used for outgoing message

BUS-052 Algorithm [\{}] is used for outgoing message

BUS-053 Algorithm [\{}] is used for incoming message

BUS-054 Encryption username [\{}] is used for outgoing message

BUS-055 Policy [\{}] for incoming message was not found

BUS-056 Policy [\{}] for incoming message is used

20

Event
code

Description

BUS-057 No Role with value [\{}] has been found

BUS-058 Party with name [\{}] has not been found

BUS-059 Message with id [\{}] has not been found

BUS-060 Message with id [\{}] has been consumed from the queue [\{}]

BUS-061 Received payload with cid [\{}] for message [\{}] of size [\{}]
(in bytes)

BUS-062 Saved payload with cid [\{}] for message [\{}] of size [\{}] (in
bytes) for sending

BUS-063 Notifying about message status change from [\{}] to [\{}]

BUS-064 Message submitted

BUS-065 Message submission failed

BUS-066 Message retrieved

BUS-067 Message retrieval failed

BUS-068 Test message successfully received from [\{}] to [\{}]

BUS-069 Failed to receive test message from [\{}] to [\{}]

BUS-070 Preparing to send test message from [\{}] to [\{}]

BUS-071 Test message sent successfully from [\{}] to [\{}]

BUS-072 Test message sending from [\{}] to [\{}] failed

BUS-073 Message property [\{}] exceeds [\{}] characters limit

BUS-074 Receiver Party id [\{}] found for value [\{}]

BUS-075 Receiver Party id not found for value [\{}]

BUS-076 Duplicate Message Property found for property name [\{}]

BUS-077 Payload size is greater than maximum size [\{}] defined in
payload profile [\{}].

BUS-078 Mandatory Message Header metadata [\{}] is not provided

BUS-079 Value of [\{}] is too long (over 255 characters).
Value provided: [\{}].

BUS-080 Value of [\{}] does not conform to the required
MessageIdPattern: [\{}]. Value provided: [\{}].

BUS-081 Message with id [\{}] already exists.
Message identifiers must be unique

1.7.3. Logging and Multitenancy

To associate each log statement to a specific domain, the Logback format pattern contains the
domain name.

21

Example

<pattern>%d\{ISO8601} [%X\{d_user}] *[%X\{d_domain}]*
[%X\{d_messageId}] %5p %c\{1}:%L - %m%n</pattern>

The domain name is added:

• in the MDC context so that every log statement contains the domain name.

• in the MDC context as soon as a thread is started:

◦ for a web service, a CXF interceptor is adding the domain to MDC as close as possible to the
START phase. The MDC context value is cleared with a CXF interceptor added at before the
END phase.

◦ for a JMS message listener, the domain name is extracted from the JMS message that is
being consumed and added programmatically to MDC.

The separation of logs per domain is achieved using the existing Logback marker mechanism and a
Logback configuration file distributed in each server configuration archive.

As a result, separate log files are created containing only the logs for one domain.

As a result, separate log files are created containing only the logs for one domain. For instance, for a
domain named DOMAIN1 the following log files are saved under the logs/DOMAIN1 directory:

• DOMAIN1-domibus.log

• DOMAIN1-business.log

• DOMAIN1-security.log

provided that the DOMAIN1-logback.xml is configured.

To separate the configuration of each logger instance per domain, the following provisions have
been made:

• The loggers defined in the domain-specific Logback XML file have names prefixed with
${domainName}.

◦ For example <logger name="${domainName}.eu.domibus" level="INFO">).

• Each logger in the application will have as many instances as there are domains, each instance
having the configuration for a particular domain with all instances being stored in
DomibusLoggersCache. The appropriate logger instance to perform an operation is selected using a
proxy mechanism each time a logging method is invoked.

This configuration is managed in the Domibus logback.xml file, and it is independent of the
Domibus application.

IMPORTANT

This mechanism applies only to eu.domibus loggers.
Loggers from third-party libraries cannot be configured independently for a
tenant, they should be added to the main logback.xml file with the settings
that apply to all tenants.

22

SEE ALSO For more on how to configure the Domibus logging, see Administration Guide.

1.8. Caching
In order to enhance the performance domibus uses caching in specific areas of the application:

• caching of security policies

• caching of backend filter configuration

• caching of PModes, when using the CachingPModeProvider

Domibus has two types of caching mechanisms available:

• Local cache - available when Domibus is deployed in a single instance as well as in a cluster.
The local cache must be used when you don’t want to replicate the cache across the cluster
deployment.

• Distributed cache - only available in a cluster deployment. It should be used when you want to
replicate the cache across the cluster members. The cache replication is performed
automatically.

1.9. Local cache
Domibus uses Ehcache implementation for local caching. Ehcache is configured in
${domibus.config.location}/internal/ehcache.xml. All the caches defined in the ehcache.xml file are
preconfigured with default values and are commented out. In order to customize one of the cache
configuration you can uncomment it and adapt the necessary values.

The local cache is also available to the plugins. A plugin can define its own cache configuration on
top of the existing configuration provided in Domibus. For more details how to configure the local
caching at plugin level, please check for more details in the Plugin Cookbook

1.10. Distributed cache
In a cluster deployment, Domibus activates also the distributed cache. The distributed cache is
implemented with the Hazelcast library. The list of the Hazelcast cluster members are specified in
domibus.properties and a Hazelcast member is created on each cluster machine.

In a cluster deployment, once you add an entry in a distributed cache, the change is replicated
automatically amongst the cluster members. By default, a distributed cache is configured with a
near cache in order to reduce the network overhead between the cluster members.

The distributed cache is accessible via Java API and via REST.

In a non-cluster deployment, the distributed cache defaults to the local cache.

The distributed cache is also available to the plugins. A plugin can define its own cache
configuration using the API from the domibus-plugin-api module. For more details how to
configure the distributed caching at plugin level, please check Domibus Plugin Cookbook document.

23

1.11. Multitenancy
There were multiple options to choose from to support Multitenancy:

• One Schema per tenant: tenant’s data is saved in the same database for all tenants but in
different schemas. When a new tenant needs to be added a new related DB schema is created in
the same database instance. It is easier to add new tenants comparing with the DB per tenant as
the same connection pool can be reused. Switching between tenants is performed centrally by
selecting the DB schema related to the tenant. A huge advantage of this approach is that the
application code impact is limited compared to the Discriminator field approach described
below.

• One DB per tenant: each tenant has its own separate database. This is the highest level of
isolation; however, it is complex and cumbersome to maintain. Whenever a new tenant must be
added a new database instance needs to be created, a new database connection pool also needs
to be created in Domibus which points to the tenant database, etc.

• Discriminator field: All tenants' data is saved on common tables, and each table holds a
discriminator field to distinguish data from each tenant. This approach has quite some
disadvantages: no physical isolation of data between tenants (a bug in the application might
leak between tenants), performance decrease as the data for all the tenants are saved into the
same tables (resulting in bigger tables and more complex/heavier queries), and significant
changes to the application code to take into account that discriminator field.

1.11.1. Multitenancy Approach

Domibus implements the One Schema per tenant" solution for Multitenancy support because of
its many advantages. The Hibernate library, which is used in Domibus, comes with support by
default for the One Schema per tenant strategy.

SEE ALSO
For more info about Multitenancy in Hibernate, see https://docs.jboss.org/
hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/
MultiTenancy.html

1.11.2. Domain Identification

NOTE
In Domibus documentation, the term tenant (technical) is used interchangeably
and with the term domain (business).

For every outgoing/incoming message, the related unique domain id needs to be specified in order
to use the applicable configuration for the involved domain (such as DB schema, PMode, keystore,
truststore, Domibus properties, etc.).

• for Outgoing messages, sent by C2 to C3, the association to a specific domain is performed
based on the Spring Security info available in the current thread after the authentication has
been done by the plugins.

• for Incoming messages, received by C3 from C2, the association to a domain is based on an
HTTP parameter (domain) appended by C2 to the MSH endpoint of C3. In case the domain name

24

https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/MultiTenancy.html
https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/MultiTenancy.html
https://docs.jboss.org/hibernate/orm/5.0/userguide/html_single/chapters/multitenancy/MultiTenancy.html

sent by C2 is not defined in C3, an EBMS3 exception will be sent to C2.

Example:

• C3 exposes the MSH endpoint with URL:
http://localhost:8080/domibus/service/msh.

• C2 belonging to the domain DIGIT will call the MSH C3 endpoint using:
http://localhost:8080/domibus/service/msh?domain=DIGIT.

Please note that adding the HTTP parameter in the MSH endpoint is in-line with eDelivery AS4
specification.

1.11.3. Database schema selection

In Multitenancy mode, the database schema has to be configured per domain in the Domibus
domain properties.

SEE ALSO For more about how to configure it, see Administration Console.

1.11.4. User to Domain Association

When a user authenticates in the Admin Console, the domain is not yet identified and Domibus
must find out which DB schema to select. In order to achieve this, a general DB schema is used. In
this general DB schema, a table tells which user that has access to the Admin Console (defined in
the tb_user table) and to the domain he belongs to. This association is automatically updated by
Domibus when users are added or removed. Therefore, a constraint has been added in Domibus: a
username needs to be unique amongst the existing domains. The same mechanism and constraints
apply to the tb_user table and has been implemented for the table supporting plugins security:
tb_authentication_entry.

1.11.5. Plugins

The introduction of Multitenancy has an impact on how the plugins manage the incoming/outgoing
messages.

• for Outgoing messages, C1 to C2, the plugins need to authenticate first so that Domibus can
identify the domain of the user and treat the message accordingly.

Domibus identifies the associated domain of the user based on the Spring Security information
from the current thread (for instance the logged in user id) and the user’s configuration in table
tb_authentication_entry. As a result, it is mandatory for C1 to authenticate itself so that
Domibus can determine the domain related to the authenticated user. It is possible for the same
C1 to send messages to different domains C1 needs to authenticate with different user
credentials

• for Incoming messages, e.g., from C3 to C4, the plugins have to segregate the messages based
on the domain name received from Domibus and deliver to C4 only the messages associated to
the C4’s domain.

25

http://localhost:8080/domibus/service/msh
http://localhost:8080/domibus/service/msh?domain=DIGIT
http://localhost:8080/domibus/service/msh?domain=DIGIT

The changes implemented in the Default Plugin for Multitenancy are described in the following
sections.

Plugin Security

The plugins security configuration is stored in database table tb_authentication_entry. As every
domain has its own separate schema, the table tb_authentication_entry will contain entries specific
to each domain.

Figure 1. Example of the data in tb_authentication_entry

As mentioned in the Domain Identification section, the username should be unique across all
domains. Also, there is a table tb_user_domain in the general DB schema that maps all usernames
defined in the tb_authentication_entry to one associated domain.

When multiple domains are configured in Domibus, the plugins security activates automatically
overriding the value configured using the following property.

#To activate security set this to false
domibus.auth.unsecureLoginAllowed=false

If Domibus is running only with one domain, the plugins security activation is optional.

Plugin API

As every domain has its own dedicate DB schema, there are little changes required in the Plugin
API. The only change that is required is to include in the class eu.domibus.plugin.Submission a new
field named domain. This way the plugins can select the domain for a specific message. This is
specifically useful for the incoming messages, C3 to C4, when the plugins need to segregate
messages and expose to C4 only messages that are intended to C4 domain.

WS Plugin

Security is already implemented in the WS Plugin using the CustomAuthenticationInterceptor and
the eu.domibus.ext.services.AuthenticationService, which retrieves information from the DB table
tb_authentication_entry. For the WS Plugin security, activation is mandatory in order to use
Domibus with multiple domains.

The implementation of the WS Plugin has been changed to take into account the domain according
to the general requirements stated in the Plugins section.

JMS Plugin

The JMS Plugin is implemented using five queues:

• One queue for outgoing messages, C1 to C2: domibus.backend.jms.inQueue

• One queue for incoming messages, C3 to C4: domibus.backend.jms.outQueue

26

• Three queues for reporting message statuses and errors:

◦ domibus.backend.jms.replyQueue

◦ domibus.backend.jms.errorNotifyConsumer

◦ domibus.backend.jms.errorNotifyProducer

C1 and C4 interact with the JMS Plugin by sending/receiving messages from queues mentioned
above so the JMS Plugin does not really have control on the messages once they are put in a JMS
queue.

In order to segregate the data between domains, the JMS Plugin needs to connect to queues
dedicated to each domain. Therefore, every domain will have its own set of 4 queues mentioned
above with the exception of the domibus.backend.jms.inQueue.

The queue domibus.backend.jms.inQueue is common to all the domains but when sending message to
Domibus, C1 needs to authenticate with specific domain credentials. This is needed to allow
Domibus to associate the submitted message with a specific domain. The association of the JMS
queues and the domain are be done in the jms-plugin.properties file.

In order to make the migration easier the existing queue names used by the JMS plugin and
associated to the default domain will not be modified.

The following convention to prefix the JMS queues with the domain name must be used to associate
the JMS queues to a specific domain in the jms-plugin.properties file:

domain_name.domibus.backend.jms.inQueue

Where

domain_name is the name of the domain.

• for Outgoing messages, C1 to C2, C1 sends JMS messages containing the credentials of a specific
domain to the IN queue domibus.backend.jms.inQueue. The JMS Plugin reads the JMS message,
performs the authentication using the credentials sent by C1 and determines the domain based
on Spring Security information from the current thread.

• for Incoming messages, C3 to C4, the JMS Plugin receives the domain name from Domibus API
and then sends the incoming message to the JMS OUT queue associated to the domain where C4
is listening to.

FS Plugin

The FS Plugin has been designed in such a way that it is already domain aware. Briefly, the domain
concept is implemented in the FS Plugin as follows:

A file system location is defined per domain, which is protected with username/password. The
username/password credentials are defined per domain in the FS Plugin property file

In order to send messages, a user α belonging to domain A will copy the payloads to be "sent"
directory in the file system location configured for domain A (the user α must have access to the

27

protected file location). A similar process is happening when user A wants to retrieve messages.

• for Outgoing messages (C1 to C2), the FS Plugin authenticates itself using credentials
(username/password) configured per FS Plugin domain. These new credentials are configured
in the FS Plugin properties file. Once the user is authenticated, user information is extracted
from the Spring Security data, associated to the current thread and passed to the Domibus Core.

• for Incoming messages (C3 to C4), the FS Plugin receives the domain name from Domibus so
that the incoming messages are into the directory associated to the respective domain.

The domains configured in Domibus, and the domains configured in the FS Plugin properties must
match. An error will be raised if the domain is not configured as needed in the FS Plugin properties.

1.11.6. Domibus Properties

The Domibus properties defined in the domibus.properties file are used for the single domain, when
Domibus manages one single domain.

When Domibus is configured with multiple domains, several properties will have to be customized
per domain. More information on which properties can be overridden per domain are available in
the Administration Guide.

There are three types of properties in Multitenancy mode:

• Global/Infrastructure properties that have a meaning for the whole application and, as such, a
single value

• Domain properties that can/should be customized for each domain. In case a value is not
defined for a domain, it falls back to the one defined in global properties file (or an error is
thrown in case the fallback is not allowed by the property metadata)

• Super properties applicable to super-users. Same behaviour as domain properties.

To distinguish between these types of properties, one needs to define a property metadata in the
appropriate metadata manager (each module has its own property metadata manager). If a
property does not have a metadata defined, then it is treated as global.

In order to define a property, the following conventions are used:

Property Type File where it is defined Property name

Global/Infrastructure domibus.properties domibus.config.location

Domain property,
domain1

domain1-domibus.properties domain1.domibus.security.keystore.l
ocation

Domain property,
default domain

default-domibus.properties default.domibus.security.keystore.lo
cation

Super property super-domibus.properties super.domibus.console.login.maximu
m.attempt

All common properties are defined in core metadata manager. The properties that are specific to
a server (Tomcat, WildFly, WebLogic and WebLogic-ecas) are defined in a specific metadata

28

manager like TomcatMetadataManager. All these properties are managed by the Domibus Property
Provider.

These are considered as internal properties, as opposed to properties defined in external
modules and plugins (DSS module, JmsPlugin). Each external module has also a property
manager that gets and sets its own properties.

External modules can manage their properties by using their own property bag (as do default WS
and FS plugins) or by delegating to the Domibus Property Provider bag (as do default JMS plugin
and DSS module).

All property metadata, both internal and external, are managed centrally by the Domibus Property
Provider.

The property metadata is used by the Domibus Property Provider to determine how and from
where to get and set its value.

Domibus Property Provider is the single-entry point for getting and setting property values in MSH.

An external module can use its own property manager to do the same or it can call the Domibus
Property Provider Delegate to do the same (as it manages all properties and knows how to route the
call to the appropriate module manager).

1.11.7. Message Payloads

Domibus supports two strategies for saving the messages payloads: in the database or in a local
directory on the file disk. Each domain can customize the strategy for saving the payloads via the
domibus.properties file.

In case a domain chooses to save the payloads in the database, the payloads segregation is ensured
as only the users registered in that domain have access to the domain specific schema.

In case a domain chooses to save the payloads in a local filesystem directory configured per
domain, the payloads segregation needs to be ensured via OS access rights. It is recommended that
each domain configures its own dedicated filesystem directory.

1.11.8. Quartz

In the current version of Domibus, each domain can customize the Quartz jobs (like the retry job
expression defined with the property domibus.msh.retry.cron). The Quartz jobs are saved in the
database schemas of each domain.
A Quartz Scheduler can only be configured to work with one DB schema at a time.

In order to support Multitenancy, a Quartz Scheduler instance is created for each domain with
specific properties for that domain. The creation of a Quartz Scheduler per domain is performed at
runtime during the Domibus starts up.

29

Chapter 2. Quick Start Guide
Introduction

The eDelivery Access Point (AP) Domibus implements a standardised message exchange protocol
that ensures interoperable, secure and reliable data exchange.

Domibus is the AS4 Access Point open source project maintained by the European Commission.

The current release of Domibus supports Tomcat, WebLogic and WildFly and contains the following
archives:

☞ Download 5.1.5 Binaries

Binary Contents

Tomcat

• domibus-msh-distribution-5.1.5-tomcat-full.zip Contains the full Tomcat distribution.
The Web Service default plugin is also
included in this archive and deployed
as the default plugin.

• domibus-msh-distribution-5.1.5-tomcat-war.zip Contains the Domibus war for Tomcat.

• domibus-msh-distribution-5.1.5-tomcat-
configuration.zip

Contains the Domibus configuration
files for Tomcat.

WebLogic

• domibus-msh-distribution-5.1.5-weblogic-war.zip Contains the Domibus war for
WebLogic.

• domibus-msh-distribution-5.1.5-weblogic-
configuration.zip

Contains the Domibus configuration
files for WebLogic.

WildFly

• domibus-msh-distribution-5.1.5-wildfly-full.zip Contains the full WildFly distribution.
The Web Service default plugin is also
included in this archive and deployed
as the default plugin.

• domibus-msh-distribution-5.1.5-wildfly-war.zip Contains the Domibus war for WildFly.

• domibus-msh-distribution-5.1.5-wildfly-
configuration.zip

Contains the Domibus configuration
files for Wildfly 26.1.x.

Other

• domibus-msh-distribution-5.1.5-sample-configuration-
and-testing.zip

Contains a sample of certificates,
PMode configuration files and the test
SoapUI project.

30

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Domibus+-+v5.1.5

• domibus-msh-distribution-5.1.5-sql-scripts.zip Contains SQL scripts (full and
migration) for the creation and
manipulation of the database schema
as well as deletion scripts for MySQL
and Oracle.
With the deletion scripts, users can
delete information relevant to a
message sent or received during a
predefined period.

• domibus-msh-distribution-5.1.5-default-jms-
plugin.zip

Contains the JMS plugin’s binaries and
configuration file.

• domibus-msh-distribution-5.1.5-default-ws-plugin.zip Contains the Web Service plugin’s
binaries and configuration file.

• domibus-msh-distribution-5.1.5-default-fs-plugin.zip Contains the File System plugin’s the
binaries and configuration file.

Purpose of this guide

This release contains the AS4 Access Point of the eDelivery building block. For more information
about this release, please refer to Domibus at the eDelivery Portal.

This release of the eDelivery Access Point is the result of significant collaboration among different
EU policy projects, IT delivery teams and the eDelivery building block. Nevertheless, this eDelivery
release is fully reusable by any other policy domain of the EU.

This release supports:

Servers

• Tomcat 9.x

• WebLogic Version 12.2.1.4 (tested versions, future versions might also work)

• WildFly 26.1.x (tested versions, future versions might also work)

Databases

• Oracle 12c R2 and Oracle 19c

• MySQL 8

In this guide, we are covering Static discovery on Single server Tomcat/MySQL configuration.

NOTE
For other scenarios such as Dynamic Discovery, Installation on WildFly or WebLogic
please refer to the full Administration Guide of your corresponding Domibus
release.

We will guide you to setup two Tomcat standalone Access Points, deployed on different machines,
to exchange B2B documents securely over AS4 by:

• Deploying and configuring both Access Points (blue and red)

• Configuring processing mode files for both AS4 Access Points

31

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

• Using the provided AS4 Access Points certificates

• Setup the Access Points blue and red for running test cases (see $10- Testing)

Installation on two different machines

NOTE

• The same procedure can be extended to a third (or more) Access Point.

• This guide does not cover the preliminary network configuration allowing
communication between separate networks (e.g.: Proxy setup).

2.1. Prerequisite
• Oracle Java runtime environment (JRE) or Oracle OpenJDK11:

◦ Oracle 8u291+ for Tomcat, WildFly and WebLogic.
http://www.oracle.com/technetwork/java/javase/downloads/index.html

◦ Oracle OpenJDK 11 version 11.0.11 for Tomcat and WildFly:
https://openjdk.java.net/projects/jdk/11/

• Database Management Systems :

◦ MySQL 8

▪ Version tested, future versions might work

Please install the above software on your host machine. For further information and installation
details, refer to the manufacturers' websites.

2.2. Configure your environment

2.2.1. Package Overview

Domibus-msh-distribution-5.1.5-tomcat-full.zip

Download the Domibus Tomcat Full Distribution from Digital website as shown in below picture:

32

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://openjdk.java.net/projects/jdk/11/

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

Download the package

This downloaded package has the following structure:

Package Contents

• <edelivery_path> contents and structure is as can be seen in the Package Contents figure above,
and is not to be confused with the domibus/conf/domibus folder subfolder.

• <edelivery_path>/bin contains either the executable batch file (Windows) or the shell script
(Linux) which are required for launching the Access Point.

• sql-scripts contains the required application SQL code that needs to be executed on the MySQL
database (and scripts for Oracle DB).

Contents of the <edelivery_path>:

33

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

• /conf: where you can find XML the configuration files used to administer your Tomcat and the
default domibus configuration file.

• /logs: where the logs are stored

• /webapps: where the WAR files are stored

• cef_edelivery_path_/conf/domibus contains the domibus configuration files:

<edelivery_path> subdirectories content

Sample Configuration and Resting Resources

To download:

• the Domibus sample configuration

• testing zip

• domibus-msh-distribution-X..Z-sample-configuration-and-testing.zip

☞ Click here,

or

34

https://ec.europa.eu/digital-building-blocks/artifact/repository/eDelivery/eu/domibus/domibus-msh-distribution/5.1/domibus-msh-distribution-5.1-sample-configuration-and-testing.zip

☞ Navigate to from the eDelivery Portal and click on Domibus Sample Configuration and Testing.

Download Domibus configuration files

The Sample Configuration archive has the following contents and structure:

Pre-configured files for Domibus

• <edelivery_path>/test contains a SOAP UI test project.

• <edelivery_path>/conf/pmodes contains two AS4 processing modes XML files (one for blue and
other for red Access Point) pre-configured to use compression, payload encryption, message
signing and non-repudiation, according to the eDelivery AS4 profile.

• <edelivery_path>/conf/domibus/keystores contains a keystore (with the private keys of Access
Point blue and Access Point red) and a truststore (with the public keys of Access Point blue and
Access Point red) that can be used by both Access Points. Note that the keystore contains the
private keys of both Access Points blue and red. This setup is not secure and is used for
demonstration purpose only. In production, the private key should only be known, and
deployed in the keystore of its owner (one participant). For this test release, each Access Point
uses self-signed certificates.

SEE ALSO
For more information about AS4 security, see Annex 5 - Introduction to AS4
security.

35

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4

NOTE
The /conf folder in the sample archive should be unzipped and merged with the
edelivery_path/conf folder that already exists.

2.2.2. Tomcat Standalone Access Point

As described in the purpose of this guide, we need to configure two Access Points running on two
separate machines.
This means the procedure below needs to be performed on both machines:

• Hostname "blue" (<blue_hostname>:8080) and

• Hostname "red" (<red_hostname>:8080).

You will need the following resources:

• domibus-msh-distribution-5.1.5-tomcat-full.zip

NOTE All binaries can be downloaded from Domibus release page in eDelivery Portal

To install the access point:

1. Download and unzip domibus-msh-distribution-5.1.5-tomcat-full.zip to a location on your
physical machine, <edelivery_path>. With <edelivery_path> we refer to the path in your system
where you are installing Domibus.
This folder will hold Domibus' folder content as shown below.

Unzip Domibus configuration files

2. Unzip the archive domibus-msh-distribution-5.1.5-sample-configuration-and-testing.zip.

The conf folder in the sample archive should be unzipped and merged with the
<edelivery_path>/conf folder that already exists. Ensure the <edelivery_path>/conf/domibus
folder structure looks like in the figure below:

Domibus folder structure

36

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

Prepare the MySQL database

You will need admin rights to perform some of these operations):

1. Open a command prompt and navigate to this directory: sql-scripts.

2. Execute the following MySQL commands at the command prompt:

Please ensure you replace the <root_user> and <root_password> with the corresponding root user
and password.

mysql -h localhost -u <root_user> --password=<root_password> -e \
"DROP SCHEMA IF EXISTS domibus;
 CREATE SCHEMA domibus;
 ALTER DATABASE domibus charset=utf8mb4 collate=utf8mb4_bin;
 CREATE USER edelivery@localhost IDENTIFIED BY 'edelivery';"

mysql -h localhost -u <root_user> --password=<root_password> -e \
 "GRANT ALL ON domibus.* TO edelivery@localhost;"

The script above creates a schema (domibus) and a user (edelivery) that have all the privileges on
the schema.

NOTE
It is possible that you are now allowed to choose eDelivery as the password
based on your MySql Password policy.
In that case, you would need to increase the complexity of your password.

37

Please update the new password in the Domibus property file accordingly.

3. Execute the following MYSQL commands individually and sequentially:

Step 1

mysql -h localhost -u <root_user> --password=<root_password> -e \
"GRANT <xa_recover_admin> ON *.* TO <edelivery>@localhost;"

Step 2

mysql -h localhost -u <root_user> --password=<root_password> \
domibus < mysqlinnoDb-<x.y.z>.ddl ①

Step 3

mysql -h localhost -u <root_user> --password=<root_password> \
domibus < mysqlinnoDb-<x.y.z>-data.ddl ①

Where:

① (Steps above) <x.y.z> stands for the Domibus version (5.1.5).

TIP

If you are using MySQL 8 under Windows, then please set the database
timezone. It is recommended that the database timezone is the same as the
timezone of the machine where Domibus is installed:

default-time-zone='+00:00'.

IMPORTANT

If you are using Windows:

1. Make sure the parent directory of mysql.exe is added to your
PATH.

2. You can also use MYSQL Workbench, instead of the command line
statements to create the database.

3. Verify that the <edelivery_path>/conf/domibus/domibus.properties
file has the relevant database parameters, if required (in case you
have changed the username/password or schema name).

Database properties

--------------- Database--------
Database server name
domibus.database.serverName=localhost

Database port
domibus.database.port=3306
domibus.database.schema=domibus

38

General schema. If uncommented Domibus will run in multi-tenancy mode
#domibus.database.general.schema=general_schema

#Database schema
#Comment this property when Domibus is in multi-tenancy mode.
#Comment this property when Domibus is configured in single tenancy mode with an
Oracle database.
domibus.database.schema=domibus

Non-XA Datasource
MySQL
Connector/J 8.0.x
domibus.datasource.driverClassName=com.mysql.cj.jdbc.Driver
domibus.datasource.url=jdbc:mysql://${domibus.database.serverName}:${domibus.dat
abase.port}/${domibus.database.schema}?useSSL=false&allowPublicKeyRetrieval=true
&useLegacyDatetimeCode=false&serverTimezone=UTC

4. Download the Mysql V8 Connector jar file from the MYSQL website and add it to your
installation’s lib folder:

<edelivery_path>\lib\<mysql_v8connector.jar>

2.3. Keystore
In order to exchange B2B messages and documents between Access Points blue and red, it is
necessary to check the following:

For blue For red

In domibus.properties: the keystore alias
property,
domibus.security.key.private.alias=blue_gw

In domibus.properties: the keystore alias
property,
domibus.security.key.private.alias=red_gw

In a production environment, each participant would need a certificate delivered by a certification
authority and remote exchanges between business partners would be managed by each partner’s
PMode (that should be uploaded on each Access Point).

2.4. Domibus Config location
Domibus expects a single environment variable domibus.config.location, pointing towards the
<edelivery_path>/conf/domibus folder.

You can do this by editing the first command lines of:

• <edelivery_path>\domibus\bin\setenv.bat (Windows) or

• <edelivery_path>/bin/setenv.sh (Linux).

39

Set CATALINA_HOME with the absolute path of the installation <edelivery_path>/domibus.*.

Windows:

• Edit <edelivery_path>\domibus\bin\setenv.bat and add the following:

set CATALINA_HOME=<edelivery_path>
set CATALINA_TMPDIR=<temp_directory_path>
set JAVA_OPTS=%JAVA_OPTS% -Dfile.encoding=UTF-8 -Xms128m -Xmx1024m
 -XX:PermSize=64m
set JAVA_OPTS=%JAVA_OPTS% -Ddomibus.config.location=%CATALINA_HOME%\conf\domibus

Linux:

1. Edit <edelivery_path>/bin/setenv.sh
by adding the following:

export CATALINA_HOME=<edelivery_path>
export CATALINA_TMPDIR=<temp_directory_path>
export JAVA_OPTS="$JAVA_OPTS -Xms128m -Xmx1024m"
export JAVA_OPTS="$JAVA_OPTS -Ddomibus.config.location=$CATALINA_HOME/conf/domibus"

2.5. Launch the Domibus application
Windows:
Execute,

1. cd <edelivery_path>\bin\

2. startup.bat

Linux:

1. Execute cd <edelivery_path>/bin/chmod u+x *.sh ./startup.sh

2. Nav to: http://localhost:8080/domibus to display the Domibus home page on your browser.
If you can access the page, it means the deployment was successful.

NOTE

By default user=admin. For the password, look in the logs for the phrase:
“Default password for user admin is”.
You will be asked to change the default password when logging in for the first
time.

Domibus administration page

40

http://localhost:8080/domibus/home

1. To allow the remote application to send a message to this machine, you would need to create
a dedicated rule (to allow this port) from your local firewall.
See also ☞ Annex 2 - Firewall Settings

2. If you intend to install both Access Points on the same server, you will need to change the
ports of the red Access Point and create a separate database schema, update the
domibus.properties file and change the ActiveMQ ports before starting the server to avoid
conflicts.

2.6. Upload PModes
Edit the two PMode files:

• <edelivery_path>/conf/pmodes/domibus-gw-sample-pmode-blue.xml

• domibus-gw-sample-pmode-red.xml

and replace <blue_hostname> and <red_hostname> with their real hostnames or IPs:

PMode view

<party name="red_gw" endpoint="Error! Hyperlink reference not valid.">
 <identifier partyId="domibus-red" partyIdType="partyTypeUrn" />
</party>
<party name="blue_gw" endpoint="Error! Hyperlink reference not valid.">
 <identifier partyId="domibus-blue" partyIdType="partyTypeUrn" />
</party>

SEE ALSO For more details about the provided PMode, see Annex 3 - Processing Mode.

2.7. Upload the PMode file on both Access Points
To upload a PMode XML file,

41

1. Connect to the administration console using your credentials.

NOTE
By default login=admin. For the password, look in the logs for the phrase: Default
password for user admin is) to http://localhost:8080/domibus:

Login to the administration console

2. Select the menu PMode → Current → Upload.

PMode update

A popup window appears where you can select the PMode file.

3. Select PMode file and click on the Upload button.

42

http://localhost:8080/domibus

When the operation is successful you will get the following window:

PMode upload success

Now your Tomcat Access Points are running and ready to send or receive messages.

NOTE Every time a PMode is updated, the Truststore is also refreshed from the file system.

2.8. Test
As explained in the Release Notes document, and to facilitate testing, we have developed a
Reference Web Service endpoint to illustrate how participants can connect and interact with the
AS4 Access Point to send messages.

In addition, it is possible for the backends to download received messages from their Access Point
using a request (downloadMessage) defined in the same WSDL.

SEE ALSO

For more details about:

• The interface control description for the WS default plugin, see WS Plugin
Interface

• Testing with a SoapUI Project, see the Testing Guide

• WSD, see the Domibus Releases page

NOTE

Domibus provides three default plugins for sending and receiving/downloading
messages via Domibus, a Web Service plugin, a JMS plugin and a File System plugin.
The Web Service plugin is deployed by default with the tomcat-full distribution. For
more information about the Other Plugins please refer to the complete Domibus
admin guide.

43

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus+releases

2.9. Annex 1 - Parameters
Local and Remote Access Points Parameters

Parameters Local Access Point
(Gateway "blue")

Remote Access Point
(Gateway "red")

Hostname <blue_hostname>:8080 <red_hostname>:8080

Database MySQL database MySQL database

Administrator Page Username: admin. For the password,
look in the logs for the phrase:
“Default password for user admin
is”.
http://localhost:8080/domibus/home

Username: admin. For the password,
look in the logs for the phrase:
“Default password for user admin
is”.
http://localhost:8080/domibus/home

Database Schema edelivery edelivery

Database connector Username: edelivery
Password: edelivery
jdbc:mysql://localhost:3306/domibu
s

Username: edelivery
Password: edelivery
jdbc:mysql://localhost:3306/domibu
s

DB
username/password

edelivery/edelivery edelivery/edelivery

PModes XML files pmodes/domibus-gw-sample-pmode-
blue.xml

pmodes/domibus-gw-sample-pmode-
red.xml

NOTE
localhost represents the server name that hosts the database and the application
server for their respective Access Point.

2.10. Annex 2 - Firewall Settings
The firewall settings may prevent you from exchanging messages between your local and remote
Tomcat Access Points.

To test the status of a port, run the command:

telnet <server_ip> <port>

Tomcat uses the following ports, make sure those are opened on both machines "blue" and "red"
(TCP protocol):

• 8080 (HTTP port)

• 3306 (MySQL port)

This is how you can open a port on the Windows Firewall:

1. Click on Start → Control Panel

2. Go to Windows → Firewall and click on Advanced Settings

3. Right-click on Inbound Rules and select New Rule:

44

http://localhost:8080/domibus/home
http://localhost:8180/domibus/home

4. Select Port and click on Next:

5. Enter a specific local port (e.g. 8080) and click on Next:

45

6. Click on Next:

7. Choose a name for the new rule and click on Finish to end:

46

2.11. Annex 3 - Processing Mode
Processing modes (PModes) describe how messages are exchanged between AS4 partners (Access
Point blue and Access Point red). These files contain the identifiers of each AS4 Access Point
(identified as parties in the PMode file below).

Sender Identifier and Receiver Identifier represent the organizations that send and receive the
business documents (respectively "domibus- blue" and "domibus-red"). They are both used in the
authorization process (PMode). Therefore, adding, modifying or deleting a participant implies
modifying the corresponding PMode files.

Here is an example of the content of a PMode XML file:

• In this setup we have allowed each party (blue_gw or red_gw) to initiate the process. If only
blue_gw is supposed to send messages, we need to put only blue_gw in <initiatorParties> and
red_gw in <responderParties>.

<?xml version="1.0" encoding="UTF-8"?>
<db:configuration
 xmlns:db="http://domibus.eu/configuration" party="blue_gw">
 <mpcs>
 <mpc name="defaultMpc"
 qualifiedName="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/defaultMPC"
 enabled="true"
 default="true"
 retention_downloaded="0"
 retention_undownloaded="14400"/>
 </mpcs>
 <businessProcesses>
 <roles>
 <role name="defaultInitiatorRole" value="http://docs.oasis-open.org/ebxml-

47

msg/ebms/v3.0/ns/core/200704/initiator"/>
 <role name="defaultResponderRole" value="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder"/>
 </roles>
 <parties>
 <partyIdTypes>
 <partyIdType name="partyTypeUrn"
value="urn:oasis:names:tc:ebcore:partyid-type:unregistered"/>
 </partyIdTypes>
 <party name="red_gw" endpoint="http://
 <red_hostname>:8080/domibus/services/msh">
 <identifier partyId="domibus-red" partyIdType="partyTypeUrn"/>
 </party>
 <party name="blue_gw" endpoint="http://
 <blue_hostname>:8080/domibus/services/msh">
 <identifier partyId="domibus-blue"
partyIdType="partyTypeUrn"/>
 </party>
 </parties>
 <meps>
 <mep name="oneway" value="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/oneWay"/>
 <mep name="twoway" value="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/twoWay"/>
 <binding name="push" value="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/push"/>
 <binding name="pushAndPush" value="http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push-and-push"/>
 </meps>
 <properties>
 <property name="originalSenderProperty"
 key="originalSender"
 datatype="string"
 required="true"/>
 <property name="finalRecipientProperty"
 key="finalRecipient"
 datatype="string"
 required="true"/>
 <propertySet name="eDeliveryPropertySet">
 <propertyRef property="finalRecipientProperty"/>
 <propertyRef property="originalSenderProperty"/>
 </propertySet>
 </properties>
 <payloadProfiles>
 <payload name="businessContentPayload"
 cid="cid:message"
 required="true"
 mimeType="text/xml"/>
 <payload name="businessContentAttachment"
 cid="cid:attachment"
 required="false"

48

 mimeType="application/octet-stream"/>
 <payloadProfile name="MessageProfile" maxSize="40894464">
 <!-- maxSize is currently ignored -->
 <attachment name="businessContentPayload"/>
 <attachment name="businessContentAttachment"/>
 </payloadProfile>
 </payloadProfiles>
 <securities>
 <security name="eDeliveryAS4Policy"
 policy="eDeliveryAS4Policy.xml"
 signatureMethod="RSA_SHA256" />
 </securities>
 <errorHandlings>
 <errorHandling name="demoErrorHandling"
 errorAsResponse="true"
 businessErrorNotifyProducer="true"
 businessErrorNotifyConsumer="true"
 deliveryFailureNotifyProducer="true"/>
 </errorHandlings>
 <agreements>
 <agreement name="agreement1" value="A1" type="T1"/>
 </agreements>
 <services>
 <service name="testService1" value="bdx:noprocess" type="tc1"/>
 <service name="testService" value="http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/core/200704/service"/>
 </services>
 <actions>
 <action name="tc1Action" value="TC1Leg1"/>
 <action name="testAction" value="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/test"/>
 </actions>
 <as4>
 <receptionAwareness name="receptionAwareness"
 retry="12;4;CONSTANT"
 duplicateDetection="true"/>
 <reliability name="AS4Reliability"
 nonRepudiation="true"
 replyPattern="response"/>
 </as4>
 <legConfigurations>
 <legConfiguration name="pushTestcase1tc1Action"
 service="testService1"
 action="tc1Action"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"

49

 compressPayloads="true"/>
 <legConfiguration name="testServiceCase"
 service="testService"
 action="testAction"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
 </legConfigurations>
 <process name="tc1Process"
 mep="oneway"
 binding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="blue_gw"/>
 <initiatorParty name="red_gw"/>
 </initiatorParties>
 <responderParties>
 <responderParty name="blue_gw"/>
 <responderParty name="red_gw"/>
 </responderParties>
 <legs>
 <leg name="pushTestcase1tc1Action"/>
 <leg name="testServiceCase"/>
 </legs>
 </process>
 </businessProcesses>
 </db:configuration>

2.12. Annex 4 - Domibus Pconf to ebMS3 mapping
The following table provides additional information concerning the Domibus PMode configuration
(pconf) files.

Domibus pconf to ebMS3 mapping

Domibus pconf EbMS3 Specification
[ebMS3CORE] [AS4-
Profile]

Description

MPCs - Container which defines the different MPCs
(Message Partition Channels).

50

Domibus pconf EbMS3 Specification
[ebMS3CORE] [AS4-
Profile]

Description

MPC PMode[1].BusinessInfo.
MPC:
The value of this
parameter is the
identifier of the MPC
(Message Partition
Channel) to which the
message is assigned. It
maps to the attribute
Messaging/UserMessage

Message Partition Channel allows the
partition of the flow of messages from a
Sending MSHs to a Receiving MSH into several
flows, each of which is controlled
separately. An MPC also allows merging
flows from several Sending MSHs into a
unique flow that will be treated as such by
a Receiving MSH.
The value of this parameter is the identifier
of the MPC to which the message is
assigned.

MessageRetentionDownloaded - Retention interval for messages already
delivered to the backend.

MessageRetentionUnDownloade
d

- Retention interval for messages not yet
delivered to the backend.

Parties - Container which defines the different
PartyIdTypes, Party and Endpoint.

PartyIdTypes maps to the attribute
Messaging/UserMessage/
PartyInfo

Message Unit bundling happens when the
Messaging element contains multiple child
elements or Units (either User Message
Units or Signal Message Units).

Party ID maps to the element
Messaging/UserMessage/
PartyInfo

The ebCore Party ID type can simply be
used as an identifier format and therefore
as a convention for values to be used in
configuration and – as such – does not
require any specific solution building block.

Endpoint maps to
PMode[1].Protocol.Addr
ess

The endpoint is a party attribute that
contains the link to the MSH.

+ The value of this parameter represents
the address (endpoint URL) of the Receiver
MSH (or Receiver Party) to which Messages
under this PMode leg are to be sent. Note
that a URL generally determines the
transport protocol (e.g. if the endpoint is an
email address, then the transport protocol
must be SMTP; if the address scheme is
"http", then the transport protocol must be
HTTP).

AS4 - Container

51

Domibus pconf EbMS3 Specification
[ebMS3CORE] [AS4-
Profile]

Description

Reliability
[@Nonrepudiation]
[@ReplyPattern]

Nonrepudiation maps to
PMode[1].Security.Send
Receipt.NonRepudiation

ReplyPattern maps to
PMode[1].Security.Send
Receipt.ReplyPattern

PMode[1].Security.SendReceipt.NonRepudiat
ion:

• value=‘true' (to be used for non-
repudiation of receipt),

• value ='false' (to be used simply for
reception awareness).

PMode[1].Security.SendReceipt.ReplyPat
tern:

• value = ‘Response’ (sending receipts on
the HTTP response or back-channel).

PMode[1].Security.SendReceipt.ReplyPat
tern:

• value = ‘Callback’ (sending receipts use
a separate connection.)

ReceptionAwareness
[@retryTimeout]
[@retryCount] [@strategy]
[@duplicateDetection]

retryTimeout maps to
PMode[1].ReceptionAwar
eness.Retry=true

+ retryCount maps to
PMode[1].ReceptionAwar
eness.Retry.Parameters

strategy maps to
PMode[1].ReceptionAwar
eness.Retry.Parameters

duplicateDetection
maps to
PMode[1].ReceptionAwar
eness.DuplicateDetecti
on ``

These parameters are stored in a composite
string.

• retryTimeout defines timeout in
seconds.

• retryCount is the total number of
retries.

• strategy defines the frequency of
retries. The only strategy available as of
now is CONSTANT.

• duplicateDetection allows to check
duplicates when receiving twice the
same message. The only
duplicateDetection available as of now
is TRUE.

Securities - Container

Security - Container

Policy PMode[1].Security.*
NOT including
PMode[1].Security.X509
.Signature.Algorithm

The parameter in the pconf file defines the
name of a WS-SecurityPolicy file.

SignatureMethod PMode[1].Security.X509
.Signature.Algorithm

This parameter is not supported by WS-
SecurityPolicy and therefore it is defined
separately.

52

Domibus pconf EbMS3 Specification
[ebMS3CORE] [AS4-
Profile]

Description

BusinessProcessConfiguratio
n

- Container

Agreements maps to
eb:Messaging/UserMessa
ge/CollaborationInfo/A
greementRef

This optional element occurs zero times or
once. The AgreementRef element is a string
that identifies the entity or artifact
governing the exchange of messages
between the parties.

Actions - Container

Action maps to
Messaging/UserMessage/
CollaborationInfo/Acti
on

This required element occurs once. The
element is a string identifying an operation
or an activity within a Service that may
support several of these.

Services - Container

ServiceTypes Type maps to
Messaging/UserMessage/
CollaborationInfo/Serv
ice[@type]

This required element occurs once. It is a
string identifying the service that acts on
the message and it is specified by the
designer of the service.

MEP [@Legs] - An ebMS MEP defines a typical
choreography of ebMS User Messages
which are all related through the use of the
referencing feature (RefToMessageId). Each
message of an MEP Access Point refers to a
previous message of the same Access Point,
unless it is the first one to occur. Messages
are associated with a label (e.g. request,
reply) that precisely identifies their
direction between the parties involved and
their role in the choreography.

Bindings - Container

Binding - The previous definition of ebMS MEP is
quite abstract and ignores any binding
consideration to the transport protocol.
This is intentional, so that application level
MEPs can be mapped to ebMS MEPs
independently of the transport protocol to
be used.

Roles - Container

53

Domibus pconf EbMS3 Specification
[ebMS3CORE] [AS4-
Profile]

Description

Role maps to
PMode.Initiator.Role
or
PMode.Responder.Role
depending on where
this is used. In ebMS3
message this defines
the content of the
following element: +
For Initiator:
Messaging/UserMessage/
PartyInfo/From/Role

For Responder:
Messaging/UserMessage/
PartyInfo/To/Role

The required role element occurs once,
and identifies the authorized role
(fromAuthorizedRole or toAuthorizedRole) of
the Party sending the message (when
present as a child of the From element), or
receiving the message (when present as a
child of the To element). The value of the
role element is a non-empty string, with a
default value of http://docs.oasis-
open.org/ebxml-msg/ebms/v3.0/ns/core/
200704/defaultRole.

Other possible values are subject to partner
agreement.

Processes - Container

PayloadProfiles - Container

Payloads - Container

Payload maps to
PMode[1].BusinessInfo.
PayloadProfile

This parameter allows specifying some
constraint or profile on the payload. It
specifies a list of payload parts.

A payload part is a data structure that
consists of five properties:

• name (or Content-ID) that is the part
identifier, and can be used as an index
in the notation PayloadProfile;

• MIME data type (text/xml,
application/pdf, etc.);

• name of the applicable XML Schema
file if the MIME data type is text/xml;

• maximum size in kilobytes;

• boolean string indicating whether the
part is required or optional, within the
User message.

The message payload(s) must match this
profile.

ErrorHandlings - Container

54

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole

Domibus pconf EbMS3 Specification
[ebMS3CORE] [AS4-
Profile]

Description

ErrorHandling - Container

ErrorAsResponse maps to
PMode[1].ErrorHandling
.Report.AsResponse

This Boolean parameter indicates (if true)
that errors generated from receiving a
message in error are sent over the back-
channel of the underlying protocol
associated with the message in error. If
false, such errors are not sent over the
back channel.

ProcessErrorNotifyProducer maps to
PMode[1].ErrorHandling
.Report.ProcessErrorNo
tifyProducer

This Boolean parameter indicates whether
(if true) the Producer (application/party) of
a User Message matching this PMode
should be notified when an error occurs in
the Sending MSH, during processing of the
User Message to be sent.

ProcessErrorNotifyConsumer maps to
PMode[1].ErrorHandling
.Report.ProcessErrorNo
tifyProducer

This Boolean parameter indicates whether
(if true) the Consumer (application/party)
of a User Message matching this PMode
should be notified when an error occurs in
the Receiving MSH, during processing of
the received User message.

DeliveryFailureNotifyProduc
er

maps to
PMode[1].ErrorHandling
.Report.DeliveryFailur
esNotifyProducer

When sending a message with this
reliability requirement (Submit invocation),
one of the two following outcomes shall
occur:

* The Receiving MSH successfully delivers
(Deliver invocation) the message to the
Consumer. * The Sending MSH notifies
(Notify invocation) the Producer of a
delivery failure.

Legs - Container

55

Domibus pconf EbMS3 Specification
[ebMS3CORE] [AS4-
Profile]

Description

Leg - Because messages in the same MEP may be
subject to different requirements - e.g. the
reliability, security and error reporting of a
response may not be the same as for a
request – the PMode will be divided into
legs. Each user message label in an ebMS
MEP is associated with a PMode leg. Each
PMode leg has a full set of parameters for
the six categories above (except for General
Parameters), even though in many cases
parameters will have the same value across
the MEP legs. Signal messages that
implement transport channel bindings
(such as PullRequest) are also controlled by
the same categories of parameters, except
for BusinessInfo group.

Process - In Process everything is plugged together.

2.13. Annex 5 - Introduction to AS4 security
To secure the exchanges between Access Points "blue" and "red" (Access Point "blue" is sending a
message to Access Point "red" in this example), it is necessary to set up each Access Point’s keystore
and truststore accordingly.
The diagram below shows a brief explanation of the main steps of this process:

It is necessary to open the required ports when Access Point blue or Access Point red is behind a
local firewall. For instance, the port 8080 is not opened by default in Windows. Therefore, we would
need to create a dedicated rule on Windows firewall to open the TCP 8080 port.

See also Annex 2 - Firewall Settings.

56

Chapter 3. Administration Guide
The Administration Guide is a collection of sections on how to install and configure Domibus:

• Installing Domibus

• Configuring Domibus

• Administration Tools

• Operational Guides

57

Chapter 4. Installing Domibus
This chapter provides instructions on how to install and configure Domibus for the supported
webservers and databases. They are:

Webservers

• WebLogic

• Tomcat

• WildFly

Databases

• MySQL

• Oracle

Additionally, you can find relevant configurations, plugin development and management as well as
troubleshooting.

NOTE
These instructions aimed at users responsible for installing, managing and
troubleshooting eDelivery Access Points.

Before downloading and installing Domibus please consider:

1. If you are opting for a single-server or a cluster scenario.

2. The pre-requisites listed below.

4.1. Pre-requisites
Below you can find a list of requirements for your Dominus installation.

Select and the relevant combination of software required to deploy Domibus on the target
system(s).
See also ☛ Downloading Resources.

Java

Java 8 features, compile with Oracle JDK 8.

Domibus supported webservers were tested to run
correctly against the following Java Development Kits:

• Tomcat, WildFly and WebLogic:
Oracle JRE version 8u291+.
Download it here.

• Tomcat and WildFly: OpenJDK
11.0.11.
Tested with AdoptOpenJDK
version 11.0.9.1+1. Download it
here

Webservers

58

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://openjdk.java.net/projects/jdk/11/

Single Server General scenario

In this scenario you need install one of the following:

NOTE

General as in other than the Single Server
Pre-Configured scenarios when applicable
for a supported server.
See also:
☛ Pre-Defined Single Server Deployment
☛ Pre-Configured Single Server
Deployment

• WebLogic 12.2.1.4, or higher

• WildFly 26.1.x Final , or higher

• Tomcat 9.x, or higher

Clustered scenario

If deploying Domibus across multiple server instances,
then it’s required to install one the following supported
versions:

• WebLogic 12.2.1.4

• WildFly 26.1.x Final

• Apache Tomcat 9.x

Databases

Supported Database Management Systems: • MySQL: 8.0.13 or higher.

• Oracle: 12c R2 and Oracle 19c or
higher.

Third-party software documentation

For additional information and installation details regarding the third-party software listed
above, refer to its manufacturer’s documentation.

Notes on support

Security

Users installing any of the Domibus packages labelled as Full Distribution have the
responsibility to update application servers to their latest version after installation to ensure
their system’s security.

Browser Support

• The Domibus application is supported in all modern web browsers except Internet
Explorer.

Versions Tested

• We tested the specific versions mentioned above. Higher, later versions may also work.

4.2. Downloading Resources

59

4.2.1. Binaries

☞ Download 5.1.5 Binaries

Binary Contents

Tomcat

• domibus-msh-distribution-5.1.5-tomcat-full.zip Contains the full Tomcat distribution.
The Web Service default plugin is also
included in this archive and deployed
as the default plugin.

• domibus-msh-distribution-5.1.5-tomcat-war.zip Contains the Domibus war for Tomcat.

• domibus-msh-distribution-5.1.5-tomcat-
configuration.zip

Contains the Domibus configuration
files for Tomcat.

WebLogic

• domibus-msh-distribution-5.1.5-weblogic-war.zip Contains the Domibus war for
WebLogic.

• domibus-msh-distribution-5.1.5-weblogic-
configuration.zip

Contains the Domibus configuration
files for WebLogic.

WildFly

• domibus-msh-distribution-5.1.5-wildfly-full.zip Contains the full WildFly distribution.
The Web Service default plugin is also
included in this archive and deployed
as the default plugin.

• domibus-msh-distribution-5.1.5-wildfly-war.zip Contains the Domibus war for WildFly.

• domibus-msh-distribution-5.1.5-wildfly-
configuration.zip

Contains the Domibus configuration
files for Wildfly 26.1.x.

Other

• domibus-msh-distribution-5.1.5-sample-configuration-
and-testing.zip

Contains a sample of certificates,
PMode configuration files and the test
SoapUI project.

• domibus-msh-distribution-5.1.5-sql-scripts.zip Contains SQL scripts (full and
migration) for the creation and
manipulation of the database schema
as well as deletion scripts for MySQL
and Oracle.
With the deletion scripts, users can
delete information relevant to a
message sent or received during a
predefined period.

• domibus-msh-distribution-5.1.5-default-jms-
plugin.zip

Contains the JMS plugin’s binaries and
configuration file.

60

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Domibus+-+v5.1.5

• domibus-msh-distribution-5.1.5-default-ws-plugin.zip Contains the Web Service plugin’s
binaries and configuration file.

• domibus-msh-distribution-5.1.5-default-fs-plugin.zip Contains the File System plugin’s the
binaries and configuration file.

4.3. Databases
In the sections below you can find information on how to configure the supported databases,
MySQL and Oracle.

4.3.1. MySQL

NOTE
Whenever mentioned,<edelivery_path> refers to the path in your system where you
have installed the Domibus package. Some instructions refer to locations relative to
this base path.

To configure your MySQL database:

1. Download domibus-msh-distribution-5.1.5-sql-scripts.zip. See Download resources.

2. Extract the downloaded archive into <edelivery_path>/sql-scripts.

3. From your command-line interface (CLI), explore the <edelivery_path>/sql-scripts path where
you placed the scripts.

4. From the that location, execute the MySQL commands as instructed bellow.

Create the Domibus DB Schema

To create the <domibus_schema> and the <edelivery_user> user with all the privileges for the schema,
execute:

mysql -h localhost -u <root_user> --password=<root_password> -e \
"drop schema if exists domibus_schema
CREATE SCHEMA <domibus_schema>;
ALTER DATABASE <domibus_schema> charset=utf8mb4 collate=utf8mb4_bin;
CREATE USER <edelivery_user>@localhost IDENTIFIED BY 'edelivery_password';
GRANT ALL ON <domibus_schema>.* TO <edelivery_user>@localhost;"

Create domibus schema required objects

To create the required objects in the Domibus schema, execute:

mysql -h localhost -u <root_user< --password=<root_password> -e \
"grant <xa_recover_admin> on *.* to <edelivery_user>@localhost;"
mysql -h localhost -u <edelivery_user> --password=<edelivery_password> \
<domibus_schema> < mysql-<x.y.z>.ddl ①

61

Where:

① <x.y.z> stands for the Domibus version (5.1.5).

Populate the tables

mysql -h localhost -u edelivery_user --password=edelivery_password \
<domibus_schema> < mysql-<x.y.z>-data.ddl ①

Where:

① <x.y.z> stands for the Domibus version (5.1.5).

Additional Settings

Here are some additional server settings we recommend setting for your MySQL DB.

Storing payload messages with size over 30 Mb in a database

Domibus can store the messages in the database temporarily. So it is advised to increase the
maximum allowed size for packets.

To increase max size for packets, edit my.ini file in Windows or, in Linux, the my.cnf file, and
update the following default properties as indicated below:

1. Edit the max_allowed_packet property:

The maximum size of one packet or any generated or intermediate string,
or any parameter sent by the
mysql_stmt_send_long_data() C API function.

max_allowed_packet=512M

2. Edit the innodb_log_file_size property:

Size of each log file in a log group. You should set the combined size
of log files to about 25%-100% of your buffer pool size to avoid
unnecessary buffer pool flush activity on log file overwrite.
However, the larger logfile size will increase the time needed for the recovery
process.

innodb_log_file_size=5120M

3. Restart MySQL service (Windows)

Storing payload messages in the file system instead of a DB

See Domibus properties.

62

Setting the database timezone to UTC

For MySQL 8 and Connector/J 8.0.x please

One way of setting the timezone is to modify the MySQL my.ini configuration file by adding the
following property with the adjusted timezone to UTC.

default-time-zone='+00:00'

The connector is now configured to use the UTC server timezone by default. For future date time
values – e.g. next attempts for the retry mechanisms) – we also save the timezone offset when
persisting in order to be able to recreate the correct instant when reading back later on, in the
event the timezone offset will have changed while waiting for the future event to occur.

NOTE
If you are using Windows, make sure to have the parent directory of mysql.exe
added to your PATH variable.

4.3.2. Oracle

To configure your Oracle DB:

1. Unzip domibus-msh-distribution-5.1.5-sql-scripts.zip in <edelivery_path>/sql-scripts.

2. Open a command prompt and navigate to the <edelivery_path>/sql-scripts directory.
Open a command line session, log in and execute the following commands:

sqlplus sys as sysdba
/* Password should be the one assigned
during the Oracle installation */

3. Once you’re logged in in Oracle, in:

CREATE USER <edelivery_user> IDENTIFIED BY <edelivery_password> ①
DEFAULT TABLESPACE <tablespace> ②
QUOTA UNLIMITED ON <tablespace>;
GRANT CREATE SESSION TO <edelivery_user>;
GRANT CREATE TABLE TO <edelivery_user>;
GRANT CREATE VIEW TO <edelivery_user>;
GRANT CREATE SEQUENCE TO <edelivery_user>;
GRANT CREATE PROCEDURE TO <edelivery_user>;
GRANT CREATE JOB TO <edelivery_user>;
GRANT EXECUTE ON DBMS_XA TO <edelivery_user>;
GRANT EXECUTE ON DBMS_LOCK TO <edelivery_user>;
GRANT SELECT ON PENDING_TRANS$ TO <edelivery_user>;
GRANT SELECT ON DBA_2PC_PENDING TO <edelivery_user>;
GRANT SELECT ON DBA_PENDING_TRANSACTIONS TO <edelivery_user>;
CONNECT <edelivery_user>
SHOW USER; /* Should return: <edelivery_user>. */

63

@oracle-<x.y.z>.ddl ③
@oracle-<x.y.z>-data.ddl

EXIT

Where:

① <edelivery_user> and <edelivery_password> is to be replaced in accordance with your DB.

② and <tablespace> is created and assigned by your DBA; for local/test installations just replace it
with user’s tablespace. The quota could be limited to a specific size.

③ <x.y.z> stands for the Domibus version (5.1.5). DDL/SQL scripts must be run with the @ sign from
the location of the scripts.

NOTE

The Oracle JDBC driver is configured now to use the UTC server timezone by default
when persisting and reading date time values. For future date time values – e.g.
next attempts for the retry mechanisms – we also save the timezone offset when
persisting in order to be able to recreate the correct instant when reading back later
on, in the event the timezone offset will have changed while waiting for the future
event to occur.

4.3.3. Deletion scripts

A deletion script for MySQL and Oracle Domibus DB is available in the domibus-msh-distribution-
5.1.5-sql-scripts.zip.

This script’s purpose is deleting all messages within a user-defined period to recover disk space.
The script requires setting the START_DATE end END_DATE parameters.

The tables affected by this script’s execution are:

• TB_MESSAGING

• TB_ERROR_LOG

• TB_PARTY_ID

• TB_RECEIPT_DATA

• TB_PROPERTY

• TB_PART_INFO

• TB_RAWENVELOPE_LOG

• TB_ERROR

• TB_USER_MESSAGE

• TB_SIGNAL_MESSAGE

• TB_RECEIPT

• TB_MESSAGE_INFO

• TB_MESSAGE_LOG

64

• TB_MESSAGE_UI

Any information relevant to a message received or sent during that predefined period, is removed
from these tables.

TIP
We recommend executing this script using an UI tool such as SQL developer or MySQL
workbench.

IMPORTANT
To keep the JMS queues synchronized with the DB data that eventually
deleted by this script, the Domibus Administrator should remove manually
the associated JMS messages from the plugin notifications queues.

4.4. Servers
In the sections below you can find information on how to configure the supported Webservers:
Weblogic, Tomcat and Wildfly.

4.4.1. WebLogic

This section does not include the installation of WebLogic server. It is assumed that the WebLogic
Server is installed and a Domain is created. From this point forwards, we will refer to the domain
location as`DOMAIN_HOME<user-defined name>`.

Important Notes

Apache CXF library

The Apache CXF library referred by Domibus, internally uses the environment variable
java.io.tmpdir to buffer large attachments received. If the property java.io.tmpdir is not
specified, then by default this points to the <Weblogic_domain_directory>.

Recommendation to set up local dir

It is recommended to point this to a local directory '_tmp' on each managed server and
accessible by the Weblogic application server. The disk space and accessible by the Weblogic
application server. The disk space allocated for '_tmp' directory would depend on the size of
attachments received. On production environment it is recommended to allocate a minimum
100GB capacity to '_tmp'.

CXF limitations

CXF has a limitation of being able to validate signatures of only 28 payload attachments at a
time. As a result, Domibus cannot send/receive more than 28 attachments in a single AS4
message. Users can modify the default JNDI name property in the domibus.properties by
setting:

Example

#Weblogic JDBC-DataSource JNDI Name
domibus.jdbc.datasource.jndi.name=jdbc/cipaeDeliveryDs

65

#Weblogic JDBC-DataSource Quartz JNDI Name
domibus.jdbc.datasource.quartz.jndi.name=jdbc/cipaeDeliveryNonXADs

☛ Single Server Deployment

Below you can find a list of the resources you need for a base deployment.

Domibus install resources

Domibus Domibus Plugins

For single-server installations use the
following resources:

• Domibus for Weblogic

• Domibus Weblogic configuration files

Depending on the interface(s) used, you need
to download and install at least one of the
Domibus Default plugins:

• WebService Plugin

• JMS Plugin

• File System Plugin

All the links are pointing to Domibus release 5.1.5.

For other versions, select the release from the Domibus releases releases page to check
download links per component.

TIP
If you have questions about the levels of support for the releases, check the type of the
release you’re selecting and see Support Arrangement.

To install Domibus with WebLogic:

1. Download and extract the archive domibus-msh-distribution-5.1.5-weblogic-configuration.zip
into the directory DOMAIN_HOME/conf/domibus.

2. Configure your Keystore. See the Certificates section.

3. Follow the instructions below that apply to your target OS.

On Windows

66

https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/domibus/domibus-msh-distribution/5.1.5/domibus-msh-distribution-5.1.5-weblogic-war.zip
https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/domibus/domibus-msh-distribution/5.1.5/domibus-msh-distribution-5.1.5-weblogic-configuration.zip
https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/domibus/domibus-msh-distribution/5.1.5/domibus-msh-distribution-5.1.5-default-ws-plugin.zip
https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/domibus/domibus-msh-distribution/5.1.5/domibus-msh-distribution-5.1.5-default-jms-plugin.zip
https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/domibus/domibus-msh-distribution/5.1.5/domibus-msh-distribution-5.1.5-default-fs-plugin.zip
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Domibus+releases
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Domibus+support+arrangement

1. Edit DOMAIN_HOME\bin\setDomainEnv.cmd.

2. Locate the set DOMAIN_HOME statement and add the sample below:

set DOMAIN_HOME
set EXTRA_JAVA_PROPERTIES=%EXTRA_JAVA_PROPERTIES%
-Ddomibus.config.location=%DOMAIN_HOME%/conf/domibus
-Djava.io.tmpdir=<temp_directory_path>

#set JAVA_OPTIONS="%JAVA_OPTIONS%
-Dweblogic.transaction.allowOverrideSetRollbackReason=true"

On Linux

1. Edit DOMAIN_HOME/bin/setDomainEnv.sh

2. Locate the export DOMAIN_HOME statement and add the following sample:

...
export DOMAIN_HOME
Added for Domibus
**
EXTRA_JAVA_PROPERTIES="$EXTRA_JAVA_PROPERTIES -
Ddomibus.config.location=$DOMAIN_HOME/conf/domibus
-Djava.io.tmpdir=<temp_directory_path>" ①
export EXTRA_JAVA_PROPERTIES
#

*
JAVA_OPTIONS="${JAVA_OPTIONS}
-Dweblogic.transaction.allowOverrideSetRollbackReason=true”
export JAVA_OPTIONS

3. Run the WebLogic Scripting Tool (WLST) to create the JMS resources and the Database
datasources from the command line.

4. Download the WSLT Package from the following location:

https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/europa/ec/
digit/ipcis/wslt-api/1.9.1/wslt-api-1.9.1.zip

5. Configure the WSLT API tool.

6. Unzip the wslt-api-1.9.1.zip.

7. Define the WL_HOME as a system environment variable to point to the WebLogic wlserver
directory as defined in the DOMAIN_HOME/bin/setDomainEnv.[cmd|sh] for e.g.
WL_HOME=/wls12130/wlserver.

8. Take the script WeblogicSingleServer.properties from domibus-msh-distribution-5.1.5-
weblogic-configuration.zip under the scripts directory and copy the
WeblogicSingleServer.properties file into the wslt-api-1.9.1 directory and adapt the following

67

https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/europa/ec/digit/ipcis/wslt-api/1.9.1/wslt-api-1.9.1.zip
https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/public/eu/europa/ec/digit/ipcis/wslt-api/1.9.1/wslt-api-1.9.1.zip

properties:

Connecting to the WebLogic domain:

domain.loading.type=connect
domain.connect.url=t3://localhost:7001
domain.connect.username=<weblogic_name>
domain.connect.password=<weblogic_password>
domain.name=<my_domain1>

9. Adapt the jdbc.datasource properties for the datasources, see the section below.

◦ Domain configuration

The configuration of the properties below applies to to both MySQL and Oracle.

• Cross-module

#Domibus application module target
application.module.target=AdminServer

• JMS Configuration

#Domibus JMS application server name
jms.server.name=eDeliveryJMS

#Domibus JMS application module name
jms.module.name=eDeliveryModule

#Domibus JMS file store name
jms.server.store=eDeliveryFileStore

#Domibus JMS application module group
jms.queue.subdeployment.name=eDeliverySubD

• Database Configuration

#Domibus database url
jdbc.datasource.driver.url=jdbc:oracle:thin:@127.0.0.1:1521:<SID/Service>

#Domibus database user name
jdbc.datasource.driver.username=<your_username>

#Domibus database user password
jdbc.datasource.driver.password=<your_password>

• For Oracle database

68

jdbc.datasource.0.name=eDeliveryDs
jdbc.datasource.0.targets=${application.module.target}
jdbc.datasource.0.jndi.name=jdbc/cipaeDeliveryDs
jdbc.datasource.0.pool.capacity.max=50
jdbc.datasource.0.pool.connection.test.onreserv.enable=true
jdbc.datasource.0.pool.connection.test.onreserv.sql=SQL SELECT 1 FROM DUAL
jdbc.datasource.0.driver.name=oracle.jdbc.driver.OracleDriver
jdbc.datasource.0.driver.url=${jdbc.datasource.driver.url}
jdbc.datasource.0.driver.password=${jdbc.datasource.driver.password}
jdbc.datasource.0.driver.username=${jdbc.datasource.driver.username}
jdbc.datasource.0.driver.properties.items=0
jdbc.datasource.0.xa.transaction.timeout.branch=true
jdbc.datasource.1.name=edeliveryNonXA
jdbc.datasource.1.targets=${application.module.target}
jdbc.datasource.1.jndi.name=jdbc/cipaeDeliveryNonXADs
jdbc.datasource.1.transaction.protocol=None
jdbc.datasource.1.pool.capacity.max=50
jdbc.datasource.1.pool.connection.test.onreserv.enable=true
jdbc.datasource.1.pool.connection.test.onreserv.sql=SQL SELECT 1 FROM DUAL
jdbc.datasource.1.driver.name=oracle.jdbc.OracleDriver
jdbc.datasource.1.driver.url=${jdbc.datasource.driver.url}
jdbc.datasource.1.driver.password=${jdbc.datasource.driver.password}
jdbc.datasource.1.driver.username=${jdbc.datasource.driver.username}
jdbc.datasource.1.driver.properties.items=0

NOTE
MySQL configuration is commented by default. To enable MySQL, remove the
comment from the lines below. Remember to comment Oracle configuration
settings to disable them.

• For MySQL:

#jdbc.datasource.0.name=eDeliveryDs
#jdbc.datasource.0.targets=${application.module.target}
#jdbc.datasource.0.jndi.name=jdbc/cipaeDeliveryDs
#jdbc.datasource.0.transaction.protocol=LoggingLastResource
#jdbc.datasource.0.pool.connection.test.onreserv.enable=true
#jdbc.datasource.0.pool.connection.test.onreserv.sql=SQL SELECT 1
#jdbc.datasource.1.driver.name=com.mysql.cj.jdbc.Driver
#jdbc.datasource.0.driver.url=${jdbc.datasource.driver.url}
#jdbc.datasource.0.driver.password=${jdbc.datasource.driver.password}
#jdbc.datasource.0.driver.username=${jdbc.datasource.driver.username}
#jdbc.datasource.0.driver.properties.items=0
#jdbc.datasource.1.name=edeliveryNonXA
#jdbc.datasource.1.targets=${application.module.target}
#jdbc.datasource.1.jndi.name=jdbc/cipaeDeliveryNonXADs
#jdbc.datasource.1.transaction.protocol=None
#jdbc.datasource.1.pool.capacity.max=50
#jdbc.datasource.1.pool.connection.test.onreserv.enable=true

69

#jdbc.datasource.1.pool.connection.test.onreserv.sql=SQL SELECT 1
#jdbc.datasource.0.driver.name=com.mysql.cj.jdbc.Driver
#jdbc.datasource.1.driver.url=${jdbc.datasource.driver.url}
#jdbc.datasource.1.driver.password=${jdbc.datasource.driver.password}
#jdbc.datasource.1.driver.username=${jdbc.datasource.driver.username}
#jdbc.datasource.1.driver.properties.items=0

1. Adapt the property for location of the filestore: persistent.filestore.0.location.

For example, persistent.filestore.0.location=DOMAIN_HOME/filestore.

NOTE Make sure the filestore path contains forward slashes (/).

2. Adapt if necessary the JMX security configuration:

For example:

Policy configuration
security.policies.0.mode = CREATE
security.policies.0.resource = type=<jmx>, operation=invoke,
application=mbeanType=weblogic.management.runtime.JMSDestinationRuntimeMBean
security.policies.0.realm = myrealm
security.policies.0.authorizer = XACMLAuthorizer
security.policies.0.expression= Rol(Admin)|Grp(Administrators)|Grp(JMSManagers)
security.policies.items = 1

Users configuration

security.users.0.realm=.myrealm.
security.users.0.name=.jmsManager.
security.users.0.password=.jms_Manager1.
security.users.0.comment=
security.users.0.authenticator=.DefaultAuthenticator.
security.users.items=1

Groups configuration

security.groups.0.realm=.myrealm.
security.groups.0.name=.JMSManagers.
security.groups.0.description=
security.groups.0.authenticator=.DefaultAuthenticator.
security.groups.items=1

Groups Membership configuration

security.group.member.0.user=.jmsManager.

70

security.group.member.0.groups=.JMSManagers.
security.group.member.0.realm=.myrealm.
security.group.member.0.authenticator=.DefaultAuthenticator.
security.group.member.items=1

1. Start the WebLogic domain from within DOMAIN_HOME:

◦ In Windows: startWebLogic.cmd

◦ In Linux: startWebLogic.sh

2. Execute the following command from within the wlstapi-1.9.1/bin directory:

◦ In Windows: wlstapi.cmd ../scripts/import.py --property
../WeblogicSingleServer.properties

◦ In Linux: wlstapi.sh ../scripts/import.py --property ../WeblogicSingleServer.properties

NOTE

To send messages containing bodyload payloads, you must ensure the
Weblogic server is started with the following extra parameter:
-Dorg.apache.cxf.binding.soap.messageFactoryClassName=com.sun.xml.interna
l.messaging.saaj.soap.ver1_2.SOAPMessageFactory1_2Impl.

Expected result:

3. Activate the use of the authorization providers to protect the JMX access:

71

The database dialect is pre-configured to use the Oracle database. If you are using a MySQL
database, you should adapt the following properties in
<DOMAIN_HOME>/conf/domibus/domibus.properties as highlighted in the example below:

----EntityManagerFactory---
domibus.entityManagerFactory.jpaProperty.hibernate.connectio.driver_class=com.mysql.cj
.jdbc.Driver
domibus.entityManagerFactory.jpaProperty.hibernate.dialect=org.hibernate.dialect.MySQL
8Dialect

1. Install the WS Plugin. For more details, see WS Plugin.

2. Deploy domibus-msh-distribution-5.1.5-weblogic.war.

3. Click on Install.

72

4. Navigate to the location of the .war file and click Next:

5. Choose Install this deployment as an application and click Next:

6. Accept the default options and click Next:

73

7. Select the following option and click Finish:

74

8. Here is an overview of the resulting settings, you can now click on the Save button:

The expected positive response to the deployment request should be the following:

9. Verify the installation by navigating with your browser to http://localhost:_7001_/domibus: if
you can access the page it means the deployment was successful.

NOTE
By default, User = admin; for the password, look in the logs for the phrase: “Default
password for user admin is”. It is recommended to change the passwords for the
default users. For more see, Administration.

Expected result:

75

http://localhost:7001/domibus
http://localhost:7001/domibus
http://localhost:7001/domibus

☛ Clustered Deployment

Figure 2. Diagram representing the Deployment of Domibus in a Cluster on WebLogic

NOTE In this section, we assume that a Domain and a WebLogic Cluster are already setup.

For this step, you will have to use the following resources (see section Downloading Resources for
the download location):

• domibus-msh-distribution-5.1.5-weblogic-war.zip

• domibus-msh-distribution-5.1.5-weblogic-configuration.zip

At least one of the following plugins should be downloaded and installed:

• domibus-msh-distribution-5.1.5-default-ws-plugin.zip

• domibus-msh-distribution-5.1.5-default-jms-plugin.zip

• domibus-msh-distribution-5.1.5-default-fs-plugin.zip

1. Download and unzip domibus-msh-distribution-5.1.5-weblogic-configuration.zip in a
shared location that is accessible by all the nodes from the cluster. We will refer to this
directory as <shared_edelivery_path>.

2. Download and unzip domibus-msh-distribution-5.1.5-weblogic-war.zip in a temporary
folder to prepare it for deployment.

3. Configure your Keystore based on the Certificates section.

4. Add the following lines in:

For Windows:

DOMAIN_HOME\bin\setDomainEnv.cmd

• Locate the set DOMAIN_HOME statement and add the following lines after it:

set DOMAIN_HOME

76

Added for Domibus

...
set DOMAIN_HOME
Added for Domibus **
set EXTRA_JAVA_PROPERTIES="%EXTRA_JAVA_PROPERTIES% -
Ddomibus.config.location=%SHARED_LOCATION%/conf/Domibus
-Djava.io.tmpdir=<temp_directory_path>"

#

set JAVA_OPTIONS="%JAVA_OPTIONS%
-Dweblogic.transaction.allowOverrideSetRollbackReason=true"

...

NOTE
SHARED_LOCATION is the shared location where Domibus configuration is found for a
clustered installation.

For Linux:

DOMAIN_HOME/bin/setDomainEnv.sh

• Locate the export DOMAIN_HOME statement and add the following lines after it:

export DOMAIN_HOME

Added for Domibus

...
export DOMAIN_HOME
Added for Domibus **
EXTRA_JAVA_PROPERTIES="$EXTRA_JAVA_PROPERTIES
-Ddomibus.config.location=$SHARED_LOCATION/conf/domibus
-Djava.io.tmpdir=<temp_directory_path>"
export EXTRA_JAVA_PROPERTIES

**
JAVA_OPTIONS="$\{JAVA_OPTIONS}
-Dweblogic.transaction.allowOverrideSetRollbackReason=true”
export JAVA_OPTIONS

...

NOTE
SHARED_LOCATION is the shared location where Domibus configuration is found for a
clustered installation.

• Run the WebLogic Scripting Tool (WLST) to create the necessary JMS resources and Database
datasources from the command line:

• Download the WLST Package from the following location: https://ec.europa.eu/digital-building-

77

https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/eDelivery/eu/europa/ec/digit/ipcis/wslt-api/1.9.1/wslt-api-1.9.1.zip

blocks/artifact/content/repositories/eDelivery/eu/europa/ec/digit/ipcis/wslt-api/1.9.1/wslt-api-
1.9.1.zip

Configure the WSLT API tool:

• Unzip the wslt-api-1.9.1.zip

• Define the WL_HOME (SET or export command depending on your operating system)
environment variable to point to the WebLogic wlserver directory, for example,

WL_HOME=/wls12130/wlserver

• Take the script WeblogicCluster.properties from domibus-msh-distribution-5.1.5-weblogic-
configuration.zip under the scripts directory and copy the WeblogicCluster.properties file into
the wslt-api-1.9.1 directory and apply the following changes:

• Adapt the properties for connecting to the WebLogic domain:

Common to Oracle and MySQL

Domain configuration
Variables
##---------Cross module--------
#Domibus application module target
application.module.target= _cluster_name_

##---------JMS configuration--------
#Domibus JMS application server name
jms.server.name = eDeliveryJMS

#Domibus JMS application module name
jms.module.name=eDeliveryModule

#Domibus JMS file store name
jms.server.store=eDeliveryFileStore

#Domibus JMS application module group
jms.queue.subdeployment.name=eDeliverySubD

##---------Database configuration--------
#Domibus database url
jdbc.datasource.driver.url=
jdbc:oracle:thin:@127.0.0.1:1521:<SID/Service>

#Domibus database user name
jdbc.datasource.driver.username= your_username

#Domibus database user password
jdbc.datasource.driver.password= your_password

78

https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/eDelivery/eu/europa/ec/digit/ipcis/wslt-api/1.9.1/wslt-api-1.9.1.zip
https://ec.europa.eu/digital-building-blocks/artifact/content/repositories/eDelivery/eu/europa/ec/digit/ipcis/wslt-api/1.9.1/wslt-api-1.9.1.zip

For Oracle database:

JDBC datasource Server [eDeliveryDs]
##

Oracle configuration
jdbc.datasource.0.name=eDeliveryDs
jdbc.datasource.0.targets=$\{application.module.target}
jdbc.datasource.0.jndi.name=jdbc/cipaeDeliveryDs
jdbc.datasource.0.pool.capacity.max=50
jdbc.datasource.0.pool.connection.test.onreserv.enable=true
jdbc.datasource.0.pool.connection.test.onreserv.sql=SQL SELECT 1 FROM DUAL
jdbc.datasource.0.driver.name= oracle.jdbc.driver.OracleDriver
jdbc.datasource.0.driver.url=$\{jdbc.datasource.driver.url}
jdbc.datasource.0.driver.password=$\{jdbc.datasource.driver.password}
jdbc.datasource.0.driver.username=$\{jdbc.datasource.driver.username}
jdbc.datasource.0.driver.properties.items=0
jdbc.datasource.0.xa.transaction.timeout.branch=true
##

JDBC datasource Server [edeliveryNonXA]
##

Oracle configuration
jdbc.datasource.1.name=edeliveryNonXA
jdbc.datasource.1.targets=$\{application.module.target}
jdbc.datasource.1.jndi.name=jdbc/cipaeDeliveryNonXADs
jdbc.datasource.1.transaction.protocol=None
jdbc.datasource.1.pool.capacity.max=50
jdbc.datasource.1.pool.connection.test.onreserv.enable=true
jdbc.datasource.1.pool.connection.test.onreserv.sql=SQL SELECT 1 FROM DUAL
jdbc.datasource.1.driver.name=oracle.jdbc.OracleDriver
jdbc.datasource.1.driver.url=$\{jdbc.datasource.driver.url}
jdbc.datasource.1.driver.password=$\{jdbc.datasource.driver.password}
jdbc.datasource.1.driver.username=$\{jdbc.datasource.driver.username}
jdbc.datasource.1.driver.properties.items=0

NOTE
MySQL configuration is commented out by default. To enable MySQL, remove
uncomment the lines below. Do not forget to comment the lines regarding Oracle to
disable it.

For MySQL:

##
JDBC datasource Server [eDeliveryDs]
##

MySQL configuration
jdbc.datasource.0.name=eDeliveryDs
jdbc.datasource.0.targets=$\{application.module.target}

79

jdbc.datasource.0.jndi.name=jdbc/cipaeDeliveryDs
jdbc.datasource.0.pool.capacity.max=50
jdbc.datasource.0.transaction.protocol=LoggingLastResource

jdbc.datasource.0.pool.connection.test.onreserv.enable=true
jdbc.datasource.0.pool.connection.test.onreserv.sql=SQL SELECT 1
jdbc.datasource.0.driver.name=com.mysql.cj.jdbc.Driver
jdbc.datasource.0.driver.url=$\{jdbc.datasource.driver.url}
jdbc.datasource.0.driver.password=$\{jdbc.datasource.driver.password}
jdbc.datasource.0.driver.username=$\{jdbc.datasource.driver.username}
jdbc.datasource.0.driver.properties.items=0

MySQL configuration
jdbc.datasource.1.name=edeliveryNonXA
jdbc.datasource.1.targets=$\{application.module.target}
jdbc.datasource.1.jndi.name=jdbc/cipaeDeliveryNonXADs
jdbc.datasource.1.transaction.protocol=None
jdbc.datasource.1.pool.capacity.max=50
jdbc.datasource.1.pool.connection.test.onreserv.enable=true
jdbc.datasource.1.pool.connection.test.onreserv.sql=SQL SELECT 1
jdbc.datasource.0.driver.name=com.mysql.cj.jdbc.Driver
jdbc.datasource.1.driver.url=$\{jdbc.datasource.driver.url}
jdbc.datasource.1.driver.password=$\{jdbc.datasource.driver.password}
jdbc.datasource.1.driver.username=$\{jdbc.datasource.driver.username}
jdbc.datasource.1.driver.properties.items=0

Adapt the property for location of the file store: persistent.filestore.0.location. For example:
persistent.filestore.0.location=DOMAIN_HOME/filestore

CAUTION Make sure that the path for the file store contains forward slashes (/).

1. Adapt if necessary the JMX security configuration: jms.module.0.targets=cluster_name.

2. Set the domibus.deployment.clustered option to true: domibus.deployment.clustered=true.

3. Start the WebLogic domain from within DOMAIN_HOME:

◦ For Windows: startWebLogic.cmd.

◦ For Linux: startWebLogic.sh.

◦ Execute the following command from within the wlstapi-1.9.1/bin directory: For Windows:

wlstapi.cmd ../scripts/import.py --property
../WeblogicCluster.properties

For Linux:

wlstapi.sh ../scripts/import.py --property ../WeblogicCluster.properties

80

Expected result:

• Activate the use of the authorization providers to protect the JMX access:

• The database dialect is pre-configured to use the Oracle database. If you are using the MySQL
database you should adapt the dialect as highlighted in the text below in
<DOMAIN_HOME>/conf/domibus/domibus.properties file:

#EntityManagerFactory
domibus.entityManagerFactory.jpaProperty.hibernate.connection.driver_class=

com.mysql.jdbc.jdbc2.optional.MysqlXADataSource
domibus.entityManagerFactory.jpaProperty.hibernate.dialect=org.hibernate.dialec.MySQL8
Dialect

• Install the WS plugin. For more details, refer to chapter See WebLogic.

1. Deploy domibus-msh-distribution-5.1.5-weblogic.war.

• Click Install

81

• Navigate to location DOMAIN_HOME/conf/domibus where the domibus-msh-distribution-5.1.5-
weblogic.war file has been previously copied to.

• Select the domibus-msh-distribution-5.1.5-weblogic.war file and click Next:

• Choose Install this deployment as an application and click Next:

• Select your cluster for the deployment target and click Next:

82

• Select the following options and click Next:

83

• Select the following option and click Finish:

84

Here is an overview of the resulting settings, you can now click on the Save button:

The expected positive response to the deployment request should be the following:

• Verify the installation by navigating with your browser to http://localhost:_7001_/domibus

If you can access the page, it means the deployment was successful.

☞ Users default password

By default, the password is: user=admin. Search the logs for the string: Default password for
user admin is.

IMPORTANT
We highly recommend that you change any users' default passwords.
See ☞ Administration Console for more information.

85

http://localhost:7001/domibus
http://localhost:7001/domibus
http://localhost:7001/domibus

Figure 3. Expected result:

• For performance improvement in a Weblogic cluster, enable transaction cluster affinity and
click Save.

SEE ALSO ☞ XA Transaction Cluster Affinity in Oracle documentation.

NOTE

NOTE: To send messages containing bodyload payloads, you must ensure the
Weblogic server is started with the following extra parameter:
-Dorg.apache.cxf.binding.soap.messageFactoryClassName=com.sun.xml.internal.messa
ging.saaj.soap.ver1_2.SOAPMessageFactory1_2Impl.

4.4.2. Tomcat

Before deploying Domibus with Tomcat, please read the notes below.

Important Notes

As Tomcat is not a full Java EE application server and does not offer JMS capabilities by
default, Domibus uses ActiveMQ as an in-memory JMS broker when deployed on a Tomcat
servlet container.

86

https://docs.oracle.com/middleware/12213/wls/WLJTA/trxcon.htm#WLJTA398

TIP
The configuration for the ActiveMQ JMS broker can be found in
<edelivery_path>/conf/domibus/internal/activemq.xml.

The Apache CXF library referred by Domibus, internally uses the environment variable
java.io.tmpdir to buffer large attachments received. If the property java.io.tmpdir is not
specified, then by default it points to the <CATALINA_base_directory/temp>.

TIP

It is recommended to point this variable to a local directory _tmp on each
managed server and accessible by the Tomcat server. The disk space allocated
for`_tmp` directory would depend on the size of attachments received. On
production environments, it is recommended to provide 100GB for ©.

CXF has a limitation of being able to validate signatures of only 28 payload attachments at a
time. As a result, Domibus cannot send/receive more than 28 attachments in a single AS4
message.

Check the instructions according to your desired scenario:

• Predefined Single-Server Deployment

• Cluster Deployment

☛ Pre-Defined Single Server Deployment

To deploy Domibus on Tomcat in a single server scenario:

1. Download domibus-msh-distribution-5.1.5-tomcat-full.zip. See Downloading Resources.

2. Extract the contents of domibus-msh-distribution-5.1.5-tomcat-full.zip to: <edelivery_path>.

Figure 4. Extracted archive contents

Preparing the database, see ☞ MySQL or ☞ Oracle.

MySQL

1. Download the MySQL JDBC driver.

IMPORTANT The JDBC driver version needs to be 8.0.23 or higher.

2. Add the MySQL JDBC driver to <edelivery_path>/lib.

3. Edit the properties file <edelivery_path>/domibus/conf/domibus/domibus.properties and adjust
the parts in the text below according to your environment.

The properties associated to the database configuration are pre-configured for the MySQL database:

87

https://dev.mysql.com/downloads/connector/j/5.0.html

------------Database-----------

#Database server nam
domibus.database.serverName=localhost

#Database port
domibus.database.port=3306

#Non-XA Datasource
domibus.datasource.driverClassName=com.mysql.cj.jdbc.Driver
domibus.datasource.url=jdbc:mysql://$\{domibus.database.serverName}:$\{domibus.databas
.port}/domibus_schema?useSSL=false&useLegacyDatetimeCode=false&serverTimezone=UTC
domibus.datasource.user=edelivery_user
domibus.datasource.password=edelivery_password
domibus.datasource.maxLifetime=1800
domibus.datasource.connectionTimeout=30
domibus.datasource.idleTimeout=600
domibus.datasource.maxPoolSize=10
domibus.datasource.minimumIdle=10
domibus.datasource.poolName=

Oracle

1. Download the Oracle JDBC driver.

2. Add the Oracle JDBC driver (for e.g. ojdbc8-21.1.0.0.jar) to the <edelivery_path>/lib folder.

3. Edit the properties file <edelivery_path>/conf/domibus/domibus.properties and adjust the parts
in the text below according to your environment:

----------Database--------------------------

#Database server name
domibus.database.serverName=localhost

#Database port
domibus.database.port=1521

#General schema. Mandatory only if Domibus is configured in
multi-tenancy mode.

#domibus.database.general.schema=general_schema

#set domibus.database.schema=oracle_username
domibus.database.schema= *oracle_username*

#Non-XA Datasource

#Oracle
domibus.datasource.driverClassName=oracle.jdbc.OracleDriver

88

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

domibus.datasource.url=jdbc:oracle:thin:@$\{domibus.database.serverName}:$\{domibus
.database.port}/domibus
domibus.datasource.user= *oracle_username*
domibus.datasource.password=**edelivery_password**
domibus.datasource.maxLifetime=1800
domibus.datasource.connectionTimeout=30
domibus.datasource.idleTimeout=600
domibus.datasource.maxPoolSize=10
domibus.datasource.minimumIdle=10
domibus.datasource.poolName=

NOTE
Configure the database dialect as it is pre-configured for MySQL by default.
(QUESTION)

#EntityManagerFactory
domibus.entityManagerFactory.jpaProperty.hibernate.connection.driver_class=oracle.j
db.driver.OracleDriverz
domibus.entityManagerFactory.jpaProperty.hibernate.dialect=org.hibernate.dialect.Or
acleDialect

4. Configure your Keystore. See Certificates.

5. Set JVM parameters:

Domibus expects a single environment variable, domibus.config.location, pointing to
<edelivery_path>/conf/domibus.

You can do this by editing the first command lines of <edelivery_path>\bin\setenv.bat
(Windows) or <edelivery_path>/bin/setenv.sh (Linux).

6. Set CATALINA_HOME equal to the absolute path of the installation <edelivery_path>.

◦ For Windows: edit <edelivery_path>\bin\setenv.bat by adding the following:

set CATALINA_HOME=<edelivery_path>
set CATALINA_TMPDIR=<temp_directory_path>
set JAVA_OPTS=%JAVA_OPTS% -Dfile.encoding=UTF-8 -Xms128m -Xmx1024m
-XX:PermSize=64m
set JAVA_OPTS=%JAVA_OPTS% -D
domibus.config.location=%CATALINA_HOME%\conf\domibus

◦ For Linux: edit <edelivery_path>/domibus/bin/setenv.sh and add the following:

export CATALINA_HOME=<edelivery_path>
export CATALINA_TMPDIR=<temp_directory_path>
export JAVA_OPTS="$JAVA_OPTS -Xms128m -Xmx1024m"
export JAVA_OPTS="$JAVA_OPTS

89

-Ddomibus.config.location=$CATALINA_HOME/conf/domibus"

7. Launch the Domibus application:

◦ In Windows:

cd <edelivery_path>\bin\
startup.bat

◦ In Linux:

cd <edelivery_path>/bin
chmod u+x *.sh
./startup.sh

8. Display the Domibus home page on your browser: http://localhost:8080/domibus.

If you can access the page (see image), it means the deployment was successful.

☞ Users default password

By default, the password is: user=admin. Search the logs for the string: Default password for
user admin is.

IMPORTANT
We highly recommend that you change any users' default passwords.
See ☞ Administration Console for more information.

☛ Single Server Deployment

For this step, you have the following resources available. See Downloading Resources.

• domibus-msh-distribution-5.1.5-tomcat-configuration.zip

• domibus-msh-distribution-5.1.5-tomcat-war.zip

90

http://localhost:8080/domibus/home

• domibus-msh-distribution-5.1.5-sql-scripts.zip

• domibus-msh-distribution-5.1.5-tomcat-configuration.zip

• domibus-msh-distribution-5.1.5-default-ws-plugin.zip

• domibus-msh-distribution-5.1.5-default-jms-plugin.zip (optional)

• domibus-msh-distribution-5.1.5-default-fs-plugin.zip (optional)

• domibus-msh-distribution-5.1.5-tomcat-war.zip

• domibus-msh-distribution-5.1.5-sample-configuration-and-testing.zip

• domibus-MSH-tomcat-5.1.5.war

• Mysql-connector-java-x.y.z driver
(eg.: mysql-connector-java-8.0.23.jar, see OASIS AS4 Profile)

We assume that an Apache Tomcat 9.x is already installed and the installation location is now
considered as your <edelivery_path>/.

1. Download and unzip the artefact domibus-msh-distribution-5.1.5-tomcat-configuration.zip
into the directory <edelivery_path>/conf/domibus.

2. Configure the MySQL or Oracle datasource as indicated in Pre-Configured Single Server
Deployment.

3. Configure your Keystore based on Certificates.

4. Execute step 4 from Pre-Configured Single Server Deployment.

5. If not already present, create a folder and name it temp under
<edelivery_path>/conf/Domibus.

6. Rename domibus-MSH-5.1.5-tomcat.war to domibus.war and deploy it to
<edelivery_path>/webapps.

7. Copy Plugins subfolders to the conf/Domibus/plugins folder

8. Add the conf/domibus path (to catalina.sh or setenv.sh). Add the following highlighted lines:

JAVA_OPTS="$JAVA_OPTS
-Djava.protocol.handler.pkgs=org.apache.catalina.webresources"
export JAVA_OPTS="$JAVA_OPTS -Xms128m -Xmx1024m"
export=JAVA_OPTS="$JAVA_OPTS
-domibus.config.location=$CATALINA_HOME/conf/domibus"
#Check for the deprecated LOGGING_CONFIG

9. Copy the Mysql connector (e.g.: mysql-connector-java-8.0.23.jar) to the lib folder.

10. From domibus-msh-distribution-5.1.5-sample-configuration-and-testing.zip, copy the
keystores folder to …/conf/domibus.

91

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/

11. Rename the domibus-MSH-tomcat-5.1.5.war to Domibus.war and copy it to webapps

12. Launch the Domibus application:

▪ For Windows:

cd <edelivery_path>\bin\
startup.bat

▪ For Linux:

cd <edelivery_path>/bin/
chmod +x .sh
./startup.sh

13. Display the Domibus home page on your browser: http://localhost:8080/domibus

If you can access the page below, then you have successfully completed the installation.

☞ Users default password

By default, the password is: user=admin. Search the logs for the string: Default password for
user admin is.

IMPORTANT
We highly recommend that you change any users' default passwords.
See ☞ Administration Console for more information.

☛ Cluster Deployment

92

http://localhost:8080/domibus-wildfly/home

Figure 5. Diagram representing the Deployment of Domibus in a Cluster on Tomcat

NOTE
In this section we assume that one or more JMS Brokers and a load balancer are
configured separately (e.g. HTTPD).

For this deployment, you will need the following resources (see Domibus downloads):

• domibus-msh-distribution-5.1.5-tomcat-full.zip

• domibus-msh-distribution-5.1.5-tomcat-war.zip

To deploy Domibus in a Cluster on Tomcat:

1. Follow steps 1 through 5 of the Single Server Deployment section.

2. Set the JVM parameters.

3. Set the cluster related Domibus properties.

4. Integrate the external JMS brokers.

5. Follow steps 6 and 7 of the Single Server Deployment section.

Set the JVM parameters

Domibus expects a single JVM parameter $domibus.config.location, pointing to the <edelivery_path>
folder. This folder is located on a shared filesystem (e.g. NAS) used by all Tomcat instances. The
Tomcat instances must have write permissions to this location.

1. You can do this by editing:

◦ Windows: <edelivery_path>\bin\setenv.bat

◦ Linux: <edelivery_path>/bin/setenv.sh

Set CATALINA_HOME as <edelivery_path>. Where <edelivery_path> stands for the absolute path of your
Domibus installation.

93

• For Windows:

Edit <edelivery_path>\bin\setenv.bat and add the following:

set CATALINA_HOME=<edelivery_path>
set CATALINA_TMPDIR=<temp_directory_path>
set JAVA_OPTS=%JAVA_OPTS% -Dfile.encoding=UTF-8 -Xms128m -Xmx1024m -XX:PermSize=64m
set JAVA_OPTS=%JAVA_OPTS% -Ddomibus.config.location=%CATALINA_HOME%\conf\domibus
set JAVA_OPTS=%JAVA_OPTS% -Ddomibus.node.id=<your_node_id>

• For Linux:

Edit <edelivery_path>/bin/setenv.sh and add the following:

export CATALINA_HOME=<edelivery_path>
export CATALINA_TMPDIR=<temp_directory_path>
export JAVA_OPTS="$JAVA_OPTS –Xms128m –Xmx1024m"
export JAVA_OPTS="$JAVA_OPTS -Ddomibus.config.location=$CATALINA_HOME/conf/domibus"
export JAVA_OPTS="$JAVA_OPTS -Ddomibus.node.id=>your_node_id>"

NOTE
your_node_id in the sample above refers to the installed node in the cluster which
starts normally at 01(then 02, etc.).

Domibus Properties

1. Set the domibus.deployment.clustered Domibus property to true in
<edelivery_path>/conf/domibus/domibus.properties.

Integrate JMS Brokers

NOTE

Domibus support the integration of ActiveMQ "Classic" external brokers. Domibus
does not support the integrating of Artemis (a.k.a. ActiveMQ "New") external
brokers. In this section, we will refer to the external JMS brokers as ActiveMQ
brokers.

When deploying Domibus in a cluster of Tomcat application servers, one or more ActiveMQ brokers
are set up externaly having their details configured in
<edelivery_path>/conf/domibus/domibus.properties:

1. Delete the activeMQ.embedded.configurationFile property since the ActiveMQ brokers are
external.

2. Delete the activeMQ.broker.host, activeMQ.connectorPort and activeMQ.rmiServerPort properties.

3. Integrate the ActiveMQ brokers with Domibus by adapting the following properties:

#ActiveMQ
activeMQ.brokerName=brokerName1,brokerName2 ①

94

activeMQ.transportConnector.uri=failover:(tcp://activemq1:61616,tcp//activemq2:6161
6)?maxReconnectDelay=10000&maxReconnectAttempts=5 ②
activeMQ.JMXURL=service:jmx:rmi:///jndi/rmi://activemq1:1199/jmxrmi,service:jmx:rmi
:///jndi/rmi://activemq2:1199/jmxrmi ③
activeMQ.username=domibus
activeMQ.password=changeit

Where:

① The broker names assigned to the ActiveMQ brokers, as a comma-separated list of values;

② The transport connectors used to connect to the ActiveMQ brokers, as a comma-separated
list of values;

③ The JMX service URLs used to manage the ActiveMQ brokers, as a comma-separated list of
values.

NOTE
The values of the activeMQ.brokerName, the activeMQ.transportConnector.uri
and the activeMQ.JMXURL Domibus properties contain the details of all the
external ActiveMQ brokers.

WARNING

The individual constituents that take part of the full comma-separated
values of activeMQ.brokerName, activeMQ.transportConnector.uri and
activeMQ.JMXURL have the same count across these properties and are
defined in the same order. If the value for the name of one broker lands
on a particular position inside the value of the activeMQ.brokerName
property then it is used on the same positions inside the values of the
activeMQ.transportConnector.uri and activeMQ.JMXURL properties.
Domibus will fail to start if you do not configure this correctly.

4.4.3. WildFly

To deploy Domibus in Wildfly, check the instructions for your deployment scenario:

• Pre-configured single server deployment

• Single server deployment

• Clustered deployment

IMPORTANT

About the Apache CFX Library and known limitations

• The Apache CXF library referred to by Domibus, uses internally the
environment variable java.io.tmpdir to buffer large attachments
received.

• If java.io.tmpdir is not specified, then this defaults to values provided by
the operating system to the JRE.

◦ In Unix/Linux systems this usually defaults to /tmp.

◦ In Windows systems this usually defaults to %TEMP%.

◦ It is recommended to point this to a local temp directory on each

95

managed server andAmbiAm accessible by the WildFly server.

◦ Have in mind the size of attachments usually received when
allocating disk space allocated for this temp` directory. In production
environments it is recommended to provide it at least 100GB.

• CXF has a limitation of being able to validate signatures of only 28
payload attachments at a time. As a result, the Domibus cannot
send/receive more than 28 attachments in a single AS4 message.

☞ Users default password

By default, the password is: user=admin. Search the logs for the string: Default password for
user admin is.

IMPORTANT
We highly recommend that you change any users' default passwords.
See ☞ Administration Console for more information.

☞ Users default password

By default, the password is: user=admin. Search the logs for the string: Default password for
user admin is.

IMPORTANT
We highly recommend that you change any users' default passwords.
See ☞ Administration Console for more information.

☛ Pre-Configured Single Server Deployment

NOTE The steps below are applicable to both distributions of Domibus.

To deploy Domibus in WildFly:

1. Download domibus-msh-distribution-5.1.5-wildfly-full.zip from Domibus downloads page.

IMPORTANT Domibus supports WildFly 26.1.0 or higher.

2. Unzip the domibus-msh-distribution-5.1.5-wildfly-full.zip archive into your <edelivery_path>
location.

3. Configure your database.

◦ See instructions for MySQL.

96

◦ See instructions for Oracle.

MySQL Configuration

Below you can find information on how to configure driver and datasources.

MySQL Drivers:

1. Create the directory <edelivery_path>/modules/system/layers/base/com/mysql/main. Under this
directory:

2. Download the MySQL JDBC driver.

IMPORTANT
The driver’s version needs to be mysql-connector-java-8.0.23.jar or
higher.

3. Create or edit the file <edelivery_path>/modules/system/layers/base/com/mysql/main/module.xml

4. Copy the module configuration below:

<module xmlns="urn:jboss:module:1.3" name="com.mysql">
 <resources>
 <resource-root path="mysql-connector-java-8.0.23.jar"/> ①
 </resources>
 <dependencies>
 <module name="javax.api"/>
 <module name="javax.transaction.api"/>
 </dependencies>
</module>

① Make sure to type the name of the driver you use as an argument of resource-root element.
e.g. mysql-connector-java-8.0.23.jar.

5. Add your DBMS driver metadata to the Drivers section of the
<edelivery_path>/standalone/configuration/standalone-full.xml.

<subsystem xmlns="urn:jboss:domain:datasources:6.0">
 <datasources>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-
class>
 </driver>
 <driver name="com.mysql" module="com.mysql">
 <!--Connector/J 8.0.x
 <driver-class>com.mysql.cj.jdbc.Driver</driver-class>
 <xa-datasource-class>com.mysql.cj.jdbc.MysqlXADataSource</xa-
datasource-class>-->
 </driver>
 <!--Oracle
 <driver name="com.oracle" module="com.oracle">

97

https://dev.mysql.com/downloads/connector/j/5.0.html

 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>
 <xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-
datasource-class>
 </driver>
 -->
 </drivers>
 </datasources>
</subsystem>

<!---
Datasources:
Add the datasources as indicated below to
<edelivery_path>/standalone/configuration/standalone-full.xml.
-->
<!---
NOTE:
* Please make sure you modify the connection details for the
edeliveryMysqlDS datasource for MySQL according to your environment.
 * See ORACLE related changes in *option 2* below when Oracle is used
instead of MySQL.
-->
<subsystem xmlns="urn:jboss:domain:datasources:6.0">
 <datasources>
 <xa-datasource
 jndi-name="java:/jdbc/cipaeDeliveryDs"
 pool-name="eDeliveryMysqlXADS"
 enabled="true"
 use-ccm="true"
 statistics-enabled="true">
 <connection-url>
 jdbc:mysql://localhost:3306/domibus_schema?autoReconnect=true&useSSL-
false&useLegacyDatetimeCode=false&serverTimezone=UTC
 </connection-url>

 <!--Connector/J 8.0.x ->
 <driver-class>com.mysql.cj.jdbc.Driver</driver-class>
 <driver>com.mysql</driver>
 <pool>
 <min-pool-size>20</min-pool-size>
 <initial-pool-size>5</initial-pool-size>
 <max-pool-size>100</max-pool-size>
 </pool>
 <security>
 <user-name>**_edelivery_user_**</user-name>
 <password>**_edelivery_password_**</password>
 </security>
 <validation>
 <valid-connection-checker class-
name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker"/>
 <background-validation>true</background-validation>
 <exception-sorter class-

98

name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter"/>ß
 </validation>
 </datasource>
 <datasource jndi-name="java:/jdbc/cipaeDeliveryNonXADs" pool-
name="eDeliveryMysqlNonXADS" enabled="true" use-ccm="true"> +
 <connection-
url>jdbc:mysql://localhost:3306/domibus_schema?autoReconnect=true&useSSL-
false&useLegacyDatetimeCode=false&serverTimezone=UTC
 </connection-url>
 <driver-class>com.mysql.cj.jdbc.Driver</driver-class>

 <!--Connector/J 8.0.x
 <driver-class>com.mysql.cj.jdbc.Driver</driver-class>
 <driver>com.mysql</driver>
 <pool>
 <min-pool-size>20</min-pool-size>
 <initial-pool-size>5</initial-pool-size>
 <max-pool-size>100</max-pool-size>
 </pool>
 <security>
 <user-name>edelivery_user</user-name>
 <password>edelivery_password</password>
 </security>
 <validation>
 <valid-connection-checker class-
name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker"/>
 <background-validation>true</background-validation>
 <exception-sorter class-
name="org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter"/>
 </validation>
 </datasource>
 </datasources>
</subsystem>

Configuring Oracle Databases:

Driver configuration:

1. Create the directory <edelivery_path>/modules/system/layers/base/com/oracle/main. Under this
directory:

2. Download the Oracle JDBC driver.

3. Create or edit the file <edelivery_path>/modules/system/layers/base/com/oracle/main/module.xml
in the recently created folder.

4. Add the following module configuration. Make sure to type the name of the driver you use as an
argument of resource-root element. e.g. ojdbc8-21.1.0.0.jar:

<module xmlns="urn:jboss:module:1.3" name="com.oracle">
<resources>

99

https://www.oracle.com/database/technologies/appdev/jdbc-downloads.html

<resource-root path="_ojdbc8-21.1.0.0.jar_ "/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

5. Uncomment Oracle paragraph from the Drivers section in
<edelivery_path>/standalone/configuration/standalone-full.xml.

<subsystem xmlns="urn:jboss:domain:datasources:6.0">
 <datasources>
 <drivers>
 <driver name="h2" module="com.h2database.h2">
 <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-
class>
 </driver>
 <!--
 <driver name="com.mysql" module="com.mysql">
 -->
 <!--Connector/J 8.0.x -->
 <!--
 <driver-class>com.mysql.cj.jdbc.Driver</driver-class>
 <xa-datasource-class>com.mysql.cj.jdbc MysqlXADataSource</xa-
datasource-class>
 </driver>
 -->
 <!-- Oracle -->
 <driver name="com.oracle" module="com.oracle">
 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class> <xa-
datasource-class>oracle.jdbc.xa.client.OracleXADataSource
 </xa-datasource-class>
 </driver>
 <drivers>
 </datasources>
</subsystem>

Datasources configuration:

1. Uncomment the Oracle paragraph from the datasources section of
<edelivery_path>/standalone/configuration/standalone-full.xml.

NOTE
Please make sure you modify the connection details for both
eDeliveryOracleNonXADS and eDeliveryOracleDS datasources for Oracle according
to your environment.

<!-- Oracle

100

<datasource jta="true" jndi-name="java:/jdbc/cipaeDeliveryNonXADs" pool-
name="eDeliveryOracleNonXADS" enabled="true" use-ccm="true">
 <connection-url>jdbc:oracle:thin:@localhost:1521[:SID|/Service]</connection-url>
 <driver-class>oracle.jdbc.OracleDriver</driver-class> +
 <driver>com.oracle</driver>
 <pool>
 <min-pool-size>20</min-pool-size>
 <initial-pool-size>5</initial-pool-size>
 </pool>
 <security>
 <user-name>edelivery_user/user-name>
 <password>edelivery_password</password>
 </security> +
 <validation> +
 <valid-connection-checker class-
name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker"/>
 <background-validation>true</background-validation>
 <stale-connection-checker class-
name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleStaleConnectionChecker"/>
 <exception-sorter class-
name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter"/>
 </validation>
</datasource>
<!-- Oracle
<datasource
 jndi-name="java:/jdbc/cipaeDeliveryDs"
 pool-name="eDeliveryOracleDS"
 enabled="true"
 use-ccm="true">
<connection-url>jdbc:oracle:thin:@localhost:1521[:SID|/Service]</connection-url>
<driver-class>oracle.jdbc.OracleDriver</driver-class>
<driver>com.oracle</driver>
<pool>
 <min-pool-size>20</min-pool-size>
 <initial-pool-size>5</initial-pool-size>
 <max-pool-size>100</max-pool-size>
</pool>
<security>
<user-name>**_edelivery_user_**</user-name> +
<password>**_edelivery_password_**</password> +
</security> +
<validation> +
<valid-connection-checker
class-
name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker"/>
+
<exception-sorter
class-name="org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter"/>
+
</validation> +
</datasource> +

101

-->

2. Edit the configuration file <edelivery_path>/conf/domibus/domibus.properties and configure the
datasources as indicated below.

NOTE Configure the database dialect as it is pre-configured for MySQL by default.

#EntityManagerFactory
domibus.entityManagerFactory.jpaProperty.hibernate.connection.driver_class=oracle.j
dbc.driver.OracleDriver
domibus.entityManagerFactory.jpaProperty.hibernate.dialect=org.hibernate.dialect.Or
acle10gDialect

3. Configure your Keystore based on the information in the Certificates section.

4. Run the standalone server:

◦ For Windows

▪ under <edelivery_path>\bin\ run standalone.bat --server-config=standalone-full.xml

◦ For Linux

▪ under <edelivery_path>/bin/ run standalone.sh --server-config=standalone-full.xml

5. Display the Domibus home page in your browser: http://localhost:_8080_/domibus

☞ Users default password

By default, the password is: user=admin. Search the logs for the string: Default password for
user admin is.

IMPORTANT
We highly recommend that you change any users' default passwords.
See ☞ Administration Console for more information.

NOTE
Whenever mentioned,<edelivery_path> refers to the path in your system where you
have installed the Domibus package. Some instructions refer to locations relative to
this base path.

☛ Single Server Deployment

In this section we assume that WildFly version 26.1.x is installed at location <edelivery_path>.

For this step, you will need the following resources (see the Domibus downloads page):

• domibus-msh-distribution-5.1.5-wildfly-war.zip

• domibus-msh-distribution-5.1.5-wildfly-configuration.zip

To configure Domibus in Wildfy:

102

http://localhost:8080/domibus
http://localhost:8080/domibus
http://localhost:8080/domibus

1. Run the WildFly 26.1 JBOSS CLI in order to configure
<edelivery_path>/standalone/configuration/standalone-full.xml from the command line:

◦ Extract the configuration scripts from the domibus-msh-distribution-5.1.5-wildfly-
configuration.zip file under the scripts directory.

◦ Configure the JBOSS CLI tool:

▪ For Windows: configure.bat

▪ For Linux: configure.sh

◦ Extract the script configure.bat (or configure.sh) from domibus-msh-distribution-5.1.5-
wildfly-configuration.zip under the scripts directory and adapt the following properties:

▼ Windows

NOTE
The configure.bat script uses Windows Powershell present on machines
running Windows 7 SP1 or later.

Oracle and MySQL

SET JBOSS_HOME=C:\path\to\wildfly
SET SERVER_CONFIG=standalone-full.xml

Oracle

SET DB_TYPE=Oracle
SET DB_HOST=localhost
SET DB_PORT=1521
SET DB_USER=edelivery_user
SET DB_PASS=edelivery_password
SET
JDBC_CONNECTION_URL="jdbc:oracle:thin:@%DB_HOST%:%DB_PORT%[:_SID_/Service]"
SET
ORACLE_JDBC_DRIVER_DIR=%JBOSS_HOME%\modules\system\layers\base\com\oracle\mai
n
SET ORACLE_JDBC_DRIVER_NAME=ojdbc-X.Y.Z.jar

NOTE
Oracle configuration is commented by default. To enable Oracle,
uncomment the lines below. Remember to comment the MySQL setting to
disable them.

MySQL

SET DB_TYPE=MySQL
SET DB_HOST=localhost
SET
"DB_NAME=domibus_schema?autoReconnect=true^&useSSL=false^&useLegacyDatetimeCo
de=false^&serverTimezone=UTC"
SET DB_PORT=3306
SET DB_USER=edelivery

103

SET DB_PASS=edelivery
SET JDBC_CONNECTION_URL=jdbc:mysql://%DB_HOST%:%DB_PORT%/!DB_NAME!
SET
MYSQL_JDBC_DRIVER_DIR=%JBOSS_HOME%\modules\system\layers\base\com\mysql\main
SET MYSQL_JDBC_DRIVER_NAME=mysql-connector-java-X.Y.Z.jar

▼ Linux

Oracle and MySQL

JBOSS_HOME=/path/to/wildfly
SERVER_CONFIG=standalone-full.xml

Oracle:

DB_TYPE=Oracle
DB_HOST=localhost
DB_PORT=1521
DB_USER=edelivery_user
DB_PASS=edelivery_password
JDBC_CONNECTION_URL="jdbc:oracle:thin:@$\{DB_HOST}:$\{DB_PORT}[:_SID/Service_
]"
ORACLE_JDBC_DRIVER_DIR=$\{JBOSS_HOME}/modules/system/layers/base/com/oracle/m
ain
ORACLE_JDBC_DRIVER_NAME=ojdbc-X.Y.Z.jar

NOTE
Oracle configuration is commented by default. To enable Oracle,
uncomment the lines below. Remember to comment the MySQL setting to
disable them.

MySQL

DB_TYPE=MySQL
DB_HOST=localhost
DB_NAME=domibus_schema?autoReconnect=true\&useSSL=false\&useLegacyDatetimeCod
e=false\&serverTimezone=UTC
DB_PORT=3306
DB_USER=edelivery_user
DB_PASS=edelivery_password
JDBC_CONNECTION_URL=jdbc:mysql://$\{DB_HOST}:$\{DB_PORT}/$\{DB_NAME}MYSQL_JDB
C_DRIVER_DIR=$\{JBOSS_HOME}/modules/system/layers/base/com/mysql/main
MYSQL_JDBC_DRIVER_NAME=mysql-connector-java-X.Y.Z.jar

2. Execute the following command from within the scripts directory:

◦ For Windows: configure.bat

◦ For Linux: configure.sh

Expected result:

104

3. Follow steps MySQL or Oracle found in the Pre-Configured Single Server Deployment section
and replace the directory:

◦ Windows
"%JDBC_DRIVER_DIR%\%JDBC_DRIVER_NAME%"

◦ Linux
"${JDBC_DRIVER_DIR}\${JDBC_DRIVER_NAME}"

with the current JDBC file.

NOTE

The files:

▪ <edelivery_path>/standalone/configuration/standalone-full.xml,

105

▪ <edelivery_path>/modules/system/layers/base/com/mysql/main/module.xml

▪ <edelivery_path>/modules/system/layers/base/com/oracle/main/modules.x
ml

should already have the correct details filled in.

4. Configure the environment variables:

▼ Windows

Edit <edelivery_path>/bin/standalone.conf.bat as follows:

set JAVA_OPTS="-Xms128m -Xmx1024m -Djava.net.preferIPv4Stack=true"
set JAVA_OPTS="%JAVA_OPTS% -Ddomibus.config.location=<config_directory_path>
-Djava.io.tmpdir=<temp_directory_path>"
set JBOSS_JAVA_SIZING="-Xms1024M -Xmx4096M -XX:MetaspaceSize=96M
-XX:MaxMetaspaceSize=256m -Ddomibus.config.location=%JBOSS_HOME%/conf/domibus"

▼ Unix/Linux

Edit <edelivery_path>/bin/standalone.conf as follows:

JAVA_OPTS="-Xms128m -Xmx1024m_java.net.preferIPv4Stack=true"JAVA_OPTS="$JAVA_OPTS
-Ddomibus.config.location=$JBOSS_HOME/conf/Domibus domibus
-Djava.io.tmpdir=<temp_directory_path>"

JAVA_OPTS="-Xms64m -Xmx6g -XX:MetaspaceSize=96M -XX:MaxMetaspaceSize=256m
-Djava.net.preferIPv4Stack=true
-Ddomibus.config.location=$JBOSS_HOME/conf/domibus"

5. Download and unzip domibus-msh-distribution-5.1.5-wildfly-configuration.zip in the
directory <edelivery_path>/conf/domibus, excluding the scripts directory.

6. Configure your Keystore based on the information in the Certificates section.

7. Connect to the Admin Console of WildFly at http://localhost:9990/console.

8. Click on Deployments in the console menu then click on Add:

106

http://localhost:9990/console

9. Select Choose a file or drag it here.

10. Browse to the location of the domibus-msh-distribution-5.1.5-wildfly.war file, select it and
click Next:

107

11. Click Finish.

12. The deployment is successful when the name of the .war file appears in the Deployment
column.

13. Enabled, Managed and exploded must be ticked:

108

14. In case of WildFly upgrade of single server, you must delete the previously cached version of
Domibus.

Therefore, you must delete the following folders:

◦ <edelivery_path>\standalone\data

◦ <edelivery_path>\standalone\tmp

Old deployed versions of domibus-msh-distribution-5.1.5-wildfly.war also have to be
deleted from the path <edelivery_path>\standalone\deployments or they must be removed via
the WildFly Admin Console.

☛ Clustered Deployment

For this step, you will have to use the following resources:

• domibus-msh-distribution-5.1.5-wildfly-configuration.zip

• domibus-msh-distribution-5.1.5-wildfly-war.zip

See 5.1.5 Release Page to download binaries.

In this section we assume that the setup of WildFly in domain mode has already been done and that
the cluster has been enabled as described in the official documentation.
For more details on how to perform an installation of WildFly in domain mode, please refer to the
official documentation.

109

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Domibus+-+v5.1.5

Figure 6. Diagram representing the Deployment of Domibus in a Cluster on WildFly

In order to install Domibus in a WildFly cluster please follow the steps below:

1. Download and unzip domibus-msh-distribution-5.1.5-wildfly-configuration.zip (for WildFly
26.1) in a shared location that is accessible by all the nodes from the cluster. Let’s refer to this
directory as <shared_edelivery_path>.

1. Follow steps 2 (MySQL) or 3 (Oracle) from the Pre-Configured Single Server Deployment.

NOTE
This step needs to be performed on all the nodes from the cluster. In the
following 2 steps we will edit the profile full-ha`from the configuration
file `domain/configuration/domain.xml located in the master node

2. Configure the JMS resources in the configuration file
<edelivery_path>/standalone/configuration/standalone-full-ha.xml by adding the jms-
connection-factories and jms-queues.

▼ Click to View Sample

<subsystem xmlns="urn:jboss:domain:messaging-activemq:3.0">
 <server name="default">
 <management jmx-enabled="true"/>
 <!--default for catch all-->
 <address-setting name="#"
 dead-letter-address="jms.queue.DLQ"
 expiry-address="jms.queue.ExpiryQueue"
 max-size-bytes="10485760"
 page-size-bytes="2097152"
 message-counter-history-day-limit="10"
 redistribution-delay="1000"/>
 <address-setting name="jms.queue.DomibusSendMessageQueue"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="1000"

110

 max-delivery-attempts="1"/>
 <address-setting name="jms.queue.DomibusSendLargeMessageQueue"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="1000"
 max-delivery-attempts="1"/>
 <address-setting name="jms.queue.DomibusSplitAndJoinQueue"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="1000"
 max-delivery-attempts="1"/>
 <address-setting name="jms.queue.DomibusPullMessageQueue"
 expiry-address="jms.queue.ExpiryQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 redelivery-delay="1000"
 max-delivery-attempts="1"/>
 <address-setting name="jms.queue.DomibusPullReceiptQueue"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="1000"
 max-delivery-attempts="3"/>
 <address-setting name="jms.queue.DomibusRetentionMessageQueue"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="10000"
 max-delivery-attempts="0"/>
 <address-setting name="jms.queue.DomibusAlertMessageQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 max-delivery-attempts="1"/>
 <address-setting name="jms.queue.DomibusUIReplicationQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="10000"
 max-delivery-attempts="1"/>
 <address-setting name="jms.queue.DomibusBusinessMessageOutQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusNotifyBackendJmsQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusErrorNotifyConsumerQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusErrorNotifyProducerQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>

111

 <address-setting name="jms.queue.DomibusBusinessMessageInQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusPluginToBackendQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusNotifyBackendWebServiceQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusNotifyBackendFileSystemQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusUnknownReceiverQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusNotifyBackendQueue"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="300000"
 max-delivery-attempts="10"/>
 <address-setting name="jms.queue.DomibusFSPluginSendQueue"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="10000"
 max-delivery-attempts="0"/>
 <address-setting name="jms.queue.DomibusClusterCommandTopic"
 dead-letter-address="jms.queue.DomibusDLQ"
 expiry-address="jms.queue.ExpiryQueue"
 redelivery-delay="10000"
 max-delivery-attempts="3"/>
<!-- ……………………… -->
 <connection-factory name="edeliveryConnectionFactory"
 entries="java:/jms/ConnectionFactory"
 discovery-group="dg-group1"
 compress-large-messages="false"
 failover-on-initial-connection="false"
 use-global-pools="true"/>
<!-- ……………………… -->
 <jms-queue name="DomibusBusinessMessageOutQueue"
 entries="java:/jms/domibus.backend.jms.outQueue
java:/jms/queue/DomibusBusinessMessageOutQueue"
 durable="true"/>

112

 <jms-queue name="DomibusNotifyBackendJmsQueue"
 entries="java:/jms/domibus.notification.jms
java:/jms/queue/DomibusNotifyBackendJmsQueue"
 durable="true"/>
 <jms-queue name="DomibusErrorNotifyConsumerQueue"
 entries="java:/jms/domibus.backend.jms.errorNotifyConsumer
java:/jms/queue/DomibusErrorNotifyConsumerQueue"
 durable="true"/>
 <jms-queue name="DomibusErrorNotifyProducerQueue"
 entries="java:/jms/domibus.backend.jms.errorNotifyProducer
java:/jms/queue/DomibusErrorNotifyProducerQueue"
 durable="true"/>
 <jms-queue name="DomibusBusinessMessageInQueue"
 entries="java:/jms/domibus.backend.jms.inQueue
java:/jms/queue/DomibusBusinessMessageInQueue"
 durable="true"/>
 <jms-queue name="DomibusPluginToBackendQueue"
 entries="java:/jms/domibus.backend.jms.replyQueue
java:/jms/queue/DomibusPluginToBackendQueue"
 durable="true"/>
 <jms-queue name="DomibusSendMessageQueue"
 entries="java:/jms/domibus.internal.dispatch.queue
java:/jms/queue/DomibusSendMessageQueue"
 durable="true"/>
 <jms-queue name="DomibusSendLargeMessageQueue"
 entries="java:/jms/domibus.internal.largeMessage.queue
java:/jms/queue/DomibusSendLargeMessageQueue"
 durable="true"/>
 <jms-queue name="DomibusSplitAndJoinQueue"
 entries=="java:/jms/domibus.internal.splitAndJoin.queue
java:/jms/queue/DomibusSplitAndJoinQueue"
 durable="true"/>
 <jms-queue name="DomibusPullMessageQueue"
 entries="java:/jms/domibus.internal.pull.queue
java:/jms/queue/DomibusPullMessageQueue"
 durable="true"/>
 <jms-queue name="DomibusPullReceiptQueue"
 entries="java:/jms/domibus.internal.pull.receipt.queue
java:/jms/queue/DomibusPullReceiptQueue"
 durable="true"/>
 <jms-queue name="DomibusRetentionMessageQueue"
 entries="java:/jms/domibus.internal.retentionMessage.queue
java:/jms/queue/DomibusRetentionMessageQueue"
 durable="true"/>
 <jms-queue name="DomibusAlertMessageQueue"
 entries="java:/jms/domibus.internal.alert.queue
java:/jms/queue/DomibusAlertMessageQueue"
 durable="true"/>
 <jms-queue name="DomibusNotifyBackendWebServiceQueue"
 entries="java:/jms/domibus.notification.webservice
java:/jms/queue/DomibusNotifyBackendWebServiceQueue"

113

 durable="true"/>
 <jms-queue name="DomibusNotifyBackendFileSystemQueue"
 entries="java:/jms/domibus.notification.filesystem
java:/jms/queue/DomibusNotifyBackendFileSystemQueue"
 durable="true"/>
 <jms-queue name="DomibusUnknownReceiverQueue"
 entries="java:/jms/domibus.internal.notification.unknown
java:/jms/queue/DomibusUnknownReceiverQueue"
 durable="true"/>
 <jms-queue name="DomibusNotifyBackendQueue"
 entries="java:/jms/domibus.internal.notification.queue
java:/jms/queue/DomibusNotifyBackendQueue"
 durable="true"/>
 <jms-queue name="DomibusFSPluginSendQueue"
 entries="java:/jms/domibus.fsplugin.send.queue
java:/jms/queue/DomibusFSPluginSendQueue"
 durable="true"/>
 <jms-queue name="DLQ"
 entries="java:/jms/domibus.DLQ java:/jms/queue/DomibusDLQ"
 durable="true"/>
 <jms-topic name="DomibusClusterCommandTopic"
 entries="java:/jms/domibus.internal.command
java:/jms/topic/DomibusClusterCommandTopic"/>
 </server>
</subsystem>

NOTE
Please note that the JMX management also has to be enabled so the JMS
resources can be monitored in the JMS Monitoring screen.

3. Configure the database dialect as indicated in Configure the Oracle Database.

4. Configure the environment variables in the file bin/domain.conf.

5. Set the domibus.deployment.clustered property to TRUE:

domibus.deployment.clustered=true

NOTE
bin/domain.conf is located in each WildFly node.
The environment variable setting needs to be performed in every node from the
cluster.

JAVA_OPTS="-Xms128m –Xmx1024m -java.net.preferIPv4Stack=true"
JAVA_OPTS="$JAVA_OPTS
-Ddomibus.config.location=<shared_edelivery_path>/conf/Domibus
-Djava.io.tmpdir=<temp_directory_path>"

6. Deploy the domibus-msh-distribution-5.1.5-wildfly.war (for WildFly 26.1.x) to the cluster. We
will use the WildFly Administration console for performing the deployment. We will deploy the
application on the other-server-group cluster which is configured step by step in the official

114

documentation.

7. For the upgrade of clustered WildFly server, you must delete the previously cached version of
Domibus from the domain before adding the new distribution-5.1.5-wildfly.war

Make sure to remove all old versions of domibus-msh-distribution-5.1.5-wildfly.war if you use
the WildFly administration console for the deployment.

4.5. Secure Deployment Recommendations
This section provides essential guidelines and best practices for ensuring a secure and robust
deployment of the Domibus Access Point.

These recommendations focus on key aspects for deploying Domibus securely by addressing
considerations such as system architecture, network configurations, and access controls. By
adhering to these guidelines, organizations can enhance the overall security posture of their
Domibus deployments.

IMPORTANT
From May 1st 2024, the eDelivery team assumes these recommendations are
in place when assessing the impact of security vulnerabilities on a Domibus
deployment.

Recommendations

We provide an overview for each server for a typical deployment topology, see the specific server
sections for more information.

Domibus Secure Deployment Recommendations

• Do not provide direct access from the internet to private network components.

• Restrict access to each component and allow access only to specific ports only from
known components.
For example:

◦ Domibus instances should allow incoming traffic only from the load balancer on port

▪ 7001 for WebLogic or

▪ 8080 for Tomcat,

◦ The database should allow incoming traffic only from the Domibus instances on port

▪ 1521 for Oracle or

▪ 3306 for MySQL, etc.

• Implement a web application firewall before the load balancer to filter and monitor
HTTPS from the internet

• Implement a load balancer to balance the traffic between Domibus instances

• Restrict access from the internet or, at most, only allow traffic from your organization to
the following resources:

115

◦ Domibus Admin Console: /domibus

◦ Plugin interfaces should be restricted if the plugin is not used or only be accessible
from the backend system(s) connected to Domibus instance.

▪ new WS plugin: /domibus/services/wsplugin

▪ old WS plugin: /domibus/services/backend

▪ JMS plugin: the JMS broker port(s)

▪ FS plugin: shared file system

▪ Custom plugins: plugin dependent

◦ Domibus REST services: /ext

◦ Only the MSH endpoint, /domibus/services/msh, should be accessible from the internet

116

Chapter 5. Configuring Domibus
Domibus exposes the Message Service Handler endpoint as ../services/msh. Only this endpoint
needs to be reachable by the other AS4 Access Points and it is typically exposed on the Internet.

When the default WS Plugin is deployed, Domibus exposes the default WS Plugin endpoint as
../services/backend.

IMPORTANT
This endpoint should ONLY be exposed to the backend client(s) within the
trusted zone and it should not be exposed to the Internet.

5.1. Security Configuration

5.1.1. Security Policies

The WS-Security policy used by Domibus when exchanging messages can be specified in the PMode
configuration file. See PMode Configuration.

Security policy assertions are based on the WS-Policy framework.

As requested by the eDelivery AS4 profile, Domibus supports all three mechanisms to reference a
security token, as described below.

Domibus distribution includes one policy file for each mechanism
(<edelivery_path>/conf/domibus/policies/):

• eDeliveryAS4Policy.xml- Reference to a Subject Key Identifier The <wsse:SecurityTokenReference>
element contains a <wsse:KeyIdentifier> element that specifies the token data by means of a
X.509 SubjectKeyIdentifier reference. A subject key identifier MAY only be used to reference an
X.509v3 certificate.

• eDeliveryAS4Policy_BST.xml- Reference to a Binary Security Token

The <wsse:SecurityTokenReference> element contains a <wsse:Reference> element that references a
local <wsse:BinarySecurityToken> element or a remote data source that contains the token data
itself.

117

• eDeliveryAS4Policy_IS.xml- Reference to an Issuer and Serial Number

The <wsse:SecurityTokenReference> element contains a <ds:X509Data> element that contains a
<ds:X509IssuerSerial> element that uniquely identifies an end entity certificate by its X.509 Issuer
and Serial Number.

With the eDeliveryAS4Policy.xml, Domibus is able to receive messages with all 3 referencing
methods. When eDeliveryAS4Policy_BST.xml or eDeliveryAS4Policy_IS.xml are used, the specific
reference method becomes mandatory on both APs involved in the exchange.

For the connectivity with other APs, the three policies may be combined to obtain the required
references for initiator/responder and signing/encryption tokens.

In order to validate a certificate chain contained in incoming messages with DSS (see DSS extension
configuration).

Domibus also supports:

• eDeliveryAS4Policy_BST_PKIP.xml - Reference to a PKI Path Binary Security Token

The <wsse:SecurityTokenReference> element contains a <wsse:Reference> element that references a
local <wsse:BinarySecurityToken> element or a remote data source that contains the token data
itself.

With the above policy the entire certificate chain is added to the the Ws-Security header of the AS4
message.

5.1.2. Default authorization

When a message is received by Domibus MSH, the default authorization service verifies the signing
certificate used to sign either the UserMessage or the SignalMessage (for PullRequests).

This means, the validations are performed by the receiving AP on the sender’s certificate for a
UserMessage and on the initiator’s certificate for a PullRequest.

There are 3 checks that can be enabled/disabled independently:

• domibus.sender.trust.validation.truststore_alias: this check verifies that the sender’s
certificate matches the certificate stored in the truststore. The certificate is loaded from the
truststore based on the alias (party name). By default it is set to true.

With this check, it is ensured that when Domibus is configured to receive from multiple parties,
these parties cannot impersonate each other.

Example: red_gw is configured to receive from both blue_gw and green_gw. Without this check
enabled, blue_gw can sign with its own certificate (which is accepted by the receiving AP) but
pretend it is green_gw.

• domibus.sender.trust.validation.expression: when this property is not empty, Domibus will
verify, before receiving a message, if the subject of the sender’s certificate matches the regular
expression. By default it is empty, therefore no check is performed.

118

This property is mainly meant for chain of certificates, where sender’s certificate is signed by a
certificate authority and the leaf certificate is not present in the truststore of the receiving AP.

• domibus.sender.certificate.subject.check: this check verifies that the subject of the sender’s
certificate contains the alias (party name). Because this check is very restrictive, it is set by
default to false.

• In addition to these 3 properties, the property domibus.sender.trust.validation.onreceiving,
when set to false, completely disables the authorization (as well as the certificate validation –
valid/expired/revoked).

5.1.3. Certificates

The certificates that are used for signing and encrypting the messages when communicating with
the other Access Points can be configured in the property file located under
<edelivery_path>/conf/domibus/domibus.properties.

By default Domibus is pre-configured to use self-signed certificates. Please note that self-signed
certificates should be used only for testing purposes and are not intended for production use.

In order to configure Domibus to use custom certificates the following properties need to be
modified:

#The location of the keystore
domibus.security.keystore.location=$\{domibus.config.location}/keystores/gateway_keyst
ore.jks

#Type of the used keystore
domibus.security.keystore.type=jks

#The password used to load the keystore
domibus.security.keystore.password=test123

#Private key
#The alias from the keystore of the private key
domibus.security.key.private.alias=blue_gw

#The private key password
domibus.security.key.private.password=test123

#Truststore
#The location of the truststore
domibus.security.truststore.location=$\{domibus.config.location}/keystores/gateway_tru
ststore.jks

#Type of the used truststore
domibus.security.truststore.type=jks

#The password used to load the trustStore
domibus.security.truststore.password=test123

119

1. Create, if not present, a folder <edelivery_path>/conf/domibus/keystores.

2. Get your key pair from an external provider.

◦ Self-signed certificates should only be used for testing purposes, not production.

◦ If you are interested in using the eDelivery Public Key Infrastructure Solution.

SEE ALSO For other certificate providers, see the Guidance on digital certificates.

3. Create, if not present, the public and private keys containers (e.g. truststore.jks and
keystore.jks).

4. Import your private key into your keystore.

NOTE
Your private key and your keystore should always stay secret. Please never
share them.

5. The keystore alias has to be the same as the party.

IMPORTANT
It is strongly recommended to use your key pair (private and public key) and
the public key of the other participants you trust in two separate containers.

NOTE

As from Oracle JAVA 11, the KeyStore PKCS12 is the default keystore format and its
implementation was moved from the SunJSSE provider. Therefore, if the keystore is
in PCKS12 and the Java version is 11, the following error can occur when Domibus
tries to load the keystore.: "Could not load key store: keystore password was
incorrect" (the password is in fact correct). If such a scenario occurs, the keystore
must be recreated from the problematic keystore with a legacy format. To do this,
run the following command:

/opt/java/jdk1.8.0_301/bin/keytool -J-Dkeystore.pkcs12.legacy
-importkeystore -srckeystore test-jdk1.8.0_301.p12 -destkeystore
test-jdk1.8.0_301-legacy.p12 -srcstoretype PKCS12 -deststoretype PKCS12

5.1.4. Security Profiles

Domibus introduced configurable security profiles, also called cryptographic profiles, as
preparation for extending support to new types of cryptographic algorithms, such as Ellyptic Curve
Certificates, in addition to the already supported algorithms. As part of this work, Domibus also
supports the configuration of different private keys for signature and decryption which are
predefined within these security profiles.

Currently, the user can choose between predefined security profiles for the cryptography
algorithms, namely ECC and RSA, but custom profiles are not supported.

NOTE
Support for Ellyptic Curve certificates and algorithms is planned to be provided in a
future Domibus release. The previous cryptography specification is grouped under
the “RSA” security profile.

120

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/PKI+Service
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Guidance+on+Digital+Certificates

Setting up Security Profiles

The security profiles are configured by the administrator on Domibus for both static and dynamic
discovery message exchange. Each of these scenarios requires to setup specific settings, as
described in the following sections. The result of the security profiles extension is that when
loading a Keystore “.jks” file containing different types of certificates, they are read, validated and
used according to the configured security profile.

The settings that need to be configured to activate the security profiles, for both static and dynamic
discovery message exchanges, are described below.

Inside the domibus.properties file, the fields corresponding to a specific security profile must be
uncommented and the values set up accordingly. There are two available options for each security
profile (RSA and ECC):

• Use the same alias and password for both signing and decrypting

• Use different aliases for signing and decrypting

The user must choose one of the security profiles. He must activate one profile and leave the other
one commented out. In the example below, the user chooses to use different certificates for signing
and decrypting for the ECC profile:

--- ECC Profile ---
Same alias (and password) for sign and decrypt
#domibus.security.key.private.ecc.alias=blue_gw_ecc
#domibus.security.key.private.ecc.password=test123

#Sign
domibus.security.key.private.ecc.sign.alias=blue_gw_ecc_sign
domibus.security.key.private.ecc.sign.password=test123

#Decrypt
domibus.security.key.private.ecc.decrypt.alias=blue_gw_ecc_decrypt
domibus.security.key.private.ecc.decrypt.password=test123

The complete set of options available for the RSA and ECC security profiles are:

#----------- Legacy security section (no security profiles) --------
The alias from the keystore of the private key
#domibus.security.key.private.alias=blue_gw

The private key password
#domibus.security.key.private.password=test123

------------- Security Profiles -------------------
For enabling Security Profiles for signing and encryption uncomment the
following parameters #accordingly

--- RSA Profile ---

121

Same alias (and password) for sign and decrypt
#domibus.security.key.private.rsa.alias=blue_gw_rsa
#domibus.security.key.private.rsa.password=test123

Sign
#domibus.security.key.private.rsa.sign.alias=blue_gw_rsa_sign
#domibus.security.key.private.rsa.sign.password=test123

#Decrypt
#domibus.security.key.private.rsa.decrypt.alias=blue_gw_rsa_decrypt
#domibus.security.key.private.rsa.decrypt.password=test123

--- ECC Profile ---
Same alias (and password) for sign and decrypt
#domibus.security.key.private.ecc.alias=blue_gw_ecc
#domibus.security.key.private.ecc.password=test123

#Sign
#domibus.security.key.private.ecc.sign.alias=blue_gw_ecc_sign
#domibus.security.key.private.ecc.sign.password=test123

#Decrypt
#domibus.security.key.private.ecc.decrypt.alias=blue_gw_ecc_decrypt
#domibus.security.key.private.ecc.decrypt.password=test123

If one or more security profiles are used, the following legacy fields must be commented out:

The alias from the keystore of the private key
#domibus.security.key.private.alias=blue_gw

The private key password
#domibus.security.key.private.password=test123

In case both legacy single alias keystore and at least one of the security profiles are uncommented,
an exception will be raised, and the application will not start correctly. The user must choose either
one option or the other.

Security Profiles in static discovery message exchange configuration

For the static configuration message exchange pattern, the security of the message exchange is
governed by the PMode configuration.

Before setting up the PMode, the Domibus administrator must know the security profile that will be
employed for the selected leg.

The security profile needs to be defined as an attribute in the <security> tag from the PMode xml
file. The aliases for the corresponding certificates are defined in the domibus.properties files.

The currently available security profiles are: RSA and ECC. The user must choose between one of

122

these predefined values. A sample of two leg security configuration definitions, one using security
profile RSA and the other using security profile ECC can be seen below:

<securities>
 <security name="eDeliveryAS4PolicyRSA"
 policy="eDeliveryAS4Policy.xml"
 profile = "RSA "/>
 <security name="eDeliveryAS4PolicyECC"
 policy="eDeliveryAS4Policy.xml"
 profile = "ECC"/>
</securities>

The signatureMethod field from the old <security> definition is no longer needed when using
security profiles. However, for backward compatibility reasons, in applications that do not use
security profiles, the old definition can still be used, as in the example below:

<security name="eDeliveryAS4Policy"
 policy="eDeliveryAS4Policy.xml"
 signatureMethod="RSA_SHA256"/>

Security Profiles in Dynamic Discovery Message Exchange configuration

In the case of dynamic discovery message exchange configuration, an additional setting must be
configured, namely the security profiles order list.

This field is defined inside the domibus.properties file. It must be uncommented and setup
accordingly:

Priority order of Security Profiles used in Dynamic Discovery to set the transport
protocol
domibus.security.profile.order=ECC,RSA

The use of this parameter is described next. When setting up a secured connection between two
access points in a dynamic discovery message exchange scenario, a request is sent to the SMP to
obtain the endpoint information of the receiver. The SMP will return a service metadata response
that contains amongst others, a list of transport profiles supported by the receiver. An algorithm
will try to match the highest ranking security profile from the priority list defined in
domibus.security.profile.order, with a transport profile supported by the receiver. If a match is
found, the security profile is successfully selected, and it will be further used for the secured
connection. In case a transport profile that corresponds to the first security profile from the priority
list is not found, a match is attempted for the next security profile in the list, and this continues
until a match is found between the security profile and a transport profile.

The current matching between the security profiles and transport profiles is defined internally in
Domibus:

• OASIS

123

◦ RSA: bdxr-transport-ebms3-as4-v1p0

◦ ECC: bdxr-transport-ebms3-as4-EC-sample

• PEPPOL

◦ RSA: peppol-transport-as4-v2_0

For backward compatibility reasons, the following property must be kept and must be
uncommented:

#The AS4 transport profile by which the endpoint is identified in the SMP response
domibus.dynamicdiscovery.transportprofileas4=bdxr-transport-ebms3-as4-v1p0

In case the domibus.security.profile.order is not defined, the above defined transport protocol will
be used.

In case both the:

• domibus.security.profile.order

• domibus.dynamicdiscovery.transportprofileas4

properties are defined, the priority order will be used.

5.2. Domibus Properties
Most configuration is performed via the domibus.properties files.
In the Domibus guides (Administration Guide, Quickstart Guide, etc), especially in Domibus
Installation and Domibus Configuration sections, you can find specific information on how to
change the default configuration in order to customize your setup.

SEE ALSO
For a full reference of the Domibus properties, see the Properties Reference
Guide.

5.2.1. Password encryption

Passwords configured in domibus.properties are stored by default in clear text. The Domibus
configuration file, domibus.properties, is not accessible for third-party users. Nevertheless, it is good
practice to encrypt the configured passwords in order to increase the security level.

Domibus encrypts the configured passwords using symmetric encryption with AES/GCM/NoPadding
algorithm. In order to activate the password encryption, please set the property
domibus.password.encryption.active=true and uncomment the
domibus.password.encryption.properties to enable the list of configured passwords to be encrypted.
Once activated, all the passwords configured under the property
domibus.password.encryption.properties will be encrypted.

Domibus generates the symmetric key the first time the password encryption is activated. The
generated symmetric key is stored in the file encrypted.key, in the location specified by the property

124

domibus.password.encryption.key.location.

For instance, the property domibus.security.keystore.password=test123 will be encrypted to
domibus.security.keystore.password=ENC(4DTXnc9zUuYqB0P/q7RtRHpG9VJLs3E=).

5.3. PMode Configuration
Processing Modes (PModes) are used to configure Access Points. The PMode parameters are loaded
into the Access Point via an XML file.

The features described in the PMode file are:

• Security

• Reliability,

• Transport

• Business Collaborations

• Error Reporting

• Message Exchange

• Patterns (MEPs)

• Message Partition Channels (MPCs)

As different messages may be subject to various types of processing or, as different business
domains may have several requirements, Access Points commonly support several PModes.
Some PMode parameters are mandatory, others are optional.

See Also

• Access Point Offering

Available from eDelivery’s Digital Portal, the Access Point Component Offering Description
document holds technical specifications and implementation instructions.

5.3.1. PMode Configuration Files

In Domibus, PModes are XML files that you can create or edit. Participants are represented and
configured via the party element in configuration files.

You can configure the provided files:

• <edelivery_path>/conf/pmodes/domibus-gw-sample-pmode-party_id_name1.xml

• <edelivery_path>/conf/pmodes/domibus-gw-sample-pmode-party_id_name2.xml

Where:

• <edelivery_path> stands for directory where you have have Domibus installed.

• party_id_name1 and party_id_name2, are placeholders representing names for existing parties.

125

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Access+Point+software

IMPORTANT

The corresponding partyName attribute’s value needs to match the alias of the
certificate in the keystore and the endpoint must be the external access link
to your instance. This step could be managed by a PMode Configuration
Manager, known to your Business Owner.

<party name="party_id_name2"
endpoint="http://party_id_name2_hostname:8080/domibus/services/msh">
 <identifier partyId="party_id_name2_1" partyIdType="partyTypeUrn"/>
</party>
<party name="party_id_name1"
endpoint="http://party_id_name1_hostname:8080/domibus/services/msh">
 <identifier partyId="party_id_name1_1" partyIdType="partyTypeUrn"/>
</party>

Adding a new participant

If a new Access Point participant is joining your network, you need to configure your PMode
accordingly and re-upload it as mentioned in Uploading New Configuration.

Adding a new party element

<party name="new_party_name" endpoint="http://new_party_msh" >
 <identifier partyId="new_party_id" partyIdType="partyTypeUrn"/>
</party>

☞ Participants with initiator role are message senders. See a sample below:

Assigning initiator role to a party

<initiatorParties>
<!-- ... -->
 <initiatorParty name="new_party_name"/>
</initiatorParties>

☞ Participants with responder role are message receivers. See a sample below:

Assigning responder role to a party

<responderParties>
…
<responderParty name="new_party_name"/>
</responderParties>

5.3.2. Sample PMode file

Processing modes (PModes) describe how messages are exchanged between AS4 partners (in this
case Access Points blue_gw and red_gw). These files contain the identifiers of each AS4 Access Point

126

(identified as parties in the PMode file below).

Sender and Receiver Identifiers represent the organizations that send and receive the business
documents. They are both used in the authorization process (PMode). Therefore, adding, modifying
or deleting a participant implies modifying the corresponding PMode files.

An an example of a PMode XML file is shown below:

NOTE
In this setup, we have allowed each party (blue_gw or red_gw) to initiate the
process. If only blue_gw is supposed to send messages, then put only blue_gw in
<initiatorParties> and red_gw in <responderParties>.

<?xml version="1.0" encoding="UTF-8"?>

<db:configuration xmlns:db="http://domibus.eu/configuration" party="blue_gw">

<mpcs>
 <mpc name="defaultMpc"
 qualifiedName="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/defaultMPC"
 enabled="true"
 default="true"
 retention_downloaded="0"
 retention_undownloaded="14400"
 retention_sent="14400"
 delete_message_metadata="false"
 max_batch_delete="1000"/>
</mpcs>
<businessProcesses>
 <roles>
 <role name="defaultInitiatorRole"
 value="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator"/>
 <role name="defaultResponderRole"
 value="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder"/>
</roles>
<parties>
 <partyIdTypes>
 <partyIdType name="partyTypeUrn"
 value="urn:oasis:names:tc:ebcore:partyid-type:unregistered"/>
 </partyIdTypes>
<party name="red_gw" endpoint="http://red_hostname:8080/domibus/services/msh">
 <identifier partyId="domibus-red" partyIdType="partyTypeUrn"/>
</party>
<party name="blue_gw" endpoint="http://blue_hostname:8080/domibus/services/msh">
 <identifier partyId="domibus-blue" partyIdType="partyTypeUrn"/>
</party>
</parties>
<meps>

127

<mep name="oneway"
value="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/oneWay"/>

<mep name="twoway"
value="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/twoWay"/>

<binding name="push"
value="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push"/>

<binding name="pull"
value="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/pull"/>

<binding name="pushAndPush"
value="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/push-and-push"/>
</meps>

<properties>
 <property name="originalSenderProperty"
 key="originalSender"
 datatype="string"
 required="true"/>
 <property name="finalRecipientProperty"
 key="finalRecipient"
 datatype="string"
 required="true"/>
 <propertySet name="eDeliveryPropertySet">
 <propertyRef property="finalRecipientProperty"/>
 <propertyRef property="originalSenderProperty"/>
 </propertySet>
</properties>

<payloadProfiles>
 <payload name="businessContentPayload"
 cid="cid:message"
 required="true"
 mimeType="text/xml"/>
 <payload name="businessContentAttachment"
 cid="cid:attachment"
 required="false"
 mimeType="application/octet-stream"/>

<payloadProfile name="MessageProfile" maxSize="2147483647">
 <attachment name="businessContentPayload"/>
 <attachment name="businessContentAttachment"/>
</payloadProfile>
</payloadProfiles>

<securities>
 <security name="eDeliveryAS4Policy"
 policy="eDeliveryAS4Policy.xml"

128

 signatureMethod="RSA_SHA256" />
</securities>

<errorHandlings>
 <errorHandling name="demoErrorHandling"
 errorAsResponse="true"
 businessErrorNotifyProducer="true"
 businessErrorNotifyConsumer="true"
 deliveryFailureNotifyProducer="true"/>
</errorHandlings>

<agreements>
 <agreement name="agreement1" value="A1" type="T1"/>
</agreements>

<services>
 <service name="testService1" value="bdx:noprocess" type="tc1"/>
 <service name="testService"
 value="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/service"/>
</services>

<actions>
 <action name="tc1Action" value="TC1Leg1"/>
 <action name="testAction"
 value="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/test"/>
</actions>

<as4>
 <receptionAwareness name="receptionAwareness" retry="12;4;CONSTANT"
duplicateDetection="true"/>
 <reliability name="AS4Reliability" nonRepudiation="true" replyPattern="response"/>
</as4>

<legConfigurations>
 <legConfiguration name="pushTestcase1tc1Action"
 service="testService1"
 action="tc1Action"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>

 <legConfiguration name="testServiceCase"
 service="testService"
 action="testAction"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"

129

 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
 </legConfigurations>

 <process name="tc1Process"
 mep="oneway"
 binding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">

 <initiatorParties>
 <initiatorParty name="blue_gw"/>
 <initiatorParty name="red_gw"/>
 </initiatorParties>

 <responderParties>
 <responderParty name="blue_gw"/>
 <responderParty name="red_gw"/>
 </responderParties>

 <legs>
 <leg name="pushTestcase1tc1Action"/>
 <leg name="testServiceCase"/>
 </legs>
</process>
</businessProcesses>

</db:configuration>

5.3.3. Domibus versus ebMS3

In this section you can find information regarding how PMode configuration is done in Domibus
and its counterparts in ebMS3 PMode configuration.

See the table below:

Domibus PMode configuration to ebMS3 mapping

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

Message Partition Channels
(MPCs)

- Container which defines the
different MPCs.

130

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

Message Partition Channel
(MPC)

PMode[1].BusinessInfo.MPC:
The value of this parameter
is the identifier of the MPC
(Message Partition
Channel) to which the
message is assigned. It
maps to the attribute
Messaging/UserMessage

MPC allows the partition of the
flow of messages from a Sending
MSH to a Receiving MSH into
several flows that can be
controlled separately.
An MPC also allows merging
flows from several Sending MSHs
into a unique flow that can be
treated as such by a Receiving
MSH.

+ The value of this parameter is
the identifier of the MPC to which
the message is assigned.

MessageRetentionDownloaded - Retention interval for messages
already delivered to the backend.

MessageRetentionUnDownloaded - Retention interval for messages
not yet delivered to the backend.

MessageRetentionSent Retention interval for messages
already sent with success or
failed to the other MSH.

DeleteMessageMetadata When true, message metadata is
deleted together with the
payload.

MaxBatch Sets the maximum batch to be
used when deleting messages in
bulk.
When there are multiple expired
messages, they will be deleted in
batches until all consumed.

Parties - Container which defines the
different PartyIdTypes, Party and
Endpoint.

PartyIdTypes maps to the attribute
Messaging/UserMessage/ and
PartyInfo

Message Unit bundling happens
when the Messaging element
contains multiple child elements
or Units (either User Message
Units or Signal Message Units).

131

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

Party ID maps to the element
Messaging/UserMessage/ and
PartyInfo

The ebCore Party ID type can
simply be used as an identifier
format and therefore as a
convention for values to be used
in configuration and – as such –
does not require any specific
solution building block.

Endpoint maps to
PMode[1].Protocol.Address

The endpoint is a party attribute
that contains the link to the MSH.
The value of this parameter
represents the address (endpoint
URL) of the Receiver MSH (or
Receiver Party) to which
Messages under this PMode leg
are to be sent. Note that a URL
generally determines the
transport protocol (e.g. if the
endpoint is an email address,
then the transport protocol must
be SMTP; if the address scheme is
"HTTP", then the transport
protocol must be HTTP).

AS4 - Container.

Reliability [@Nonrepudiation]
[@ReplyPattern]

• Nonrepudiation maps to
PMode[1].Security.Send
Receipt.NonRepudiation

• ReplyPattern maps to
PMode[1].Security.Send
Receipt.ReplyPattern

• `PMode[1].Security.SendRece
ipt.NonRepudiation: vale =
'true

false' set as TRUE for non-
repudiation of receipt set as
FALSE for simple reception
awareness

*
`PMode[1].Security.SendReceipt.R
eplyPattern: value = ‘Response

Callback’` Set as Response
to send receipts on the
HTTP response or back-
channel Set as Response to
send receipts using a
separate connection

ReceptionAwareness
[@retryTimeout] [@retryCount]
[@strategy][@duplicateDetection]

132

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

retryTimeout maps to

PMode[1].ReceptionAwareness.
Retry=true
PMode[1].ReceptionAwareness.Ret
ry.Parameters retryCount maps to
PMode[1].ReceptionAwareness.
Retry.Parameters strategy maps
to
PMode[1].ReceptionAwareness.
Retry.Parameters
duplicateDetection maps to
PMode[1].ReceptionAwareness.
DuplicateDetection

These parameters are
stored in a composite
string.

• retryTimeout defines
timeout in minutes.

• retryCount is the total
number of retries.

• strategy defines the
frequency of retries.
The only strategy
available as of now is
CONSTANT.

• duplicateDetection
allows to check
duplicates when
receiving twice the
same message. The only
duplicateDetection
available as of now is
TRUE.

Securities

- Container Security

- Container Policy

PMode[1].Security.* NOT including
PMode[1].Security.X509.Signature.
Algorithm

The parameter defines the
name of a WS-
SecurityPolicy file.

SignatureMethod

PMode[1].Security.X509.Signature.
Algorithm

This parameter is not
supported by WS-
SecurityPolicy and
therefore it is defined
separately.

BusinessProcessConfiguration

- Container Agreements

maps to eb:Messaging/UserMessage/
CollaborationInfo/AgreementRef

This OPTIONAL element
occurs zero times or once.
The AgreementRef element
is a string that identifies the
entity or artifact governing
the exchange of messages
between the parties.

Actions

- Container. Action

133

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

maps to
Messaging/UserMessage/Collaborati
onInfo/Action

This REQUIRED element
occurs once. The element is
a string identifying an
operation or an activity
within a Service that may
support several of these.

Services

- Container ServiceTypes Type

maps to
Messaging/UserMessage/Collaborati
onInfo/Service[@type]

This REQUIRED element
occurs once. It is a string
identifying the service that
acts on the message and it
is specified by the designer
of the service.

MEP [@Legs]

- An ebMS MEP defines a
typical choreography of
ebMS User Messages which
are all related through the
use of the referencing
feature (RefToMessageId).
Each message of an MEP
Access Point refers to a
previous message of the
same Access Point, unless it
is the first one to occur.
Messages are associated
with a label (e.g. request,
reply) that precisely
identifies their direction
between the parties
involved´ and their role in
the choreography.

Bindings

- Container. Binding

134

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

- The previous definition of
ebMS MEP is quite abstract
and ignores any binding
consideration to the
transport protocol. This is
intentional, so that
application level MEPs can
be mapped to ebMS MEPs
independently from the
transport protocol to be
used.

Roles

- Container Role

Maps to PMode.Initiator.Role or
PMode.Responder.Role depending
on where this is used. In ebMS3
message this defines the content
of the following element:

• For Initiator:
Messaging/UserMessage/PartyIn
fo/From/Role

• For Responder:
Messaging/UserMessage/PartyIn
fo/To/Role

The required role element
occurs once, and identifies
the authorized role
(fromAuthorizedRole or
toAuthorizedRole) of the
Party sending the message
(when present as a child of
the From element), or
receiving the message
(when present as a child of
the To element). The value
of the role element is a
non-empty string, with a
default value of
http://docs.oasis-
open.org/ebxml-msg/ebms/
v3.0/ns/core/200704/
defaultRole.
Other possible values are
subject to partner
agreement.

Processes

- Container PayloadProfiles

- Container Payloads

- Container Payload

135

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

maps to
PMode[1].BusinessInfo.PayloadProf
ile

This parameter allows
specifying some constraint
or profile on the payload. It
specifies a list of payload
parts. A payload part is a
data structure that consists
of five properties:

1. name (or Content-ID)
that is the part
identifier, and can be
used as an index in the
notation
PayloadProfile;

2. MIME data type
(text/xml,
application/pdf, etc.);

3. name of the
applicable XML
Schema file if the
MIME data type is
text/xml;

4. maximum size in
kilobytes; (currently
not used)

5. Boolean string
indicating whether the
part is expected or
optional, within the
User message. The
message payload(s)
must match this profile.

ErrorHandlings

- Container. ErrorHandling

- Container. ErrorAsResponse

136

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

maps to

PMode[1].ErrorHandling.Report
.AsResponse

This Boolean parameter
indicates (if true) that
errors generated from
receiving a message in
error are sent over the
back-channel of the
underlying protocol
associated with the
message in error. If false,
such errors are not sent
over the back-channel.

ProcessErrorNotifyProducer

maps to

PMode[1].ErrorHandling.Report
.ProcessErrorNotifyProducer

This Boolean parameter
indicates whether (if true)
the Producer
(application/party) of a
User Message matching this
PMode should be notified
when an error occurs in
the Sending MSH, during
processing of the User
Message to be sent.

ProcessErrorNotifyConsumer

maps to

PMode[1].ErrorHandling.Report
.ProcessErrorNotifyProducer

This Boolean parameter
indicates whether (if true)
the Consumer
(application/party) of a
User Message matching this
PMode should be notified
when an error occurs in
the Receiving MSH, during
processing of the received
User message.

DeliveryFailureNotifyProducer

137

Domibus PMode Configuration EbMS3 Specification
[ebMS3CORE][AS4-
Profile]

Description

maps to

PMode[1].ErrorHandling.Report
.DeliveryFailuresNotifyProduce
r

When sending a message
with this reliability
requirement (Submit
invocation), one of the two
following outcomes shall
occur:
- The Receiving MSH
successfully delivers
(Deliver invocation) the
message to the Consumer.
- The Sending MSH notifies
(Notify invocation) the
Producer of a delivery
failure.

Legs

- Container. Leg

- Because messages in the
same MEP may be subject
to different requirements -
e.g. the reliability, security
and error reporting of a
response may not be the
same as for a request – the
PMode will be divided into
legs. Each user message
label in an ebMS MEP is
associated with a PMode
leg. Each PMode leg has a
full set of parameters for
the six categories above
(except for General
Parameters), even though
in many cases parameters
will have the same value
across the MEP legs. Signal
messages that implement
transport channel bindings
(such as PullRequest) are
also controlled by the same
categories of parameters,
except for BusinessInfo
group.

Process

138

5.3.4. Uploading New Configuration

Upload the PMode file

To update the PMode configuration and/or Truststore:

1. Connect to the Administration Console using the administrator’s credentials. By default,
credentials are:

◦ User: admin;

◦ Password: to obtain the password, look for the phrase “Default password for user admin is”
in the logs of http://localhost:_8080_/domibus.

NOTE

▪ In case of a cluster environment, the PMode configuration is replicated
automatically on all the nodes.

▪ It is recommended to change the passwords for the default users. See
admintools .

IMPORTANT
Duplicate parameters/entities are not allowed in PMode. XSD validation is
used to find the duplicate entities.

1. Click on the PMode menu:

139

http://localhost:8080/domibus/home
http://localhost:8080/domibus/home
http://localhost:8080/domibus/home

2. Press the Upload button:

3. Press the Choose File button, and navigate to the PMode file, select it and click on the Open

140

button (or equivalent) in the standard dialog box:

4. Once the file has been selected, click "OK" to upload the PMode xml file:

NOTE Every time a PMode is updated, the truststore is also reloaded.

Upload the Truststore

1. Select the "Truststore" menu and press the Upload button:

141

2. Navigate to the Truststore and select it by clicking on the Open button (or equivalent) of the
standard file open dialog:

3. Once the file has been selected, enter the keystore password and click on the OK button to
activate the new truststore jks file:

142

5.3.5. Message properties validation

While exchanging AS4 messages using PMode configuration, a user could define Message
Properties as in the example below:

<ns:UserMessage>
….
<ns:MessageProperties>
<ns:Property
 name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns:Property>
<ns:Property
 name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns:Property>
</ns:MessageProperties>
…

</ns:UserMessage>
Domibus has a limitation of 1024 characters for the value of a Message
Property. If this value is exceeded, an EbMS3Exception is thrown on both
sending (C2) and receiving (C3) side and the message is not
submitted/accepted.

<properties>
 <property name="originalSenderProperty"
 key="originalSender"
 datatype="string"
 required="true"/>
 <property name="finalRecipientProperty"

143

 key="finalRecipient"
 datatype="string"
 required="true"/>
 <propertySet name="eDeliveryPropertySet">
 <propertyRef property="finalRecipientProperty"/>
 <propertyRef property="originalSenderProperty"/>
 </propertySet>
</properties>

5.4. Two-way MEP Scenario
The Two-Way MEP governs the exchange of two User Messages in opposite directions, the first one
being the request, and the second one being the response. The response must reference the request
using eb:RefToMessageId.

A two-way scenario is presented below, including the PMode configuration for all 3 possible
bindings for two-way exchanges:

• PushAndPush

• PushAndPull

• PullAndPush

The scenario is the following:´

• blue_gw wants to place an order to red_gw and expects a response from red_gw.

• blue_gw has the UserMessage request that needs to be exchanged with the red_gw, and red_gw has
the UserMessage response that needs to be exchanged with blue_gw.

The processes described below simulate these three possible bindings for Two-Way mep.

Two legs are used:

• leg1 for the exchange of the request UM1

• leg2 for the exchange of response UM2.

• The legs are reused in all three bindings.

144

<legConfiguration name="leg1"
 service="serviceA"
 action="action1"
 defaultMpc="mpcA"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>

<legConfiguration name="leg2"
 service="serviceA"
 action="action2"
 defaultMpc="mpcA"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="false"/>

5.4.1. PushAndPush binding

• pushLeg1: blue_gw pushes the request UM1 on leg1

• pushLeg2: red_gw pushes the response UM2 on leg2. Requires RefToMessageId: UM1

PMode configuration:

145

<process name="pushLeg1"
 mep="oneway"
 binding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="blue_gw"/>
 </initiatorParties>
 <responderParties>
 <responderParty name="red_gw"/>
 </responderParties>
 <legs>
 <leg name="leg1"/>
 </legs>
</process>

<process name="pushLeg2"
 mep="oneway"
 binding="push"
 initiatorRole=" defaultResponderRole "
 responderRole="defaultInitiatorRole">
 <initiatorParties>
 <initiatorParty name="red_gw"/>
 </initiatorParties>
 <responderParties>
 <responderParty name="blue_gw"/>
 </responderParties>
 <legs>
 <leg name="leg2"/>
 </legs>
</process>

5.4.2. PushAndPull binding

• pushLeg1: blue_gw pushes the request UM1 on leg1

• pullLeg2: blue_gw pulls the response UM2 on leg2. Requires RefToMessageId: UM1.

146

PMode configuration:

<process name="pushLeg1"
 mep="oneway"
 binding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="blue_gw"/>
 </initiatorParties>
 <responderParties>
 <responderParty name="red_gw"/>
 </responderParties>
 <legs>
 <leg name="leg1"/>
 </legs>
</process>
<process name="pullLeg2"
 mep="oneway"
 binding="pull"
 initiatorRole="defaultResponderRole"
 responderRole="defaultInitiatorRole">
 <initiatorParties>
 <initiatorParty name="blue_gw"/>
 </initiatorParties>
 <responderParties>
 <responderParty name="red_gw"/>
 </responderParties>
 <legs>
 <leg name="leg2"/>
 </legs>
</process>

147

5.4.3. PullAndPush binding

• pullLeg1: red_gw pulls the request UM1 on leg1

• pushLeg2: red_gw pushes the response UM2 on leg2. Requires RefToMessageId: UM1.

<process name="pullLeg1"
 mep="oneway"
 binding="pull"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="red_gw"/>
 </initiatorParties>
 <responderParties>
 <responderParty name="blue_gw"/>
 </responderParties>
 <legs>
 <leg name="leg1"/>
 </legs>
</process>
<process name="pushLeg2"
 mep="oneway"
 binding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="red_gw"/>
 </initiatorParties>
 <responderParties>
 <responderParty name="blue_gw"/>
 </responderParties>

148

 <legs>
 <leg name="leg2"/>
 </legs>
</process>

5.5. Special Scenario: Sender and Receiver are the
same
In this special scenario, the Sender Access Point acts also as the Receiver Access Point. Multiple
backends can exchange messages via the same Access Point using the same or different plugins.

5.5.1. PMode Configuration

A party (e.g. blue_gw) which is Sender and Receiver must be defined in both the <initiatorParties>
and <responderParties> sections as shown below:

…..
<initiatorParties>
 <initiatorParty name="blue_gw"/>
</initiatorParties>
<responderParties>
 <responderParty name="blue_gw"/>
</responderParties>
…..

5.5.2. Message structure

A message that is sent to the same Access Point will have to contain the same party ID in both From
and To sections. Below there is an example of a message sent using the Default WS Plugin:

<ns:UserMessage>
…
<ns:PartyInfo>
<ns:From>
<ns:PartyId
type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-blue</ns:PartyId>
<ns:Role>
http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator%3c/ns:Role[http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator
</ns:Role]>
</ns:From>
<ns:To>
<ns:Partyd
type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-blue
</ns:PartyId>
<ns:Role>

149

http://docs.oasis-open.org/ebxmlmsg/ebms/v3.0/ns/core/200704/responder
</ns:Role>
</ns:To>
</ns:PartyInfo>
….

5.5.3. Message ID convention

Due to some limitations related to the uniqueness of the message identifier, a convention has been
defined in this scenario. The message ID used for the received message is derived from the message
ID used for the sent message with the following rule: the suffix _1 is added to the sent message ID.

Example:

• Sent message ID is ae15851e-78fb-4b51-aac8-333c08c450d6@domibus

• Received message ID is ae15851e-78fb-4b51-aac8-333c08c450d6@domibus_1

NOTE
The self-sending feature is meant to be used only for sanity tests. We discourage
users to use self-sending in Production environments.

5.6. Administration Tools

5.6.1. Administration Console

Domibus administration console can be used by administrators and users to easily manage
Domibus application.

The administration dashboard is reachable via the following URLs:
http://<your_server>:<your_port_number>/domibus (Tomcat, WildFly and Weblogic).

The admin console is made of several sections:

Messages

in this page, the administrator can see the details of the messages and re-process them if
required. The administrator can also navigate through the messages history and download
specific messages if needed.

Message Filter

in this page, the administrator can set defined filters and access them individually for edition
directly in the list.

Error Log

in this page, the administrator can view the list of application errors, make searches on error
messages and filter them.

PMode

in this page, the administrator can upload, download and edit the PMode file. The administrator

150

http://<your_server>:<your_port_number>/domibus

can also edit the list of parties configured in the PMode and access them individually for
modification purposes. The user has also access to a list of archived PMode content that the user
can restore.

JMS Monitoring

in this page, the administrator can monitor and manage the contents of the JMS queues.

Truststores

in this section, the user can manage the truststores.

Under Domibus, the administrator can upload a new truststore to replace the current one. There
is also a button to reload the keystore from the file system (using the same keystore properties).

Under TLS Truststore, the user can manage the trusted certificates of the TLS truststore.

Users

On this page, the administrator can create and manage users including: grant access rights,
change passwords, assign roles, etc.

Plugin Users

On this page, the administrator can manage the plugin users: create, delete, edit, grant access
rights and roles, etc.

Audit

On this page, the administrator has an overview of changes performed in the PMode, Parties,
Message Filter and Users pages.

Alerts

This page displays the alerts generated by Domibus in case of unusual behaviour of the
application. The alerts are configured by the administrator.

Connection Monitoring

On this page the administrator can perform basic test of the communication configuration
between two access points and see the status of these connections.

Logging

This page displays the logging levels of various libraries and packages and to change their levels.

Properties

This page displays the Domibus and external modules properties and their values and allows to
change them.

Domains

This page displays the existing domains in Multi tenancy configuration and allows to activate or
de-activate them at runtime.

Change Password

It is accessible from the hamburger menu found at the top-right corner of the screen. On this
page the administrator can change his/her password if it is about to expire. This page is

151

displayed also automatically, after the login, if the user has the default password.

Multitenancy

In Multitenancy mode, each tenant domain has its own set of configuration files: Keystore,
Truststore, PMode, Domain properties, etc. Users are defined for each tenant domain.

The user named super with role ROLE_AP_ADMIN, has the privileges to access all the available
domains.

When logged as super, you are able to select a specific tenant domain in the upper right part of the
admin console in a drop-down list (default or dom50 domain in the example below):

5.6.2. Message Log

Domibus administration dashboard includes a message logging page that gives the administrator
information related to sent messages, received messages and their status (Sent, Received, Failed,
acknowledgeD, etc.):

There is also support for downloading the non-repudiation XML receipts.

The following state machines illustrate the evolution of the processing of messages according to the
encountered events:

State machine of Corner 2 (sending access point)

152

State machine of Corner 3 (receiving access point)

5.6.3. Message Filtering

Domibus allows the routing of messages to different plugins, based on some messages attributes:

• From: initial sender (C1)

• To: final recipient (C4)

• Action: defined as 'Leg' in the PMode

• Service: as defined in the PMode

The following rules apply:

• Domibus takes into account the ordered list of 'filters' to route all messages. The first filter
matching the filter criteria will define the target plugin. The order of the plugin is therefore
important in the routing process.

NOTE

• If the filters are all mutually exclusive, the order would not matter.

• The 'Persisted' column indicates whether the plugin filter configuration has
already been saved. If a plugin filter configuration has not already been saved,
the 'Persisted' value is unchecked and an error message is shown on the top of
the screen. In this case, it is strongly recommended to review the filters
configuration and save it afterwards.

• One plugin may be applied to multiple filters. This is done by the use of the 'OR' criteria. (cf.
backendWebservice in the example below).

• Multiple attributes could also be defined in one filter. This is done by the use of the 'AND'
criteria. (cf. the first filter in the example below).

• One filter may have no criteria, meaning that all messages (not matching previous filters) will
be routed to the corresponding plugin automatically. As a result, subsequent filters will

153

therefore not be considered for any incoming message. In the example below, the last filter
routes all remaining messages to plugin 'backendWebservice'.

Use the New and Delete buttons to create or delete a filter.

As the order matters, move up and down actions allow placing each filter in the right order:

Cf. Move Up and Move Down buttons.

After some changes have been applied to the filters, the Cancel and Save buttons become active:

• Press Cancel to cancel the changes

• Press Save to save the changes and activate them immediately.

The console will ask the user to confirm the operation, before proceeding.

Example of message attributes used for routing and matching the first filter used in the example
above:

• Action: TC1Leg1

• Service: bdx:noprocess:tc2

• From: domibus-blue:urn:oasis:names:tc:ebcore:partyid-type:unregistered

• To: domibus-red:urn:oasis:names:tc:ebcore:partyid-type:unregistered

That information can be found in the incoming message received by Domibus (e.g. see below):

<ns:PartyInfo>
 <ns:From>
 <ns:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
blue</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns:Role>
 </ns:From>
 <ns:To>
 <ns:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
red</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-

154

msg/ebms/v3.0/ns/core/200704/responder</ns:Role>
 </ns:To>
</ns:PartyInfo>
<ns:CollaborationInfo>
 <ns:Service type="tc1">bdx:noprocess</ns:Service>
 <ns:Action>TC1Leg1</ns:Action>
</ns:CollaborationInfo>

5.6.4. Application Logging

Domibus log files

Domibus has three log files listed below:

domibus.log

this is the main log file log and contains both the security and business logs plus miscellaneous
logs as debug information, logs from one of the framework used by the application, etc.

domibus-security.log

this log file contains all the security related information. For example, you can find information
about the clients who connect to the application. By default, the security information is included
in domibus.log and this log is disabled

domibus-business.log

this log file contains all the business related information. For example, when a message is sent
or received, etc. By default, the business information is included in domibus.log and this log is
disabled.

statistics.log

includes information on the occurrence of different events (receive message, submit message,
etc).

Logging properties

It is possible to modify the configuration of the logs by editing the logging properties file:

<edelivery_path>/conf/domibus/logback.xml

155

Async logging

It is possible to improve logging speed and reduce logging latency by using async logging. An
example is present in the logging properties file: <edelivery_path>/conf/domibus/logback.xml.

1. Uncomment the part:

<!-- Async logging: uncomment this-->
<!-- <appender name="DEFAULT-ASYNC-FILE"
class="ch.qos.logback.classic.AsyncAppender">-->
<!-- <queueSize>3000</queueSize>-->
<!-- <discardingThreshold>0</discardingThreshold>-->
<!-- <appender-ref ref="file" />-->
<!-- </appender>-->

2. Comment the line

<appender-ref ref="file"/>

3. Uncomment the line:

<!--
<appender-ref ref="DEFAULT-ASYNC-FILE" />
-->

4. The root logging should look like this:

<root level="WARN">
 <appender-ref ref="DEFAULT-ASYNC-FILE" />
 <appender-ref ref="stdout"/>
</root>

5. Restart the application server

156

Error Log page

To go to the error log page of the Domibus Admin Console, click on the Error log menu entry.

This option lists all the Message Transfers error logs and includes the ErrorSignalMessageId,
ErrorDetail and Timestamp. You can sort messages by using the up or down arrow to search for a
specific message.

Domibus – Error Log page

5.6.5. PMode

In the Administration console you can view the content of the current PMode:

PMode page

157

You can edit the content of your current PMode in the administration console and save the changes
by clicking on Save or discard the changes by clicking on Cancel. You can upload a PMode file or
download the current one.

Under Archive the history of the PMode changes is displayed:

Domibus keeps a snapshot of the PMode each time the PMode is modified. The user can restore a
particular version and make it the current PMode by clicking on the restored button at the far right
of the table.

Under Parties, the user can manage the parties in the PMode. Parties can be searched using filter
criteria, they can be added, updated or deleted.

The PMode is updated and a new PMode snapshot is created when parties are added, updated or
deleted.

5.6.6. Queue Monitoring

NOTE

To prevent the user from moving messages from any queue to any other queue:

• The user should be able to move messages only to the original queue which can
be retrieved from the JMS Messsage properties.

• In case the original queue cannot be determined, the user can move to any
queue the message except the source.

158

• In case of more than one message to be moved, all messages must have the same
original queue. Otherwise, an error message is displayed.

• In case the original queue is the same as the source queue, an error message is
displayed.

Domibus uses the following JMS queues to handle the messages:

Destination
type

JNDI name Comment Description

Queue jms/domibus.internal.dispatch.queue No redelivery
because
redelivery of
MSH messages
is handled via
ebMS3/AS4.

This queue is used
for scheduling
messages for
sending via the
MSH.

Queue jms/domibus.internal.notification.unknown Notifications about
received messages
(by the MSH) that
do not match any
backend routing
criteria will be sent
to this queue. In
production
environment, this
queue should be
monitored in order
to handle those
messages manually.

Topic jms/domibus.internal.command This topic is used
for sending
commands to all
nodes in a cluster.
For example, it is
used after a PMode
was uploaded in
order to notify all
nodes to update
their PMode cache
(in case caching is
enabled).

159

Destination
type

JNDI name Comment Description

Queue jms/domibus.backend.jms.replyQueue This queue is used
for sending replies
back to the sender
of a message.
Replies contain: a
correlationId,
ebMS3 messageId
(if possible), error
messages (if
available).

Queue jms/domibus.backend.jms.outQueue Messages received
by the MSH (that
match the routing
criteria for the JMS
plugin) will be sent
to this queue.

Queue jms/domibus.backend.jms.inQueue This queue is the
entry point for
messages to be sent
by the sending
MSH.

Queue jms/domibus.backend.jms.errorNotifyConsu
mer

This queue is used
to inform the
receiver of a
message that an
error occurred
during the
processing of a
received message.

Queue jms/domibus.backend.jms.errorNotifyProduc
er

This queue is used
to inform the
sender of a
message that an
error occurred
during the
processing of a
message to be sent.

Queue jms/domibus.notification.jms Used for sending
notifications to the
configured JMS
plugin.

160

Destination
type

JNDI name Comment Description

Queue jms/domibus.internal.notification.queue This queue is used
to notify the
configured plugin
about the status of
the message to be
sent.

Queue jms/domibus.notification.webservice Used for sending
notifications to the
configured WS
plugin.

Queue jms/domibus.DLQ This is the Dead
Letter Queue of the
application. The
messages from
other queues that
reached the retry
limit are redirected
to this queue.

Table 4 - Queue Monitoring

All these queues can be monitored and managed using the JMS Monitoring page, which is
accessible from the JMS Monitoring menu of the administration console:

Warning:

For Tomcat server, the maximum number of shown messages in the queue monitoring is defined
by the ‘domibus.listPendingMessages.maxCount’ property.

In the Source field, we have all the queues listed, along with the number of messages pending in
each queue:

If a queue is used internally by the application core, its name will start with [internal]. A regular
expression is used to identify all the internal queues. The value for this regular expression can be
adapted in the domibus.jms.internalQueue.expression property from the
<edelivery_path>/conf/domibus/domibus.properties* file.

161

In the JMS Monitoring page the following operations can be performed:

1. Inspecting and filtering the messages from a queue based on the fields:

a. JMS type: the JMS header

b. Selector: in this field you can enter any JMS message properties with the correct expression
to filter on it

NOTE
For more information on the JMS message headers and the JMS message
selector, please check the official documentation at https://docs.oracle.com/
cd/E19798-01/821-1841/bnces/index.html.

2. Move a message:

a. Move the message from the DLQ to the original queue: Select the JMS message from the DLQ
and press the Move icon (in RED marker):

Select the original queue from the Destination dropdown list in the dialog box:

Press the Ok button in the dialog, and the message will be moved to

the original queue.

+ NOTE: the details of a message can be viewed by selecting it (double-clicking) from the message
list:

162

https://docs.oracle.com/cd/E19798-01/821-1841/bnces/index.html
https://docs.oracle.com/cd/E19798-01/821-1841/bnces/index.html

+

1. Click Close to exit the dialog box.

2. Move multiple messages from the DLQ to the original queue:

3. Select multiple JMS messages from the DLQ and press the Move icon button:

4. Select the original queue from the Destination dropdown list, and click Ok.

163

NOTE
Please make sure that all the selected messages came from the same source
queue. Use the filtering capabilities to ensure this.

5. Delete message(s): delete one or more messages from one queue:

6. Select one or several JMS messages from the source queue and press the Delete button:

7. By clicking the Delete button, the selected messages are removed from the screen, but you still
have to confirm your changes by clicking on the Save button. As long as you have not clicked on
the Save button, your changes are not taken into account in the system.

164

8. To cancel the changes you made, click on the Cancel button instead:

5.6.7. Configuration of the queues

Queues should be configured appropriately and according to the backend system needs and re-
delivery policy.

Tomcat

Domibus uses ActiveMQ as JMS broker. The various queues are configured in the
<edelivery_path>/conf/domibus/internal/activemq.xml* file.

Please see ActiveMQ redelivery policy and configure the parameters below if needed:

<redeliveryPlugin fallbackToDeadLetter="true" sendToDlqIfMaxRetriesExceeded="true">
<redeliveryPolicyMap>
<redeliveryPolicyMap>
<defaultEntry>

165

http://activemq.apache.org/redelivery-policy.html

<!-- default policy-->

<redeliveryPolicy maximumRedeliveries="10" redeliveryDelay="300000"/>
</defaultEntry>

<redeliveryPolicyEntries>
 <redeliveryPolicy queue="domibus.internal.dispatch.queue"
maximumRedeliveries="0"/>
 <redeliveryPolicy queue="domibus.internal.pull.queue" maximumRedeliveries="0"/>
</redeliveryPolicyEntries>

</redeliveryPolicyMap>
</redeliveryPolicyMap>
</redeliveryPlugin>

Access to the JMS messaging subsystem is protected by a username and a password in clear text
defined in the domibus.properties file <edelivery_path>/conf/domibus/domibus.properties.

It is recommended to change the password for the default user:

• activeMQ.username=domibus

• activeMQ.password=changeit

NOTE
The user activeMQ.username and the password activeMQ.password defined in the
domibus.properties file are referenced in the authentication section of the
activemq.xml file provided.

WebLogic

Please use the admin console of WebLogic to configure the re-delivery limit and delay if necessary.

WildFly

Please use the admin console of WildFly to configure the re-delivery limit and delay if necessary.

5.6.8. Truststores

In the Truststores section, you can manage the Domibus truststores and TLS truststores.

You can upload a new truststore to replace the current one and define its password.

When starting Domibus for the first time, the keystore and truststore pointed to by the
corresponding properties are read from the disk and saved in the database for further use. On
subsequent restarts, Domibus checks if truststores are present in the database and if it is the case,
Domibus will use them.

To force the reading of the keystore from the disk (even if present in the database), there is a reload
button on this page.

In the TLS Truststore screen, you can manage the trusted certificates of the TLS truststore. You can

166

upload a new truststores to replace the current one and define its password, download it and also
add/remove certificates to it.

When starting Domibus for the first time, the TLS truststore present in the
clientauthentication.xml file is read from the disk and saved in the database for further use. On
subsequent restarts, Domibus checks if it is present in the database and, if it is the case, Domibus
will use it.

[image]

5.6.9. Users

Adding new users

New users can be added to the existing default users (admin and user) by clicking on New:

2. For each new user, you must enter a username, an email, a role and a password:

3. Click on OK:

167

4. Again, once the user has been created, do not forget to click on the Save button on the Users
page to register your changes in the system:

Changing passwords

All user passwords have an expiration period, configured in the domibus properties. Some days
before expiring (also configured in properties), the user receives a warning after the login and also
an alert. The new password cannot be one of the last 5 used passwords (the number can be
configured). Also, the password must meet complexity rules configured in the properties. If it does
not meet them, then an error message is displayed (can also be configured).

The passwords of the default users (admin, user and super users) automatically expire after 3 days.
This period can be configured. Once logged-in with the default password, the system redirects the
user to the Change Password page so that he/she can immediately change it. The default password
check can be disabled from the properties.

1. In order to change the password for a user, navigate to the Users menu entry to obtain the list

168

of configured users:

2. To edit the user details, click on the EDIT icon (in RED). DO NOT click on the BIN icon as this
would DELETE the record.

3. In the popup window, choose a new password using the rules shown:

4. Confirm the password:

169

5. Click on OK:

6. When done, either click on Save, to save the new password or Cancel to leave the password
unchanged.

User Account Lockout Policy

A user account lockout policy has been implemented on Domibus Admin Console. By default, if a
user tries to log to the Admin Console with a wrong password 5 times in a row, his account will be
suspended (locked):

170

You can define in the domibus.properties file the number of failed attempts after which a user’s
account will be locked.
See also, Domibus Properties.

By default, a user remains suspended during one hour before his account is automatically unlocked
and the user can try to log again.

If the user wants his account to be unlocked without waiting the default one hour, he can ask his
administrator to unlock the account. To unlock the account, the administrator must change the
user’s status on the Admin Console from “Suspended” to “Active”.

Select the suspended user and click on “Edit”:

Re-activate the user (unlock it) by checking the “Active” status and confirming with OK:

171

Do not forget to click on Save on the next window and then on Yes to confirm the change.

5.6.10. Plugin Users

In Multitenancy mode the plugins security is activated by default, no matter if value configured in
domibus.properties for the domibus.auth.unsecureLoginAllowed property.

This is needed in order to identify the request performed by the user and associate it to a specific
domain. As a result, every request sent to Domibus needs to be authenticated.

A plugin must use a configured plugin user associated to a specific domain in order to authenticate
every request sent to Domibus. The management of the plugin users is implemented in the Plugin
Users page:

All plugin user passwords have an expiration period, configured in the domibus properties. The
new password cannot be one of the last 5 used passwords (the number can be configured). Also, the
password must meet complexity rules configured in the properties. If it does not meet them, then
an error message is displayed (can also be configured).

The passwords of the default users expire in 1 day. This period can be configured.

The example below shows a plugin user that has been added:

172

Note that the Original user ID can be obtained from the orginalSender Property in the SoapUI
project as shown here:

Do not forget to click on Save on the next window and then on Yes to confirm the change.

5.6.11. Audit

Audit support: Domibus keeps track of changes performed in the PMode, Parties, Message Filter
and Users pages.

5.6.12. Alerts

Users can configure the alert feature as described in Alerts.

The purpose of the alert feature is to use different available media to notify the Domibus
administrator in case of unusual behaviour. Currently alerts can be sent via mail.

The notification emails are sent to the destination recipient or recipients, configured in domibus
properties. Also, for the alerts pertaining to the admin console users, the alerts are sent to the saved
email address of the user to whom the notification is addressed.

173

There are three types of alerts that can be configured:

• Message Status Change

• Authentication Issues

• Certificate expiration

Example: If the CERT_IMMINENT_EXPIRATION alert is selected, the following screen is presented:

The generated alerts can be checked in the Alerts page of the Administration console.

Example: Alerts on SEND_FAILURE

174

5.6.13. Connection Monitoring

The Connection Monitoring section allows communication partners to perform a basic test of the
communication configuration (including security at network, transport and message layer, and
reliability) in any environment, including the production environment.

All parties that are defined in the Domibus properties are listed on the Connection Monitoring
page of the Administration console, as shown below.

The user can activate or deactivate the monitoring feature by clicking on the Monitoring button of
the desired party. Once activated, the monitoring service will send a test message on a frequency
defined in the ‘domibus.monitoring.connection.cron’ property of the domibus.properties file.

The user can also activate or deactivate the monitoring of parties in the
‘domibus.monitoring.connection.party.enabled’ property of the domibus.properties file.

SEE ALSO

For a:

• Brief introduction, see the Domibus Properties.

• Full reference of the Domibus properties, see the Properties Reference
Guide.

The user can manually trigger a test by clicking on the Arrow under Actions.

To see the details of the connection that was tested, the user can click on the magnifying glass
under Actions:

175

Clicking on Test will launch a connection test manually and clicking on Update will refresh the
connection test information.

5.6.14. Logging

In the Logging section of the Administration Console, the list of all packages logging levels are
displayed and can also be modified or reset.

5.6.15. Domains

In the Domains section of the Administration Console, the list of all available domains is displayed
and you can activate or deactivate a domain at runtime.

176

5.6.16. Properties

For a full list of the domibus properties and their specification, see the Domibus Properties
Reference Guide. Some of the displayed properties can be edited, others are read-only.

NOTE
When the Domibus server(s) is(are) restarted, the Domibus properties are reverted
back and changes made via the Administration Console are lost. This feature is
useful when a user wants to test a change in a Domibus property at runtime.

To change a Domibus property, the user clicks in the Property Value field and edits it (if the
property is read-only, the user will not be able to edit that field). Once done, the user clicks on the
Save icon to save the changes.

To revert the changes, the user can click on the Back arrow next to the Save icon: The back-arrow is
only active while editing a specific field, and only restores the property to the value it had at the
moment of starting editing, but not to the initial value in the domibus.properties file.

177

5.7. Large files support
Domibus supports transfers between Access Points of files up to 2 GB using Java 8. In order to
compute the message signature, Domibus loads the whole message into memory using a byte array.
In Java, byte arrays can hold a maximum of 2 GB hence the Domibus limitation of 2 GB.

In order to optimize the sending of such large files, HTTP chunking is activated by default in the
connection with the receiver Access Points. As chunked encoding is useful when sending larger
amounts of data but decreases the performance on smaller amounts, Domibus uses a threshold to
activate the chunking when appropriate only.

The following properties are used to configure chunking: domibus.dispatcher.allowChunking
and`domibus.dispatcher.chunkingThreshold`.

SEE ALSO
For more information about the above mentioned properties, see Domibus
Properties.

5.7.1. Split and Join

Support for large files bigger than 2 GB is supported using the Split and Join feature. It provides a
mechanism for allowing a Sending MSH to split a large MIME-enveloped SOAP message, referred to
as the source message, into a set of smaller MIME-enveloped SOAP messages, referred to as
fragment messages, which MUST be joined at the Receiving MSH side. The resulting target message
is an identical copy of the source message. The feature also supports compression.

The Split and Join feature is implemented according to the ebMS3 Part 2 “Large Message Splitting
and Joining” [EBMS3P2], profiled and adjusted for use with eDelivery AS4.

Split and Join is currently supported in Domibus only in Tomcat in combination with the File
System Plugin.

However custom plugins can use the Plugin API to send and receive messages using Split and Join.
There are specific constraints, such as including long running operations in a JTA transaction which
need to be taken into account.

The Split and Join feature is only supported for push mode, not for pull mode.

In order to activate the usage of Split and Join the leg configuration used by Domibus must have a
splitting attribute configured as shown below:

...
<splittingConfigurations>
 <splitting name="default"
 fragmentSize="500"
 compression="true"
 joinInterval="1440"/>
</splittingConfigurations>

<legConfigurations>

178

 <!--
 Please add the attribute "splitting"(pointing to a splitting configuration)
 to a specific leg in case you want to activate splitAndJoin feature
 -->
 <legConfiguration name="pushTestcase1tc1Action"
 service="testService1"
 action="tc1Action"
 splitting="default"/>
</legConfigurations>
...

Split and Join is used to send large files and therefore in order to handle this type of files, Domibus
uses the file system to store the result of the intermediary operations needed to split and join the
files. Therefore Domibus needs up to 4 times the size of payload in file disk space.

If a payloadProfile attribute is set for the legConfiguration used for Split & Join, the maxSize
attribute of this profile should have the value increased from maxSize=”” to maxSize=”2147483647” to
maxSize="9223372036854775807” otherwise Domibus is not able to send payloads over 2Gb.

5.8. eArchiving
The amount of data that will be exported by Domibus can be quite large. Therefore, Domibus will
export the data to be archived in a shared file system.

Domibus will use an exporting mechanism, which can be configured in the Domibus property file,
to continuously export data in batches in a preconfigured directory. The frequency of the export
and the size of each batch can be configured according to the business needs See ☞ Sanitizer
Export.

On demand, there will be a possibility to re-export a previously exported batch using a REST API.

After each successful batch export, Domibus will notify the eArchiving client that new data can be
archived. The eArchiving client will read the exported batch data from the file system. Afterward it
will notify Domibus about the outcome of the archived batch, whether it has been successful or not.

5.8.1. Continuous export

The continuous export is a Domibus mechanism that can be configured to periodically export
messages into a shared folder using a specific archival export format.
See Sanitizer Export.

Only the messages that reached the final state and were not previously exported by the continuous
export procedure will be exported.

The continuous export will be configured to export messages starting from a specific date in the
past. This will also allow the possibility to restart the periodic continuous export from a specific
past date. This scenario could occur when there was a general issue in the export mechanism and
the process must be reinitialized. By default, the continuous export start date is 01/01/1970,
meaning that it will consider all messages. If this value is changed to a more recent date, all the

179

messages older than this date will not be exported and therefore not deleted by the retention policy
mechanism (See ☞ Retention Policy).

The continuous export start date advances even if all the messages from a specific period are not in
a final state and are not exported. In such scenario, a fallback mechanism called Sanitizer export
will pick up the remaining messages. Domibus will check periodically if the continuous export start
date does not advance within a specified amount of time configured in Domibus properties file.
A Domibus alert will be send in such cases (See ☞ Alerts) and a manual action must be taken to
investigate why the old messages did not reach a final state.

As Domibus is handling messages reliably, it is possible for messages to be in a non-final state while
recovering a failure to be sent. In this situation, the normal process of archiving will not select such
messages. It will be possible to configure Domibus to filter the messages taking into account for
archiving by setting a property in Domibus properties (either describing the default time retry
timeout of Domibus, or defining the MPCs of the PMode). Those values are rounded at the hour
mark.
For example, for a runtime at 15h12:

• if domibus.earchive.batch.retry.timeout=5, the archiving job will not consider messages sent
after 15h00.

• if domibus.earchive.batch.retry.timeout=30, the archiving job will not consider messages sent
after 14h00.

The continuous export only looks forward, any issue with failed or expired export batches will have
to be dealt with using the REST-API manual exports.

Domibus notifies the eArchiving client using a callback method via a REST endpoint when a batch
export is completed or failed (See ☞ Notification from the Archiving Client regarding batch
archiving). The eArchiving client can start processing the batch after it has received the signal. In
case Domibus fails to deliver a notification to the eArchiving client, it will re-attempt to deliver the
notification later until the maximum number of attempts is reached. The maximum number of
attempts and the delay time between the notifications will be configured in the Domibus properties
file. If Domibus fails to notify the eArchiving client even after the maximum number of attempts is
reached, it will send an alert (See ☞ Alerts) and a manual action must be taken.

The continuous export will export messages in batches having a maximum number of messages.
The batch maximum number of messages is configured statically in the Domibus properties file.
This means that changing the batch maximum number of messages requires a Domibus restart.
Domibus might export empty batches which will assert that there are no messages eligible for
export during a specific timespan.

5.8.2. Sanitizer Export

The Sanitizer Export is a mechanism which exports messages which were not exported by the
Continuous Export. It has been created to optimize the performance of the Sanitizer Export job.

The Continuous Export start date advances, for performance reasons, in case it encounters
messages which are not in final state. The Sanitizer Export catches and exports the messages that
are skipped by the Continuous Export mechanism.

180

If this sanitizer job finds a non-final message, an alert is sent.

If the start date of the continuous job is stopped, an alert is sent.

5.8.3. Exported Data

Domibus exports only messages that are not yet archived and that are in a final state: RECEIVED,
DELETED, DOWNLOADED or ACKNOWLEDGED. Payloads are decompressed before being exported.

Messages will be exported in batches. For each exported batch, Domibus creates in a preconfigured
shared file system a directory named based on an UUID. The structure of the batch is using EARK
SIP format as illustrated below:

Where:

BATCH_DIRECTORY

The directory in which Domibus exports messages contained in the batch. This directory is
named based on a UUID.

METS.XML

The batch manifest file. It contains:

• a list of all the exported files and their checksum for all the exported messages

• the batch id

181

Below is an example of a METS.xml file for a batch with id a46ab3d0-c710-4d73-b58d-e93e30b53a80.
Please note that the example given below is not valid against the schema and it presents the most
relevant elements of the METS.xml document.

The usage of the RODA library will be strongly considered to produce a correct METS.xml file. The
EARK version 1 will be used.

NOTE
The METS.xml file does not contain the batch.json checksum. This is to avoid circular
dependency with the the batch.json file which already contains the checksum of the
METS.xml file.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<mets
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.loc.gov/METS/"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 OBJID="a46ab3d0-c710-4d73-b58d-e93e30b53a80" TYPE="ERMS"
 xlink:CONTENTTYPESPECIFICATION="SMURFERMS"
 PROFILE="http://www.dasboard.eu/specifications/sip/v03/METS.xml"
 xsi:schemaLocation="http://www.loc.gov/METS/ schemas/mets.xsd"
 LABEL="root level METS file for an IP">
 <metsHdr CREATEDATE="2017-01-31T13:07:22.6970809+02:00"
 RECORDSTATUS="NEW"
 LASTMODDATE="2017-01-31T13:07:22.6970809+02:00">
 <agent ROLE="CREATOR" TYPE="OTHER" OTHERTYPE="SOFTWARE">
 <name>Domibus</name>
 </agent>
 <!-- Batch Id -->
 <metsDocumentID>a46ab3d0-c710-4d73-b58d-e93e30b53a80</metsDocumentID>
 </metsHdr>
 <fileSec ID="e2a80c69-1eb4-4c2a-a029-5d77bf53d325">
 <fileGrp ID="e4d9422e-4c26-493b-929b-580198c34055" USE="Files root">
 <fileGrp ID="b6f4b954-9bd4-4179-93d3-37732b90923d" USE="data">
 <file ID="fec0430c-9152-4662-86fe-f9e78dad9baf"
 MIMETYPE="application/octet-stream"
 CREATED="2017-01-31T13:07:22.7470810+02:00"
 <FLocat LOCTYPE="URL" xlink:type="simple"
 xlink:href="file:data/batch.json"/>
 </file>
 </fileGrp>
 <!-- message 1 files -->
 <!-- The message 1 files are grouped in a fileGrp with an ID that uses
 the AS4 UserMessage ID -->
 <fileGrp ID="9a0c6088-70ac-43b1-ab57-2f9d1f0204b7" USE="data">
 <file ID="aec0430c-9152-4662-86fe-f9e78dad9baf" MIMETYPE="text/xml"
 SIZE="11717"
 CREATED="2017-01-31T13:07:22.7470810+02:00"

CHECKSUM="0d71382407d6a13af515761a6e1abd0e8b0784dab73e1a52427aaa9dbc4f73a9"
 CHECKSUMTYPE="SHA-256">

182

 <FLocat LOCTYPE="URL" xlink:type="simple"
 xlink:href="file:data/9a0c6088-70ac-43b1-ab57-2f9d1f0204b7/soap-
envelope.xml"/>
 </file>
 <file ID="bec0430c-9152-4662-86fe-f9e78dad9baf" MIMETYPE="text/xml"
 SIZE="12717"
 CREATED="2017-01-31T13:07:22.7470810+02:00"
 CHECKSUM="1d71382407d6a13af515761a6e1abd0e8b0784dab73e1a52427aaa9dbc4f73a9"
 CHECKSUMTYPE="SHA-256">
 <FLocat LOCTYPE="URL" xlink:type="simple"
 xlink:href="file:data/9a0c6088-70ac-43b1-ab57-
2f9d1f0204b7/message.attachment.xml"/>
 </file>
 <file ID="cec0430c-9152-4662-86fe-f9e78dad9baf"
 MIMETYPE="application/pdf" SIZE="42717"
 CREATED="2017-01-31T13:07:22.7470810+02:00"
 CHECKSUM="2d71382407d6a13af515761a6e1abd0e8b0784dab73e1a52427aaa9dbc4f73a9"
 CHECKSUMTYPE="SHA-256">
 <FLocat LOCTYPE="URL" xlink:type="simple"
 xlink:href="file:data/9a0c6088-70ac-43b1-ab57-
2f9d1f0204b7/invoice.attachment.pdf"/>
 </file>
 </fileGrp>
 <!-- message n files -->
 <fileGrp ID="0a0c6088-70ac-43b1-ab57-2f9d1f0204b7" USE="data">
 <!-- message n files -->
 </fileGrp>
</mets>

BATCH.JSON

A JSON file containing metadata related to the batch such as:

• The version of data format exported.

• Batch ID.

• The request ID that triggered the creation of the batch. For a manual request, multiple
batches can be created following a request export. For a continuous export the request ID is
always empty.

• Request type: continuous or manualThe status of the batch export: success.

• Error code of the error in case of failure. The error codes will be defined at a later stage.

• Error description of the error in case of failure.

• A timestamp of the batch export.

• The time period of the messages included in the batch: message start date and message end
date. Adding the period in the batch.json might introduce a performance penalty. This will be
further analysed during the implementation and in case it is degrading the performance, the
message start date and message end date could be removed.

• A checksum of the batch manifest METS.xml file.

183

• The list of exported message IDs.

Example of a batch.json file:

{
"version" : "1",
"batchIid": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
"requestTtype": "continuous",
"status": "failed",
"errorCode": "DOM_001",
"errorDescription": "Failed to export batch",
"timestamp": "2021-06-25T12:00:00Z",
"messageStartId": "2021-01-25T12:00:00Z",
"messageEndId": "2021-01-26T12:00:00Z",
"manifestChecksum":
 "sha256:01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b",
 "messages": [
 "123c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "567c6088-70ac-43b1-ab57-2f9d1f0204b7"
]
}

MESSAGE_1 … MESSAGE_N

• The directory in which Domibus exports the files of a UserMessage. The directory is named
after the exported message ID and it contains the following files:

• soap-envelope.xml

◦ Contains the Soap Envelope as it was exchanged between C2 and C3

◦ All the message payloads. Each payload is named based the payload CID from the AS4
message. The extension is derived based on the payload mime type.

NOTE
The payloads exported in the batches will be decompressed by Domibus in case they
are stored internally as compressed.

Example

For a payload with CID value message and the mime type text/xml, the payload file is named
message.attachment.xml.

• The payloads will be exported as they were exchanged between C2 and C3.

Example of the structure of folder for a batch with ID e4bdeb9a-1c1a-4f50-9f8b-bf96133c095
containing one exported message with ID 9a0c6088-70ac-43b1-ab57-2f9d1f0204b7 which has two
payloads with CID message and invoice:

184

5.8.4. Audit

Relevant actions related to the archiving mechanism will be audited in the Domibus log files.
Examples of relevant actions:

• Archiving client requests a manual export

• A batch is exported: the content of the complete batch.json file will be logged.

• Notifications sent from Domibus to the eArchiving client and vice-versa

Domibus audits the following events in the logs:

(Code: Text template)

* BUS-083: Enqueue continuous batch [\{}].
* BUS-084: Archiving client requests a manual (re-)export for batch[\{}].
* BUS-085: A batch [\{}] is exported to file path: \{}!
* BUS-086: Export Notification for batch [\{}] is sent from Domibus to the eArchiving
client!
* BUS-087: Received Archive Notification for batch: [\{}] with message: [\{}] from the
eArchiving client to Domibus!
* BUS-088: Received Archive Failed notification for batch: [\{}] with message: [\{}]
from the eArchiving client to Domibus!#
* BUS-089: Export failed batch: [\{}]. Error message: [\{}]!

185

* BUS-090: Batch: [\{}] with first [\{}] and last message: [\{}] is Archived.

5.8.5. Retention Policy

When an archiving client is integrated and configured, the Domibus retention policy will consider a
message for deletion only if the archival client has successfully archived it. This is the case even if
the message is expired according to the retention policy configuration from the PMode.

Domibus will define a retention policy for the exported batches. The retention policy value will be
configured in the Domibus property file, and it will have a default value of 1 month. If a batch is not
archived during this time, it is considered as expired and it will be eligible for deletion.

A batch can also be eligible for deletion if the archiving client notifies Domibus that it has
successfully archived it or it has failed to archive it. A failed batch can always be re-exported on
demand using the REST API. See ☞ eArchiving Interface.

SEE ALSO
• The eArchiving properties in the Domibus Properties Reference, especially
domibus.earchive.retention.days and
domibus.earchive.retention.delete.max.

5.8.6. eArchiving Interface

The integration between Domibus and the archiving client will be done using REST APIs and a
shared file system for exporting batch data.

In this section we will describe in detail the REST API that must be implemented by each system.

The Open API document for eArchiveClient is part of the Domibus distribution artifacts (see
eDelivery AS4 Profile).

Security

IMPORTANT
From a security perspective, it is recommended that the communication
between Domibus and the archiving client is performed over HTTPS.

The Domibus REST API is protected with basic authentication. The Domibus Admin Guide will
contain an example of an HTTP request using basic authentication once it will be updated to cover
the eArchiving feature.

A Plugin User must be created upfront in the Domibus Administration Console and used by the
archiving client which MUST supply the basic authentication headers on each Domibus REST API
call.

Domibus will be able to call the callback archiving REST API interface with or without basic
authentication headers. This will be configured statically in the Domibus property file.

Domibus will expose the following REST API to be used by an archiving client.

186

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4+conformant+solutions

SEE ALSO See eArchiving Interface for the description of the REST responses' fields.

Domibus API

▼ GET Batch by Batch ID

This REST endpoint will fetch any batch from any status given its batch ID.

HTTP method: GET

• Parameters:

◦ batchId: ID of the batch

curl -X 'GET'
'http://172.70.1.5:8080/domibus/ext/archive/batches?batchId=3950092f-5805-
11ec-8197-9c5c8ec0f1ad' \
-H 'accept: application/json'

• Response:

◦ HTTP 200 status with body:

{
"batchId": "3950092f-5805-11ec-8197-9c5c8ec0f1ad",
"requestType": "CONTINUOUS",
"status": "EXPORTED",
"errorCode": null,
"errorDescription": null,
"enqueuedTimestamp": "2021-12-08T09:00:00.000+0000",
"messageStartDate": 21120609,
"messageEndDate": 21120609,
"manifestChecksum":
"sha256:939c282837187d32196a80070b33901ee4f77db41de46fbb2c12449f74b29de6",
"messages": []
}

◦ List batch export requests that are queued (continuous and manual)

This REST endpoint will export the list of batches that are queued to be processed
asynchronously by Domibus. It can be used for monitoring purposes.

HTTP method: GET

• Parameters:

◦ lastCountRequests: return last N enqueued batch export requests - if this parameter is
given all others filters are ignored.

◦ requestTypes: return batches for given batch types (Values:CONTINUOUS, MANUAL)

◦ startDate: start day-time of batches enqueued

187

◦ endDate: end day-time of batches enqueued

◦ pageStart: the offset from which the message IDs export will start

◦ pageSize: maximum number of records in the page

curl -X 'GET'
'http://172.70.1.5:8080/domibus/ext/archive/batches/queued?requestType=CONTIN
UOUS&startDate=2021-12-06T00%3A00%3A00Z&endDate=2021-12-
07T00%3A00%3A00Z&pageStart=0&pageSize=100'
\

-H 'accept: application/json'

• Response example:

{

"filter": {
"lastCountRequests": 0,
"requestTypes": [
"CONTINUOUS"
],
"startDate": "2021-12-06T00:00:00Z",
"endDate": "2021-12-07T00:00:00Z"
},
"pagination": {
"pageStart": 0,
"pageSize": 100,
"total": 1
},
"queuedBatches": [
{
"batchId": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
"requestType": "CONTINUOUS",
"enqueuedTimestamp": "2021-12-07T11:36:21.726Z", ①
"messageStartDate": 21120100,
"messageEndDate": 21120700,
"messages": ["123c6088-70ac-43b1-ab57-2f9d1f0204b7",
"567c6088-70ac-43b1-ab57-2f9d1f0204b7"]
}
]
}

① enqueuedTimestamp is the timestamp when Domibus adds the batch to the queue.

▼ GET messageIds Exported in a Batch

This REST endpoint provides the message IDs exported in a batch. All message IDs are exported if
the limit and start parameters are not provided.

188

HTTP method: GET

Parameters:

• batchId: batch ID of the message ids,

• pageStart: the offset from which the message IDs export will start

• pageSize: maximum number of records in the pageRequest example

curl –X 'GET' \ +
http://172.70.1.5:8080/domibus/ext/archive/batches/exported/123c6088-70ac-43b1-ab57-
2f9d1f0204b7/messages?pageStart=0&pageSize=100'
\ +
-H 'accept: application/json'

• Response (example):

{

"batchId": "123c6088-70ac-43b1-ab57-2f9d1f0204b7",
"pagination": \{
"pageStart": 0,
"pageSize": 5,
"total": 1236 ①
},

"messages": [
"123c6088-70ac-43b1-ab57-2f9d1f0204b7",
"567c6088-70ac-43b1-ab57-2f9d1f0204b7","143c6088-70ac-43b1-ab57-2f9d1f0204b7",
"153c6088-70ac-43b1-ab57-2f9d1f0204b7",
"163c6088-70ac-43b1-ab57-2f9d1f0204b7"

]

}

Where:

① total is the total number of message IDs contained in the batch.

▼ GET Exported Batches History

This REST endpoint provides a history of exported batches with status success, failed or expired.
It allows the archiving client to validate if it has archived all exported batches.

HTTP method: GET

• Parameters:

◦ messageStartDate: start date and hour of the exported messages in the batch yyMMddHH

189

◦ messageEndDate: end date of the exported messages included in the batch

◦ statuses: filter by list of batch statues

◦ includeReExportedBatches: batch re-export status (true/false; includes batches for which a
re-export has been requested using the REST endpoint)

◦ pageStart: the offset/page from which the message IDs export will start. List is sorted by
batch request date

◦ pageSize: maximum number of records in the pageRequest example:

curl -X 'GET' \

'http://172.70.1.5:8080/domibus/ext/archive/batches/exported?messageStartDate
=21100100&messageEndDate=21123100&statuses=EXPORTED&reExport=false&pageStart=
0&pageSize=100'
\

-H 'accept: application/json' \

• Response (example):

{
 "pagination": {
 "pageStart": 0,
 "pageSize": 100,
 "total": 10
 },
 "filter": {
 "messageStartDate": 21100100,
 "messageEndDate": 21123100,
 "statuses": [
 "EXPORTED"
],
 "includeReExportedBatches": false
 },
 "exportedBatches": [
 {
 "batchId": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "requestType": "CONTINUOUS",
 "status": "EXPORTED",
 "enqueuedTimestamp": "2021-12-07T12:20:20Z",
 "messageStartDate": 21100100,
 "messageEndDate": 21100102,
 "manifestChecksum":
"sha256:01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b",
 "messages": [
 "123c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "567c6088-70ac-43b1-ab57-2f9d1f0204b7"
]

190

 }
]
}

▼ GET Unarchived Messages

Get messages which were not archived within a specific period.

This REST endpoint can be used to check if all AS4 messages received or sent within a specific
period were archived.

The response will contain the list of the message IDs which were not archived during the
specified period.

Sample REST Call

• HTTP method: GET

• Parameters:

• messageStartDate: Message start date of the period to be checked

• messageEndDate: Message end date of the period to be checked.

• pageStart: The offset/page of the result list.

• pageSize: Maximum number of returned records/page size.´

REQUEST:

curl -X 'GET' \

'http://172.70.1.5:8080/domibus/ext/archive/messages/not-
archived?messageStartDate=2021-10-01T00%3A00%3A00Z&messageEndDate=2021-12-
31T00%3A00%3A00Z&pageStart=0&pageSize=100'
\

-H 'accept: application/json' \

RESPONSE:

{
 "pagination": {
 "pageStart": 0,
 "pageSize": 100,
 "total": 5 ①
 },
 "messages": [
 [
 "123c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "567c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "143c6088-70ac-43b1-ab57-2f9d1f0204b7",

191

 "153c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "163c6088-70ac-43b1-ab57-2f9d1f0204b7"
]
]
}

① Where total is the total number of message IDs contained in the batch.

▼ GET Continuous Export’s Current Start Date

This REST endpoint will expose the continuous export mechanism current start date.

Sample REST Call

• HTTP method: GET

• Parameters: none

REQUEST

curl -X 'GET' \

'http://172.70.1.5:8080/domibus/ext/archive/continuous-mechanism/start-date'
\

-H 'accept: application/json' \

RESPONSE:

21120100

▼ GET Sanity Export’s Current Start Date

This REST endpoint will expose the sanity export mechanism current start date.

Sample REST Call

• HTTP method: GET

• Parameters: none

REQUEST:

curl -X 'GET' \

'http://172.70.1.5:8080/domibus/ext/archive/sanity-mechanism/start-
date[http://172.70.1.5:8080/domibus/ext/archive/sanity-mechanism/start-
date[http://172.70.1.5:8080/domibus/ext/archive/sanity-mechanism/start-
datehttp://172.70.1.5:8080/domibus/ext/archive/sanity-mechanism/start-date]]'
\

192

-H 'accept: application/json' \

RESPONSE:

21120100

▼ (PUT) Request to Export a Batch by Batch ID

This REST endpoint will export a new batch with a new batch ID containing the same messages
that were already exported in a batch identified by the batch ID provided as a parameter. The
batch ID identifying the previously exported batch will not be automatically deleted or modified
in the database or on the disk storage. The retention mechanism can potentially delete it later
(See ☞ Notification of Expired Batch Deletion).

This endpoint can be used in cases where the export or archival of a batch has failed or it
expired as well as for other unexpected situations.

The request contains a batch ID that has been extracted, for instance, from the history of batch
requests (See ☞ History of Exported Batches).

HTTP method: PUT

• Parameters: batch id

• Request (example):

curl -X 'PUT' \

'http://172.70.1.5:8080/domibus/ext/archive/batches/9a0c6088-70ac-43b1-ab57-
2f9d1f0204b7/export'
\

-H 'accept: application/json'

• Response (example):

{
 "batchId": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "status": " EXPORTED",
 "timestamp": "2021-06-25T12:00:00Z"
}

• Response (example with error) :

{
"batchId": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
"status": "ERROR",
"message": "Failed to request a manual export",

193

"timestamp": "2021-06-25T12:00:00Z"
}

▼ (PUT) Notification from the eArchiving Client

Notification from the archiving client that it has successfully archived or failed to archive a
specific batch: This REST endpoint will be used by the archiving client to confirm that a batch
was archived successfully or that it failed to archive it. The request contains the batch identifier
which allows Domibus to identify all messages in the batch to mark them as archived and
eligible for purging.

NOTE
For performance reasons, Domibus will asynchronously mark the batch
messages as archived.

And so this REST endpoint only confirms to the client that it has acknowledged the notification
and it does not mean that the batch messages are already marked as archived.

Sample REST Call

• HTTP method: PUT

• Parameters:

◦ batchId: batch id

◦ status: sets final batch status:

▪ ARCHIVED – batch was successfully archived,

▪ ARCHIVE_FAILED: client failed to archive exported batch

◦ message: set message – reason for failed batch

• Request:

curl -X 'PUT' \

'http://172.70.1.5:8080/domibus/ext/archive/batches/exported/9a0c6088-70ac-43b1-
ab57-2f9d1f0204b7/close?status=ARCHIVED'
\

-H 'accept: application/json'

• Response:

{
 "batchId": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "status": "ARCHIVED"
}

▼ (PUT) Set Continuous Export’s Current Start Date

This REST endpoint forces the continuous archiving process to start at a given date provided by

194

the user. All messages older than this date will be consider for archiving if they are not already
archived, not deleted and in a final state.

Sample REST Call

• HTTP method: PUT

• Parameters:

◦ MessageStartDate: Start date and hour. The value is 8 digit number with format yyMMddHH!

REQUEST:

curl -X 'PUT' \

'http://172.70.1.5:8080/domibus/ext/archive/continuous-mechanism/start-
date?messageStartDate=21100100'

▼ (PUT) Set Sanity Export’s Current Start Date

This REST endpoint forces the sanity archiving process to start at a given date provided by the
user. All messages older than this date will be consider for archiving if they are not already
archived, not deleted and in a final state.

Sample REST Call

• HTTP method: PUT

• Parameters:

◦ MessageStartDate: Start date and hour. The value is 8 digit number with format yyMMddHH!

REQUEST:

curl -X 'PUT' \

'http://172.70.1.5:8080/domibus/ext/archive/sanity-mechanism/start-
date?messageStartDate=21100100'
\

eArchiving Client API

▼ Retry Configuration

Notifications to the eArchiving client are retried in case of failure/unavailability.

Timeout

The property domibus.earchive.notification.timeout is used to set the timeout to:

Connection Request Timeout

Timeout when requesting a connection from the connection manager.

195

Connect Timeout

Timeout when the server is down/ unavailable/ wrong URL/ DNS error.

Socket Timeout

Timeout when packages take too long to reach in the exchange.

This mechanism is done with a jms queue DomibusEArchiveNotificationQueue
(jms/domibus.internal.earchive.notification.queue)

by default the configuration is:

• maximumRedeliveries: 6 times

• redeliveryDelay: 1800000 milliseconds

• concurrency: 1-1 (domibus.earchive.notification.queue.concurrency)

In case of failure, the messages is redirected to the queue DomibusEArchiveNotificationDLQ
(jms/queue/DomibusEArchiveNotificationDLQ).

▼ (PUT) Receive Exported Batch Notification

Receive notification when a batch has been exported in the shared folder.

Domibus notifies the archiving client when a batch has been exported in the shared folder. The
notification is performed for a successful and for a failed export.

Sample REST Call

REQUEST:

• REST endpoint example:/domibus/archive/batches/\{batch_id:.+}/export-notification

• HTTP method: PUT

REQUEST:

Example1

{
 "batchId": "e7c99242-5362-11ec-b6f6-0242ac460105",
 "requestType": "CONTINUOUS",
 "status": "FAILED",
 "timestamp": "2021-12-02T11:28:00Z",
 "messageStartDate": 21100100,
 "messageEndDate": 21100102,
 "messages": [
 "ea69b73d-4f74-11ec-9039-0242ac460105@domibus.eu",
 "eabbf5f0-4f74-11ec-9039-0242ac460105@domibus.eu",
 "eafaaca3-4f74-11ec-9039-0242ac460105@domibus.eu",
 "eb38ee26-4f74-11ec-9039-0242ac460105@domibus.eu",
 "eb744979-4f74-11ec-9039-0242ac460105@domibus.eu"
],
 "errorCode": "BUS-089",

196

 "errorDescription": "Export failed batch: [e7c99242-5362-11ec-b6f6-
0242ac460105]. Error message: Can not read payload!"
}

Example2

{
"batch_id": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
"request_type": "continuous",
"status": "failed",
"error_code": "DOM_001",
"error_description": "Failed to export batch",
"timestamp": "2021-06-25T12:00:00Z",
"message_start_date": "2021-01-25T12:00:00Z",
"message_end_date": "2021-01-26T12:00:00Z",
"messages": [
"123c6088-70ac-43b1-ab57-2f9d1f0204b7",
"567c6088-70ac-43b1-ab57-2f9d1f0204b7"
]
}

RESPONSE: Empty response with HTTP 200 status.

▼ (PUT) Receive Deleted Expired Batch Notification

Domibus notifies the archiving client when it deletes an expired batch.

SEE ALSO

• What batches are considered for deletion in Retention Policy.

• The eArchiving properties domibus.earchive.retention.days and
domibus.earchive.retention.delete.max in the Domibus Properties
Reference.

REQUEST:

• REST endpoint example: /domibus/archive/batches/\{batch_id:.+}/stale-notification

• HTTP method: PUT

REQUEST:

{
 "batch_id": "9a0c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "request_type": "continuous",
 "status": "success",
 "timestamp": "2021-06-25T12:00:00Z",
 "message_start_date": "2021-01-25T12:00:00Z",
 "message_end_date": "2021-01-26T12:00:00Z",
 "messages": [
 "123c6088-70ac-43b1-ab57-2f9d1f0204b7",
 "567c6088-70ac-43b1-ab57-2f9d1f0204b7"

197

]
}

RESPONSE:

Empty response with HTTP 200 status.

5.9. Database Partitioning
Partitioning allows tables, indexes, and index-organized tables to be subdivided into smaller
pieces, enabling these database objects to be managed and accessed at a finer level of granularity.

Domibus may be configured to use partitions on Oracle database. It uses partitions by range for the
main table and partitions by reference for the other tables.

Domibus partitions are created based on the format of the primary key and the granularity is of
one hour.

Date and hour prefixed key format: YMMDDHH<10digits_increment>

Example:

• 220329130000000001 where:

◦ 22032913 is the datehour prefix and

◦ 0000000001 is the 10 digits sequence increment.

5.9.1. Configure partitions – Oracle

1. Open a command line session, log in and execute the following commands:

 sqlplus sys as sysdba
/* Password should be the one assigned
during the Oracle installation */

2. Once logged in Oracle:

GRANT CREATE JOB TO <edelivery_user>;
CONNECT <edelivery_user> ①
SHOW USER; /* Should return: <edelivery_user>. */
@oracle-<x.y.z>-partitioning.ddl ②

EXIT

Where:

① <edelivery_user> stands for the actual user’s username.

198

② <x.y.z> is the Domibus version (5.1.5). DDL/SQL scripts must be run with the @ sign from the
location of the scripts.

When the partitioning sql script is ran, it creates one-hour partitions for 7 days in advance. It also
creates an oracle job GENERATE_PARTITIONS_JOB that runs once every day. This job is responsible to
create new partitions for the 8th day, to assure continuity.

This job must be closely monitored to make sure partitions are created successfully.

NOTE Partitioning is not yet implemented for MySql.

5.9.2. Data retention with partitions

With partitions, a new retention mechanism is in place for Domibus. It is possible to configure
Domibus to delete messages by dropping an entire partition, once all messages on a specific
partition have expired.

On conf/domibus/domibus.properties, following property is set:

domibus.retentionWorker.deletion.strategy= PARTITIONS

The retention mechanism is guided by the retention values configured in the PMode. It computes
the maximum retention period for all messages (received, downloaded, sent or failed) and only
verifies partitions that are beyond this maximum value. This increases the chances that each
partition is only verified once before being dropped.

Once all messages on a partition have expired, partition is dropped (all messages are deleted at
once).

There is a direct dependency between the archiving mechanism and the retention
mechanism. When archiving is enabled, retention will not delete messages unless they were
previously archived. For one partition, the retention mechanism checks that all messages are both
expired and archived before droping the partition.

5.9.3. Partitions alerts

Following the logic described in $13.2- Data retention with partitions, all messages on a partition
that is verified for expiration should already be in the final state. If some messages are not in the
final state, an alert is triggered. The frequency of the alert may be configured in
conf/domibus/domibus.properties and by default is 1 (one alert per day).

Alert management: Partitions

#Frequency in days between alerts
domibus.alert.partition.expiration.frequency_days=1

199

5.10. Non repudiation
In order to guarantee non-repudiation, the sending Access Point (C2) stores the full SignalMessage,
including the MessageInfo, the Receipt (that contains the NonRepudiationInformation for each
part) and the signature of the receipt by the receiver Access Point (C3).

This will guarantee that the receiver Access Point (C3) cannot deny having received a message from
the sender Access Point (C2) during the sending process. However, if the initial sender (C1) wants to
be sure that the final recipient (C4) cannot deny having received a specific content inside this
message, then the sender must be able to show the specific content that was used to produce the
receiver Access Point (C3) signature.

Domibus, as a sending Access Point (C2), keeps track of the metadata of the sent messages but does
not store the actual message payloads. Therefore it is recommended that the initial sender (C1)
stores the message payloads safely for the time needed to guarantee non-repudiation of the sent
messages.

In order to guarantee non-repudiation, the receiving Access Point (C3) stores the full UserMessage
and the associated signature of the sender (C2).

This will guarantee that the sender Access Point (C2) cannot deny having sent a message to the
receiver during the sending process. However, if the final recipient (C4) wants to be sure that the
sender cannot deny having sent a specific content inside this message, then the final recipient (C4)
must be able to show the specific content that was used to produce the sender Access Point
signature (C2).

Domibus, as a receiving Access Point (C3), keeps track of the metadata of the received messages and
will store the message payloads, only for the (limited) duration configured in the retention period
(specified in the PMode). Therefore it is recommended that the final recipient (C4) either stores the
message payloads safely or aligns the retention period on the receiving Access Point (C3) with the
time needed to guarantee non-repudiation of the received messages.

5.11. TLS Configuration

5.11.1. TLS Configuration

Transport Layer Security in Domibus

In addition to the message level security, Domibus may be configured to exchange messages using
TLS (HTTPS). The use of TLS is mandatory according to the eDelivery AS4 profile. However, you can
choose to configure it in the Access Point itself or delegate it to another appropriate network
component.

200

Client Side Configuration

The implementation of the Domibus MSH is based on the CXF framework. According to CXF
documentation, when using an HTTPS URL, CXF will, by default, use the certs and keystores that are
part of the JDK. For many HTTPs applications, that is enough and no configuration is necessary.
However, when using custom client certificates or self-signed server certificates or similar, you may
need to specifically configure in the keystores and trust managers and such to establish the SSL
connection.

Apache provides full description of all possible configuration of the tlsClientParameters, see
http://cxf.apache.org/docs/client-http-transport-including-ssl-
support.html%23ClientHTTPTransport(includingSSLsupport)-ConfiguringSSLSupport.

In Domibus, the TLS configuration is read from the file
<edelivery_path>/conf/domibus/clientauthentication.xml and it is used as fallback when Domibus is
configured in multi tenancy mode.

In multi tenancy mode, the file name is prefixed by the domain name and it is located in the
<edelivery_path>/conf/domibus/domains/domain_name (f.i.: domain_name_clientauthentication.xml).
(QUESTION, what is f.i.)

Below example presents two possible configurations, One-Way SSL and Two-Way SSL:

One-Way SSL (clientauthentication.xml)

<http-conf:tlsClientParameters
 disableCNCheck="true"
 secureSocketProtocol="TLSv1.2"
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 xmlns:security="http://cxf.apache.org/configuration/security">
 <security:trustManagers>
 <security:keyStore
 type="JKS"
 password="_your_trustore_password_"
 file="$\{domibus.config.location}/keystores/_your_trustore_ssl_.jks"/>
 </security:trustManagers>

201

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html%23ClientHTTPTransport(includingSSLsupport)-ConfiguringSSLSupport
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html%23ClientHTTPTransport(includingSSLsupport)-ConfiguringSSLSupport

</http-conf:tlsClientParameters>

In One-Way SSL, the sender validates the signature of the receiver using the public certificate of the
receiver, provided in your_trustore_ssl.jks.

Two-Way SSL (clientauthentication.xml)

<http-conf:tlsClientParameters
 disableCNCheck="true"
 secureSocketProtocol="TLSv1.2"
 xmlns:http-conf="http://cxf.apache.org/transports/http/configuration"
 xmlns:security="http://cxf.apache.org/configuration/security">
 <security:trustManagers>
 <security:keyStore
 type="JKS"
 password="_your_trustore_password_"
 file="$\{domibus.config.location}/keystores/_your_trustore_ssl_.jks"/>
 </security:trustManagers>
 <security:keyManagers keyPassword="_your_keystore_password_">
 <security:keyStore
 type="JKS"
 password="_your_keystore_password_"
 file="$\{domibus.config.location}/keystores/_your_keystore_ssl_.jks"/>
 </security:keyManagers>
</http-conf:tlsClientParameters>

In Two-Way SSL, both the sender and the receiver sign the request and validate the trust of the
other party. In addition to the public certificate of the receiver (your_trustore_ssl.jks), the private
certificate of the sender is also configured (your_keystore_ssl.jks).

NOTE TLSv1.2 is mandatory for eDelivery AS4 Profile.

When self-signed certificates are used, the CN check must be disabled: disableCNCheck="true".

The attribute disableCNCheck specifies whether JSSE should omit checking if the host name specified
in the URL matches the host name specified in the Common Name (CN) of the server certificate. The
attribute is "false" by default and must not be set to "true" during production use.

Server side configuration

Tomcat 9.x

In Server.xml, add a new connector with the SSLEnabled attribute set to TRUE:

<Connector SSLEnabled="true"
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="8443" maxThreads="200"
 scheme="https" secure="true"
 keystoreFile="$\{domibus.config.location}/keystores/_your_keystore_ssl_.jks"

202

 keystorePass="_your_keystore_password_"
 clientAuth="false" sslProtocol="TLS" />

The keystore jks location and password must be specified, otherwise the default ones will be taken
into account.

TLS version can also be specified.

The above connector has clientAuth="false", which means that only the server has to authenticate
itself (One Way SSL). To configure "Two Way SSL", which is optional in the eDelivery AS4 Profile, set
clientAuth="true" in Server.xml and provide the location of the your_truststore_ssl.jks file so that
the server can verify the client:

<Connector SSLEnabled="true"
 protocol="org.apache.coyote.http11.Http11NioProtocol"
 port="_8443_"
 maxThreads="_200_"
 scheme="https"
 secure="true"
 keystoreFile="$\{domibus.config.location}/keystores/_your_keystore_ssl_.jks"
 keystorePass="_your_keystore_password_"
 truststoreFile="$\{domibus.config.location}/keystores/_your_truststore_ssl_.jks"
 truststorePass="_your_trustore_password_"
 clientAuth="true"
 sslProtocol="TLS" />

WebLogic

1. Specify the use of SSL on default port 7002:

Go to menu:Servers[server_name > Configuration > General] then click on btn:[Client Cert Proxy
Enabled]:

2. Add keystore and truststore:

Go to Servers select Server Name Configuration Keystores and SSL tabs and use Custom
Identity and Custom Trust then set keystore and truststore jks.

Disable basic authentication at WebLogic level:

By default WebLogic performs its own basic authentication checks before passing the request to
Domibus. As we want basic authentication to be performed by Domibus, we need to disable it at the
application server level.

203

To do so, in DOMAIN_HOME/config/config.xml add the following highlighted section:

<security-configuration>
 <enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentials>
</security-configuration>

WildFly

The keystore JKS (e.g: bluek.jks) location and password must be specified in the standalone-
full.xml file as follows.

In this setup only the server has to authenticate itself (One Way SSL).

<security-realms>
 <security-realm name="ApplicationRealm">
 <server-identities>
 <ssl>
 <keystore
 path="../../conf/domibus/keystores/bluek.jks"
 relative-to="jboss.server.config.dir"
 keystore-password="test123"
 alias="blue_gw"
 key-password="test123"/>
 </ssl>
 </server-identities>
 <authentication>
 <local default-user="$local" allowed-users="*" skip-group-loading="true"/>
 <properties path="application-users.properties" relative-
to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-
to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
</security-realms>

• add https-listener to default-server:

<server name="default-server">
 <http-listener name="default"
 socket-binding="http"
 redirect-socket="https"
 enable-http2="true"/>
 <https-listener name="https"
 socket-binding="https"
 security-realm="ApplicationRealm"
 enable-http2="true"/>

204

 <host name="default-host" alias="localhost">
 <location name="/" handler="welcome-content"/>
 <filter-ref name="server-header"/>
 <filter-ref name="x-powered-by-header"/>
 <http-invoker security-realm="ApplicationRealm"/>
 </host>
</server>

To configure "Two Way SSL", which is optional in the eDelivery AS4 Profile, add the following
details to the standalone-full.xml file and provide the location of the your_truststore_ssl.jks file
(e.g. g_truststore.jks) so that the server can verify the client:

<security-realms>
 <security-realm name="ApplicationRealm">
 <server-identities>
 <ssl>
 <keystore path="../../conf/domibus/keystores/bluek.jks"
 relative-to="jboss.server.config.dir"
 keystore-password="test123"
 alias="blue_gw" key-password="test123"/>
 </ssl>
 </server-identities>
 <authentication>
 <local default-user="$local" allowed-users="*" skip-group-
loading="true"/>
 <properties path="application-users.properties" relative-
to="jboss.server.config.dir"/>
 <truststore
 path="../conf/domibus/keystores/g_truststore.jks"
 relative-to="jboss.server.base.dir"
 keystore-password="test123" />
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-
to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
</security-realms>

Configure Basic and Certificates authentication in SoapUI

Go to File Preferences HTTP Settings and check the option Adds authentication information to
outgoing requests:

205

Go to File Preferences SSL Settings, add the KeyStore and KeyStore Password and check the
option requires client authentication:

To allow Basic Authentication, select the Auth tab, click Add New Authorization and select Basic.
Enter user and password (e.g. Username = admin; for the password, look in the logs for the phrase:
“Default password for user admin is”):

206

PMode update

If you enable HTTPS, then your PMode Configuration Manager needs to make sure that all other
endpoint PModes are modified accordingly.

With the SSL connector configured as above, the MSH endpoint is now:
https://your_domibus_host:8443/domibus/services/msh.

After the updates, upload the PModes via the Admin Console:

Example

<party
 name="party_id_name1"
 endpoint="https:// party_id_name1_hostname:8443/domibus/services/msh"/>

5.12. Dynamic Discovery of unknown participants

5.12.1. Overview

In a dynamic discovery setup, the sender and/or the receiver parties and their capabilities are not
configured in advance.

The sending Access Point will dynamically retrieve the necessary information for setting up an
interoperability process from the Service Metadata Publisher (SMP). The SMP stores the
interoperability metadata which is a set of information about the recipient or end entity (its
identifier, supported business documents and processes) and AP (metadata which includes
technical configuration information about the receiving endpoint, such as the transport protocol
and its address).

The receiving AP registers its metadata in the SMP and configures the PMode to be able to accept
messages from trusted senders that are not previously configured in the PMode. The receiving AP
will have to configure one process in its PMode for each SMP entry.

207

https://your_domibus_host:8443/domibus/services/msh

NOTE
The sender does not have to be registered in the SMP and the receiver merely
extracts its identifier from the received message.

The mapping between the PMode process and the SMP entry is defined for PEPPOL and OASIS.

SEE ALSO

For more information on how to configure Domibus AP to use Dynamic
Discovery, see:

• PEPPOL

◦ PMode configuration for PEPPOL

◦ Policy and certificates for PEPPOL

• OASIS

◦ PMode configuration for OASIS

◦ Policy and certificates for OASIS

5.12.2. Domibus configuration for PEPPOL

To enable the integration with the SMP/SML components, Domibus requires some changes in the
domibus.properties configuration file which include:

1. Adding the following properties to enable the usage of the PEPPOL dynamic discovery client:

domibus.dynamicdiscovery.client.specification=PEPPOL

2. Setting the dynamic discovery client to use certificates to access the SMP. These certificates are
different in TEST and PRODUCTION environments, therefore we need to specify the Mode used
by the dynamic discovery client by setting the following property:

domibus.dynamicdiscovery.peppolclient.mode=TEST

3. Setting the domibus.smlzone property.

5.12.3. PMode configuration for PEPPOL

Sender PMode

IMPORTANT
In a dynamic discovery process, the receiver of the messages is not known
beforehand and therefore the PMode.Responder parameter should not be set.

The dynamic discovery process must include a leg which maps the configured entry (action, service
and service type,
see ☞ Message Format in PEPPOL) of the Receiver in the SMP.

The security policy to be used in the leg is the policy that embeds the Binary Security Token into the
security header:

security="eDeliveryAS4Policy_BST"

208

▼ Sample Sender PMODE configuration extract

Sample Sender PMODE configuration extract

<services>
 <service name="testService1"
 value="urn:www.cenbii.eu:profile:bii05:ver2.0"
 type="cenbii-procid-ubl"/>
</services>
<actions>
 <action name="tc1Action"
 value=" busdox-docid-
qns::urn:oasis:names:specification:ubl:schema:xsd:CreditNote-
2::CreditNote##urn:www.cenbii...."/>
</actions>
<securities>
 <security name="eDeliveryAS4Policy_BST"
 policy="eDeliveryAS4Policy_BST.xml"
 signatureMethod="RSA_SHA256"/>
</securities>
<legConfigurations>
 <legConfiguration name="pushTestcase1tc1Action"
 service="testService1"
 action="tc1Action"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy_BST"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
</legConfigurations>
<process name="tc1Process"
 agreement="agreementEmpty"
 mep="oneway"
 inding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="senderalias"/>
 </initiatorParties>
 <!-- no responderParties element -->
 <legs>
 <leg name="pushTestcase1tc1Action"/>
 </legs>
</process>

SEE ALSO ☞ Security Policies

209

Receiver PMode

Dynamic discovery configuration of the receiver is similar to the configuration of the sender,
except that the roles are swapped: the sender of the messages is not known beforehand.

IMPORTANT As a consequence the PMode.Initiator parameter should not be set.

<process name="tc1Process"
 agreement="agreementEmpty"
 mep="oneway"
 inding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <responderParties>
 <responderParty name="receiveralias"/>
 </responderParties>
 <!-- no initiatorParties element -->
 <legs>
 <leg name="pushTestcase1tc1Action"/>
 </legs>
</process>

Sender and Receiver PMode

Dynamic discovery configuration when the Access Point acts as both sender and receiver would
look like these following lines:

<services>
 <service name="testService1"
 value="urn:www.cenbii.eu:profile:bii05:ver2.0"
 type="cenbii-procid-ubl"/>
</services>
<actions>
 <action name="tc1Action"
 value=" busdox-docid-
qns::urn:oasis:names:specification:ubl:schema:xsd:CreditNote-
2::CreditNote##urn:www.cenbii...."/>
</actions>
<securities>
 <security name="eDeliveryAS4Policy_BST"
 policy="eDeliveryAS4Policy_BST.xml"
 signatureMethod="RSA_SHA256"/>
</securities>
<legConfigurations>
 <legConfiguration name="pushTestcase1tc1Action"
 service="testService1"
 action="tc1Action"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"

210

 security="eDeliveryAS4Policy_BST"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
</legConfigurations>
<process name="tc1Process"
 agreement="agreementEmpty"
 mep="oneway"
 inding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="senderalias"/>
 </initiatorParties>
 <!-- no responderParties element -->
 <legs>
 <leg name="pushTestcase1tc1Action"/>
 </legs>
</process>
<process name="tc2Process"
 agreement="agreementEmpty"
 mep="oneway"
 inding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <responderParties>
 <responderParty name="receiveralias"/>
 </responderParties>
 <!-- no initiatorParties element -->
 <legs>
 <leg name="pushTestcase1tc1Action"/>
 </legs>
</process>

5.12.4. Policy and certificates for PEPPOL

The receiver must include the certificate of the trusted authority(ies) in its truststore. It will only
accept messages that were signed with certificates issued by the trusted authority(ies).

SEE ALSO For more information, see Usage of certificates in PEPPOL and OASIS.

5.12.5. Message format for PEPPOL

When dynamic discovery is used, the "to" field should not be statically configured in the PMode (the
"to" field may even be omitted in the message). The lookup is performed by C2 based on the
finalRecipient message property.

211

NOTE
In Peppol, the service@type has a fixed value while the service@value is made of
ProcessIdentifier@Scheme::ProcessIdentifier.

Example of a message using finalRecipient for dynamic discovery:

<ns:UserMessage>
 <ns:PartyInfo>
 <ns:From>
 <ns:PartyId
 type="urn:fdc:peppol.eu:2017:identifiers:ap">senderalias</ns:PartyId>
 <ns:Role>
 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns:Role>
 </ns:From>
 <ns:To>
 </ns:To>
 </ns:PartyInfo>
 <ns:CollaborationInfo>
 <ns:Service
 type="cenbii-procid-
ubl">urn:www.cenbii.eu:profile:bii05:ver2.0</ns:Service>
 <ns:Action>
 busdox-docid-qns::urn:oasis:names:specification:ubl:schema:xsd:CreditNote-
2::CreditNote##urn:www.cenbii.eu:transaction:biitrns014:ver2.0:extended:urn:www.pepp.e
u:bis:peppol5a:ver2.0::2.1</ns:Action>
 </ns:CollaborationInfo>
 <ns:MessageProperties>
 <ns:Property
 name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns:Property>
 <ns:Property
 name="finalRecipient"
 type="iso6523-actorid-upis">0007:9340033829test1</ns:Property>
 </ns:MessageProperties>
</ns:UserMessage>

5.12.6. SMP entry

The following table describes the mapping between the PMode static configuration and the
dynamic SMP records structure:

Table 5 - SMP Entry Mapping

SMP Endpoint registration record PMode attributes

ServiceMetadata/ServiceInformation/ProcessIdentifier PMode[1].BusinessInfo.Service

ServiceMetadata/ServiceInformation/DocumentIdentifier Pmode[1].BusinessInfo.Action

ServiceInformation/Processlist/Process/ServiceEndpointLis
t/Endpoint/EndpointReference/Address

Pmode[].Protocol.Address

212

The Service Metadata Record also provides the receiving end certificate. This certificate can be used
to encrypt the message to be sent to the receiver. The certificate can also provide the name of the
Access Point for this PMode by using the Certificate CNAME as the PMode identifier.

5.12.7. Domibus configuration for OASIS

To enable the integration with the SMP/SML components, Domibus requires some changes in the
domibus.properties configuration file:

1. Add the following properties to enable the usage of the OASIS dynamic discovery client:

domibus.dynamicdiscovery.client.specification"> OASIS

NOTE this property is not mandatory as it defaults to the above value.

2. Set the property domibus.smlzone, e.g. ehealth.acc.edelivery.tech.ec.europa.eu

5.12.8. PMode configuration for OASIS

Sender PMode

In a dynamic discovery process, the receiver of the messages is not known beforehand and
therefore the PMode.Responder parameter SHOULD NOT be set.

The dynamic discovery process must include a leg which maps the configured entry (action, service
and service type, see Message Format for PEPPOL) of the Receiver in the SMP.

The security policy to be used in the leg is the policy that embeds the Binary Security Token into the
security header (see Security Policies):

security="eDeliveryAS4Policy_BST"

• Sample Sender PMODE configuration extract:

<services>
 <service
 name="testService1"
 value="urn:www.cenbii.eu:profile:bii05:ver2.0"
 type="cenbii-procid-ubl"/>
 </services>
 <actions>
 <action name="tc1Action"
 value="'your-schema-
name'::urn:oasis:names:specification:ubl:schema:xsd:CreditNote-
2::CreditNote##urn:www.cenbii...."/>
 </actions>
 <securities>
 <security name="eDeliveryAS4Policy_BST"
 policy="eDeliveryAS4Policy_BST.xml"
 signatureMethod="RSA_SHA256"/>
 </securities>

213

 <legConfigurations>
 <legConfiguration name="pushTestcase1tc1Action"
 service="testService1"
 action="tc1Action"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy_BST"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
 </legConfigurations>
 <process name="tc1Process"
 agreement="agreementEmpty"
 mep="oneway"
 inding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="senderalias"/>
 </initiatorParties>
 <!-- no responderParties element -->
 <legs>
 <leg name="pushTestcase1tc1Action"/>
 </legs>
</process>

NOTE
Schema name should be added to action value. E.g: *ehealth-actorid-
qns::urn:oasis:names:specification:ubl:schema:xsd:CreditNote-
2::CreditNote##urn:www.cenbii…*_

Receiver PMode

The dynamic discovery configuration of the receiver is similar to the configuration of the sender,
except that the roles are swapped: the sender of the messages is not known beforehand. As a
consequence, the PMode.Initiator parameter SHOULD NOT be set.

<process name="tc1Process"
 agreement="agreementEmpty"
 mep="oneway"
 inding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <responderParties>
 <responderParty name="receiveralias"/>
 </responderParties>
 <!-- no initiatorParties element -->
 <legs>

214

 <leg name="pushTestcase1tc1Action"/>
 </legs>
</process>

5.12.9. Policy and certificates for OASIS

The receiver must include the certificate of the trusted authority(ies) in its truststore. It will only
accept messages that were signed with certificates issued by the trusted authority(ies).

The sender truststore must include the SMP public certificate. This certificate is used by the AP to
validate the identity of the used SMP.

SEE ALSO For more information, see Usage of certificates in PEPPOL and OASIS.

5.12.10. Message format for OASIS

When dynamic discovery is used, the "to" field should not be statically configured in the PMode (the
"to" field may even be omitted in the message). The lookup is performed by C2 based on the
finalRecipient message property.

Notes for OASIS Clients

• For OASIS clients: in the PMode "action" value, the document scheme must be included
with the document ID (for PEPPOL client, busdox-docid-qns:: should be pre-appended to
the document ID).

• The value of the service@type must be set to the processIdentifier@scheme.

Example of message using the finalRecipient for dynamic discovery:

<ns:UserMessage>
 <ns:PartyInfo>
 <ns:From>
 <ns:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">senderalias
 </ns:PartyId>
 <ns:Role>
 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator
 </ns:Role>
 </ns:From>
 <ns:To>
 </ns:To>
 </ns:PartyInfo>
 <ns:CollaborationInfo>
 <ns:Service
 type="cenbii-procid-
ubl">urn:www.cenbii.eu:profile:bii05:ver2.0</ns:Service>

215

<ns:Action>your_schema_name::urn:oasis:names:specification:ubl:schema:xsd:CreditNote-
2::CreditNote##urn:www.cenbii.eu:transaction:biitrns014:ver2.0:extended:urn:www.peppol
.eu:bis:peppol5a:ver2.0::2.1</ns:Action>
 </ns:CollaborationInfo>
 <ns:MessageProperties>
 <ns:Property
 name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns:Property>
 <ns:Property name="finalRecipient" type="iso6523-actorid-
upis">0007:9340033829test1</ns:Property>
 </ns:MessageProperties>
</ns:UserMessage>

5.13. Message pulling

5.13.1. Setup

In order to configure message pulling, the process section should be configured with mep set to
oneway and binding set to pull as shown in the following example:

<process name="tc1Process"
 agreement="agreementEmpty"
 mep="oneway"
 binding="pull"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
 <initiatorParties>
 <initiatorParty name="initiatoralias"/>
 </initiatorParties >
 <responderParties>
 <responderParty name="receiveralias"/>
 </responderParties>
 <!-- no initiatorParties element -->
 <legs>
 <leg name="pushTestcase1tc1Action"/>
 </legs>
</process>

In the case of a pull process, the initiatorParties section contains the party that initiate the pull
request. The responderParties section contains the parties that can be pulled from.

In domibus.properties configuration file, adapt the following properties to your needs. Note that
domibus.msh.pull.cron and domibus.pull.queue.concurrency are mandatory.

#Cron expression used for configuring the message puller scheduling.
#domibus.msh.pull.cron=0 0 0/1 * * ?

216

Number of threads used to parallelize the pull requests.
#domibus.pull.queue.concurency=1-1

Number of threads used to parallelize the pull receipts.
#domibus.pull.receipt.queue.concurrency=1-1

#Number or requests executed every cron cycle
#domibus.pull.request.send.per.job.cycle=1

#Time in second for the system to recover its full pull capacity when
job schedule is one execution per second.
#If configured to 0, no incremental frequency is executed and the pull
pace is executed at its maximum.
#domibus.pull.request.frequency.recovery.time=0

#Number of connection failure before the system decrease the pull
pace.
#domibus.pull.request.frequency.error.count=10

#Pull Retry Worker execution interval as a cron expression
#domibus.pull.retry.cron=0/10 * * * * ?

If high frequency pulling is used (job configured every second), it is possible to configure the system
to lower the pulling frequency in case the counterpart access point is unavalailable. Per default if
the other access point returns errors 10 times in a row
(domibus.pull.request.frequency.error.count) the number of pull requests per job cycle will fall to 1
per mpc. As from the moment, the counterpart access point is responding again, Domibus will take
the amount of seconds configured within the domibus.pull.request.frequency.recovery.time
property to recover the pulling pace configured within the
domibus.pull.request.send.per.job.cycle property.

Per default, domibus.pull.request.frequency.recovery.time=0 which means that the throttling
mechanism is off.

The following properties are used for dynamic pulling and are recommended to be used only with
a custom authorization extension:

#Allow dynamic initiator on pull requests - 0 or multiple initiators are
allowed in the PMode process
#domibus.pull.dynamic.initiator=false

#Allow multiple legs configured on the same pull process (with the same
security policy)
#domibus.pull.multiple_legs=false

#Force message into READY_TO_PULL when mpc attribute is present
#domibus.pull.force_by_mpc=true

#Mpc initiator separator. This is used when the mpc provides information

217

on the initiator: baseMpc/SEPARATOR/partyName

#domibus.pull.mpc_initiator_separator=PID

5.13.2. Configuration restriction

A correctly configured one-way pull process should only contain one party configured in the
initiatorParties section.

Different legConfiguration with the same defaultMpc (highlighted in red in the following
configuration) should not be configured in the same pull process or across different pull processes.

If those restrictions are not respected, the message will not be exchanged and a warning message
will detail the configuration problem.

<legConfiguration name="pushTestcase1tc2Action"
 service="testService1"
 action="tc2Action"
 defaultMpc="*defaultMpc*"
 reliability="AS4Reliability"
 security="eDeliveryAs4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>

5.14. Multitenancy
Domibus supports multiple tenant domains configured in one Domibus instance. This means that
each tenant domain has its own configuration (PMode, keystore, truststore and Domibus properties,
etc). These multiple configurations allow one Domibus instance to process messages from multiple
tenant domains simultaneously.

The global properties are located in the domibus.properties file, located in the root folder, along
with the general logback.xml file, plugins and domains folders:

218

In the root folder there is also a folder called "domains", where the domain specific artefacts are
located. The domain-specific artefacts are grouped in domain-specific folders like:
<edelivery_path>/conf/domibus/domains/domain_name/

Inside each domain-specific folder you can find a:

• keystores folder that contains the Domibus keystore, truststore and TLS truststore,

• clientauthentication.xml file prefixed with the domain name with the description of the TLS
TrustStore,

• logback.xml file prefixed with the domain name and

• domibus.properties file, also prefixed with the domain name.

Domibus uses a Schema per tenant strategy to implement Multitenancy, meaning that the data
associated to a tenant domain will be saved in a database schema dedicated to that specific domain.

219

In case of plugins, the structure follows the same logic: the global properties files are located in the
<edelivery_path>/conf/domibus/plugins/config/ folder:

while the domain specific properties are located under the “domains” folder, in files prefixed with
the domain name as below:

5.14.1. Configuration

By default, Multitenancy is not activated. In order to activate Multitenancy, the following property
that defines the database general schema needs to be configured in domibus.properties.

For Weblogic, this step can only be done after changing the Schema username and password as
described in ☞ Weblogic and Wildly Multitenancy Configuration:

domibus.database.general.schema=general_schema

Where general_schema is the database schema in which the association between users and domains
is stored. The general_schema is not associated to any domain.

Database general schema

Configure the MySQL or Oracle datasource as indicated in Pre-Configured Single Server
Deployment.

The general_schema needs to be initialized using the distributed database script mysql-5.1.5-
multitenancy.ddl for MySQL or oracle-5.1.5-multitenancy.ddl for Oracle.

Find below the steps needed to create the general_schema for MySQL and Oracle.

MySQL

1. Unzip domibus-msh-distribution-5.1.5-sql-scripts.zip into <edelivery_path>/sql-scripts

2. Open a command prompt and navigate to this directory: <edelivery_path>/sql-scripts.

3. Execute the following MySQL commands at the command prompt:

220

mysql -h localhost -u <root_user> --password=<root_password> -e \
DROP SCHEMA IF EXISTS <general_schema>;
CREATE SCHEMA <general_schema>;
ALTER DATABASE <general_schema> charset=utf8mb4 collate=utf8mb4_bin;
CREATE USER <edelivery_user>@localhost IDENTIFIED BY 'edelivery_password';
GRANT ALL ON <general_schema>.* TO <edelivery_use>@localhost;

mysql -h localhost -u <root_user> --password=<root_password> -e \
GRANT <xa_recover_admin> ON *.* TO <edelivery_user>@localhost;

The above script creates:

• a schema, <general_schema>

• a user, <edelivery_user>, with all the privileges in the <general_schema>.

NOTE
The edelivery_user creation can be skipped if the user already exists. You need to
make sure the user edelivery_user is granted full rights in all schemas used for all
the domains.

mysql -h localhost -u <edelivery_user> --password=<edelivery_password> \
<general_schema> < mysql-<x.y.z>-multi-tenancy.ddl ①
mysql -h localhost -u <edelivery_user> --password=<edelivery_password> \
<general_schema> < mysql-<x.y.z>-multi-tenancy-data.ddl ②

Where:

① <edelivery_user> and <edelivery_password> are your system’s relevant user and password.

② x.y.z stands for the Domibus version (5.1.5).

The command above creates the required objects in <general_schema>.

Oracle

1. Unzip domibus-msh-distribution-5.1.5-sql-scripts.zip in <edelivery_path>/sql-scripts

2. Open a command prompt and navigate to the following directory: <edelivery_path>/sql-scripts

3. Execute the following commands at the command prompt:

sqlplus sys as sysdba ①

Where:

① The password should be the one assigned during the Oracle installation.

Once logged in Oracle:

221

CREATE USER <edelivery_general_user> IDENTIFIED BY <edelivery_general_password> ①
DEFAULT TABLESPACE <tablespace>
QUOTA UNLIMITED ON <tablespace>;
GRANT CREATE SESSION TO <edelivery_general_user>;
GRANT CREATE TABLE TO <edelivery_general_user>;
GRANT CREATE SEQUENCE TO <edelivery_general_user>;
GRANT CREATE JOB TO <edelivery_general_user>;
GRANT EXECUTE ON DBMS_XA TO <edelivery_general_user>;
GRANT SELECT ON PENDING_TRANS$ TO <edelivery_general_user>;
GRANT SELECT ON DBA_2PC_PENDING TO <edelivery_general_user>;
GRANT SELECT ON DBA_PENDING_TRANSACTIONS TO <edelivery_general_user>;
CONNECT <edelivery_general_user>
SHOW USER; /* Should return: <edelivery_general_user>. */
@oracle-<x.y.z>-multi-tenancy-data.ddl
EXIT

Where:

① Values represented as <token>, are placeholders for the corresponding values in your
environment or Domibus installation scenario.

• <edelivery_general_user> and <edelivery_general_password> correspond to the username and
password of the corresponding user in your environment.

• <tablespace> is created and assigned by your DBA. For local/test installations just replace it
with users tablespace. The quota can be limited to a specific size.

• DDL/SQL scripts must be run with the @ sign from the location of the scripts.

• <x.y.z> stands for the Domibus version (5.1.5).

Creating new tenant domains

A new tenant domain can be created by adding a domain specific configuration file under the
<edelivery_path>/conf/domibus/domains directory. The domain configuration file name must start
with the new tenant domain name (domain_name) using the following convention:

domain_name-domibus.properties

The tenant domain_name value is case-sensitive. It is a 50-character sequence of Unicode letters, digits
or underscores characters. It must start with a letter and the subsequent characters may be letters,
digits or underscore characters.

Each tenant domain uses its own dedicated schema which is configured in the domain
configuration file and has its own keystore, Truststore configured.

All artefacts pertaining to a domain are located within its directory (keystores, TLS configuration
file, properties file, logback, etc.).

It is also possible to add or remove a domain dynamically, without stopping the Domibus, using the
Domains page of the admin console:

222

Please keep in mind that prior to adding a domain at runtime, you must create a folder for it in the
“domains folder and add the needed artefacts into the folder, like properties file, keystores, etc.
Once done, you must click on the Refresh button so that the new domain appears in the list as
shown above. To activate or de-activate a domain, please use the button under Active. To add a
domain at runtime, this domain should be active in the Domains section of the admin Console.

The tenant domain database schema, including the default domain, must be initialized using the
distributed database script mysql-5.1.5.ddl or oracle-5.1.5.ddl.

For more on how to execute these scripts, go to Database Configuration.

The database user used to connect to the general_schema schema must have the necessary privileges
to access the database schemas for all the configured tenant domains.
Follow the steps in the next section, for each database type.

MySQL

1. Execute the MySQL commands below at the command prompt.

If the user edelivery_general_user is the one having rights on general schema for a particular
domain schema, just run:

mysql -h localhost -u <root_user> --password=<root_password> -e \
"GRANT ALL ON <domain_schema>.* TO <edelivery_general_user>@localhost;"

2. Repeat this command for all the other domains, including the default domain.

Oracle

1. Extract domibus-msh-distribution-5.1.5-sql-scripts.zip into <edelivery_path>/sql-scripts.

2. Open a command prompt and navigate to this directory: <edelivery_path>/sql-scripts.

3. Open a command line session, log in and execute the following commands to connect to current
domain schema: sqlplus <domain_user>/<domain_password>@host:port/service.

Once logged in Oracle:

@oracle-<x.y.z>-multi-tenancy-rights.sql

223

Where:

① <x.y.z> stands for Domibus version number.

Before running this script, edit it and just replace domain_schema and general_schema values with
the desired values. Repeat this command for each domain of the Multitenancy installation,
including the default domain.

This script needs to be run after completing a migration of domain Domibus schema (new objects -
table, view, sequence – could be added in current domain schema).

Once Multitenancy is activated and with no other additional configuration, Domibus will use the
tenant domain named default for the incoming and outgoing messages. The tenant domain default
is configured in default-domibus.properties.

SEE ALSO
For more information on how Multitenancy is implemented in Domibus, see
Domibus Software Architecture Document.

Tomcat

The Domibus database in Tomcat is configured in the domibus.properties file.

Running Domibus in Multitenancy mode requires that some related database properties are
adapted as shown in the example below.

NOTE

when using Tomcat with Multitenancy, the user should tweak the number of
threads defined in the variable domibus.taskExecutor.threadCount, depending on
its configuration.
See also, Domibus Properties Reference Guide

domibus.database.general.schema=general_schema

General schema.
Mandatory only if Domibus is configured in multitenancy mode.
#
#domibus.database.general.schema=general_schema

Domibus schema. If Domibus is configured in multi-tenancy mode this
property is used to define the schema for the default domain.

Comment the property below, if Domibus is configured in
single-tenancy mode with Oracle database.
#
domibus.database.schema=domibus

Non-XA Datasource
MySQL
Connector/J 8.0.x
#
#domibus.datasource.driverClassName=com.mysql.cj.jdbc.Driver

224

#domibus.datasource.url=jdbc:mysql://$\{domibus.database.serverName}:$\{domibus.databa
se.port}/$\{domibus.database.schema}?useSSL=false&useLegacyDatetimeCode=false&serverTi
mezone=UTC

Oracle
#
#domibus.datasource.driverClassName=oracle.jdbc.OracleDriver
#domibus.datasource.url=jdbc:oracle:thin:@$\{domibus.database.serverName}:$\{domibus.d
atabase.port}/XE
#domibus.datasource.user=edelivery
#domibus.datasource.password=edelivery

Configuring domain-specific properties

Within the tenant domain_name-domibus.properties file, the domain_name field must be replaced by the
actual name of the tenant domain as shown in the following sample of the dom50-
domibus.properties example, where dom50 is the domain name created:

GUI

Title shown in the Tab of Admin Console
dom50.domibus.UI.title.name=windowTitle

Name of the domain
dom50.domain.title=domainTitle

Number of console login attempt before the user is deactivated (default 5)
dom50.domibus.console.login.maximum.attempt=5

Time in seconds for a suspended user to be reactivated.
(1 hour per default if property is not set, if 0 the user will not be reactivated)
dom50.domibus.console.login.suspension.time=3600

Max rows for CSV export
dom50.domibus.ui.csv.max.rows=10000

Keystore/Truststore

Location of the keystore
dom50.domibus.security.keystore.location=$\{domibus.config.location}/keystores/dom1_ke
ystore.jks

Type of the used keystore
dom50.domibus.security.keystore.type=jks

Password used to load the keystore
dom50.domibus.security.keystore.password=test123

Private key
Alias from the keystore of the private key

225

dom50.domibus.security.key.private.alias=blue_gw

WebLogic and WildFly

Most of the database configuration for WebLogic and WildFly is done in the application server. The
datasources configured in the application server need to be configured with the user and password
that has access to the general_schema schema and to all the domain schemas. At runtime the
database schema will be changed based on the current domain.

WebLogic specific configuration

Activate the Multitenancy by configuring the following property in domibus.properties:

domibus.database.general.schema=general_schema

Disable basic authentication at the WebLogic level by setting the following property in
DOMAIN_HOME/config/config.xml (End of the <security-configuration> tag):

Disable basic authentication

<enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentials>

Example

<security-configuration>
 <node-manager-password-
encrypted>\{AES}hFKbHz7XZ19urplEtWmafYeUm9mr2yXEwyNC9ZpqJHY=</node-manager-password-
encrypted>
 <enforce-valid-basic-auth-credentials>false</enforce-valid-basic-auth-credentials>
</security-configuration>

NOTE

Weblogic might not start properly if the property domibus.database.general.schema
is set before the general schema’s username and password have been specified in
the Weblogic console.
This can be resolved using the following procedure:

1. Comment (with a #) the domibus.database.general.schema=general_schema
property.

2. Start the Weblogic server and configure the Weblogic server with the username
and password of the general_schema.

3. Uncomment the domibus.database.general.schema=general_schema property.

4. Restart the Weblogic server

5.14.2. PMode

In multitenant mode, each domain has its own PMode file, including the default domain.
When you are logged in as a superuser, you can select the current domain from the dropdown

226

found in the top right corner.

SEE ALSO
For instructions on how to upload the specific PMode file for each domain, see
Uploading New Configuration.

When C2 wants to send messages to a C3 running in Multitenancy mode, the endpoint URL of C3
configured in the C2 PMode can contain the domain name at the end, configured as an HTTP
parameter to indicate the domain that will receive the message.

Example:

Let us suppose that C3 exposes the MSH endpoint under the URL: http://localhost:8080/domibus/
service/msh. If C2 wants to send messages to C3 to the domain DIGIT, it will call the following MSH
C3 endpoint URL:

http://localhost:8080/domibus/service/msh?domain=digit

In case C2 does not specify the domain in the endpoint URL, the message will be sent to the C3
default domain.

5.14.3. Tenant domain Properties

The properties listed in the table below are used to configure a domain. Some of them must be set
here with a specific value for the tenant domain while for most it is not mandatory as they can fall
back to the corresponding properties defined in domibus.properties. All the properties defined in a
tenant domain property file (e.g. domain_name.-domibus.properties) need to be prefixed by the
domain name and override the properties from the domibus.properties file.

Example:

1. If the domain name is digit, the property file digit-domibus.properties is used to configure that
domain.

2. Defining a property named digit.domibus.msh.messageid.suffix overrides the
domibus.msh.messageid.suffix property defined in the domibus.properties file.

For each domain, including the default domain, set the properties found in Keystore/Truststore
section and also set the domain_name.domibus.database.schema property.

Domain Configuration Property If not defined
defaults + to
domibus.properties

domain_name.domibus.database.schema no

domain_name.domibus.ui.title.name yes

domain_name.domibus.ui.csv.max.rows yes

domain_name.domibus.msh.messageid.suffix yes

domain_name.domibus.msh.retry.cron yes

domain_name.domibus.dynamicdiscovery.useDynamicDiscovery yes

227

http://localhost:8080/domibus/service/msh
http://localhost:8080/domibus/service/msh
http://localhost:8080/domibus/service/msh?domain=DIGIT

Domain Configuration Property If not defined
defaults + to
domibus.properties

domain_name.domibus.smlzone yes

domain_name.domibus.dynamicdiscovery.client.specification yes

domain_name.domibus.dynamicdiscovery.peppolclient.mode yes

domain_name.domibus.dynamicdiscovery.oasisclient.regexCertificateSubjectVa
lidation

yes

domain_name.domibus.dynamicdiscovery.partyid.responder.role yes

domain_name.domibus.dynamicdiscovery.partyid.type yes

domain_name.domibus.dynamicdiscovery.lookup.clean.retention.hours yes

domain_name.domibus.dynamicdiscovery.lookup.clean.retention.cron yes

domain_name.domibus.dispatcher.allowChunking yes

domain_name.domibus.dispatcher.chunkingThreshold yes

domain_name.domibus.dispatcher.concurrency yes

domain_name.domibus.dispatcher.connectionTimeout yes

domain_name.domibus.dispatcher.receiveTimeout yes

domain_name.domibus.dispatcher.cacheable yes

domain_name.domibus.msh.pull.cron yes

domain_name.domibus.pull.queue.concurency yes

domain_name.domibus.pull.request.send.per.job.cycle yes

domain_name.domibus.pull.retry.cron yes

domain_name.domibus.retentionWorker.cronExpression yes

domain_name..message.retention.downloaded.max.delete yes

domain_name..message.retention.not_downloaded.max.delete yes

domain_name.domibus.sendMessage.messageIdPattern no

domain_name.domibus.attachment.storage.location no

domain_name.domibus.msh.retry.tolerance yes

domain_name.domibus.security.keystore.location no

domain_name.domibus.security.keystore.type no

228

Domain Configuration Property If not defined
defaults + to
domibus.properties

domain_name.domibus.security.keystore.password

Accepted characters are:

!\"#$%&\'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmno
pqrstuvwxyz\{|}~

Please note that \\ \' and \" must be escaped in domibus.properties file.

-

domain_name.domibus.security.key.private.alias -

domain_name.domibus.security.key.private.password Accepted characters are:

!\"#$%&\'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmno
pqrstuvwxyz\{|}~

Please note that \\ \' and \" must be escaped in domibus.properties file.

-

domain_name.domibus.security.truststore.location no

domain_name.domibus.security.truststore.type no

domain_name.domibus.security.truststore.password Accepted characters are:

!\"#$%&\'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmno
pqrstuvwxyz\{|}~

Please note that \\ \' and \" must be escaped in domibus.properties file.

-

domain_name.domibus.receiver.certificate.validation.onsending yes

domain_name.domibus.sender.certificate.validation.onsending yes

domain_name.domibus.sender.certificate.validation.onreceiving yes

domain_name.domibus.sender.trust.validation.onreceiving yes

domain_name.domibus.sender.trust.validation.truststore_alias yes

domain_name.domibus.sender.trust.validation.expression yes

domibus.sender.trust.validation.allowedCertificatePolicyOIDs yes

domain_name.domibus.sender.certificate.subject.check yes

domain_name.domibus.alert.retry.cron yes

domain_name.domibus.alert.cleaner.cron yes

229

Domain Configuration Property If not defined
defaults + to
domibus.properties

domain_name.domibus.alert.sender.email -

domain_name.domibus.alert.receiver.email -

domain_name.domibus.alert.cleaner.cron 0 0 0/1 * * ?

domain_name.domibus.alert.cleaner.alert.lifetime 20

domain_name.domibus.alert.active TRUE

domain_name.domibus.alert.mail.sending.active FALSE

domain_name.domibus.alert.mail.smtp.timeout 5000

domain_name.domibus.alert.queue.concurrency 1

domain_name.domibus.alert.retry.cron 0 0/1 * * * ?

domain_name.domibus.alert.retry.time 1

domain_name.domibus.alert.retry.max_attempts 2

domain_name.domibus.alert.msg.communication_failure.active TRUE

domain_name.domibus.alert.msg.communication_failure.states SEND_FAILURE

domain_name.domibus.alert.msg.communication_failure.level HIGH

domain_name.domibus.alert.msg.communication_failure.mail.subject Message status
change

domain_name.domibus.alert.user.login_failure.active TRUE

domain_name.domibus.alert.user.login_failure.level LOW

domain_name.domibus.alert.user.login_failure.mail.subject Login failure

domain_name.domibus.alert.user.account_disabled.active TRUE

domain_name.domibus.alert.user.account_disabled.level HIGH

domain_name.domibus.alert.user.account_disabled.moment WHEN_BLOCKED

domain_name.domibus.alert.user.account_disabled.subject Account disabled

domain_name.domibus.alert.cert.imminent_expiration.active TRUE

domain_name.domibus.alert.cert.imminent_expiration.frequency_days 14

domain_name.domibus.alert.cert.imminent_expiration.level HIGH

domain_name.domibus.alert.cert.imminent_expiration.mail.subject Certificate
imminent
expiration

domain_name.domibus.alert.cert.expired.active TRUE

domain_name.domibus.alert.cert.expired.frequency_days 7

domain_name.domibus.alert.cert.expired.duration_days 90

domain_name.domibus.alert.cert.expired.level HIGH

domain_name.domibus.alert.cert.expired.mail.subject Certificate expired

230

Domain Configuration Property If not defined
defaults + to
domibus.properties

domain_name.domibus.dynamicdiscovery.transportprofileas4 yes

domain_name.domibus.dispatcher.connection.keepAlive yes

domain_name.domibus.dispatcher.splitAndJoin.payloads.schedule.threshold 1000

domain_name.domibus.splitAndJoin.receive.expiration.cron 0 0/5 * * * ?

domain_name.domibus.pull.dynamic.initiator yes

domain_name.domibus.pull.multiple_legs yes

domain_name.domibus.pull.force_by_mpc yes

domain_name.domibus.pull.mpc_initiator_separator yes

NOTE
A tenant domain property is mandatory to be defined if it does not default to
domain.properties.

5.14.4. Super Properties

The properties that are specific to super users (ROLE_AP_ADMIN) are defined in a separate file
called super-domibus.properties, a file that can be found along with the others. These properties are
related to password policy and alert configuration for super users.

5.14.5. Logging

Domibus generates logs in three log files when running in non Multitenancy mode:

• domibus.log

• domibus-business.log

• domibus-security.log

These are configured in the logback.xml file.

SEE ALSO For more about information, see Logging.

In Multitenancy mode, the following is expected:

Main files

domibus.log, business.log and security.log do not contain any domain specific logging
information, only general logging information.

Per domain files

such as domain1-domibus.log, domain1-business.log and domain1-security.log will contain logging
entries only for the specific domain domain1.

For each domain

it is mandatory to add a domain logback.xml file. Including the default one.

231

IMPORTANT If this file is missing, the logging information may be lost for that domain.

When running in Multitenancy mode, the Domibus log configuration file logback.xml has to be
modified as followed:

1. Uncomment all the sections marked like this the one below:

<!-- multitenancy: uncomment this
<filter class="eu.domibus.logging.DomibusLoggerDomainFilter">
<domain></domain>
<OnMismatch>DENY</OnMismatch>
</filter>
-->

2. Edit the file to include the log configuration for each domain.
This is necessary to segregate the log statements per tenant domain, each tenant domain having
its own set of the 3 logs files mentioned above:

<!-- multitenancy: start include domains config files here -->
<!--<include optional="true"
file="$\{catalina.home}/conf/domibus/domain_name-logback.xml"/>-->
<!-- multitenancy: end include domains config files here -->

3. Add a domain config file for the default domain.

To configure the logs per domain, follow the steps below:

◦ Customize the domain_name-logback.xml file distributed in each server configuration archive.

◦ Rename the domain_name-logback.xml file according to the domain name. E.g. if the domain
name is domain1, the file should be renamed to domain1-logback.xml.

◦ Adapt the value of the domainName variable defined in the domain logback configuration file.
The value should correspond to the name of the configured domain.

<included>
 <property name="domainName" value="domain1" scope="local" />

4. Include the domain configuration file into the main logback.xml file:

<configuration>
<!-- start include domains config files here -->
<include optional="true"
file="$\{catalina.home}/conf/domibus/<domain1>-logback.xml"/>

5. To add some particular logging information per domain, include a configuration section in the
domain’s specific logback file as seen in the example below.

232

Example, a domain named domain1

<!-- Editing a file named domain1-logback.xml per this example -->
<!-- To add the section below -->
<logger name="${domainName}.eu.domibus.somepackage” level="DEBUG"
additivity="false"> ①
 <appender-ref ref="${domainName}-file"/> ②
 <appender-ref ref="stdout"/> ③
</logger>

Where:

① eu.domibus.somepackage is the name of the package for setting DEBUG level.

② ${domainName}-file is the appender of domain1.

③ This line is optional and it prints the DEBUG info on the server console.

NOTE
This mechanism applies only to eu.domibus loggers. Loggers from third-party
libraries cannot be configured independently per tenant, these are added to the
main logback.xml file with the settings that apply to all tenants.

5.14.6. Users

In Multitenancy mode there is a new user, super, with role ROLE_AP_ADMIN which has the privileges to
access all the available domains. The default password for the super user is written in the logs as
“Default password for super user is”.

The first time a new tenant domain is created, the super user creates a new user in the Domibus
Administration Console with role ROLE_ADMIN associated to the newly created domain.
All normal users (ROLE_ADMIN, ROLE_USER) can be associated to only one domain. More details on how
to create users can be found in the help page of the Users page.

Afterwards the super user sends the credentials to the domain admin user. The domain admin logs
into the Domibus Administration Console using the received credentials and has to change its
password in the Users page. The domain admin has only access to his domain and he has the
privileges to create only new users that are associated to his domain.

NOTE Please note that user names need to be unique amongst existing tenant domains.

5.14.7. Plugins

When running in Multitenancy mode, the plugins security is activated by default, no matter if the
property domibus.auth.unsecureLoginAllowed in the domibus.properties files is set to true or not.
This is needed to identify the request performed by the user and associate it to a specific tenant
domain. As a result, every request sent to Domibus needs to be authenticated.

IMPORTANT The default JMS Plugin requires the creation of additional JMS queues.

SEE ALSO For more information on which queues need to be created see the JMS Plugin

233

Interface.

SEE ALSO
For more information on how Multitenancy is implemented in Domibus, see
Domibus Software Architecture Document.

Plugin Users

In Multitenancy mode, a plugin must use a configured plugin user associated to a specific tenant
domain to authenticate every request sent to Domibus. The management of the plugin users is
implemented in the Plugin Users page of Domibus Administration Console. For more about how
to manage the plugin user see, Plugin Users.

The Default JMS Plugin and the Default FS Plugin implement only authentication mechanism. The
two previously mentioned plugins must use any configured plugin user to send requests to
Domibus, no matter the role: ROLE_ADMIN or ROLE_USER. The request will be sent to the domain
associated to the plugin user used for authentication.

The Default WS Plugin implements authentication and authorization mechanism.

For authentication the Default WS Plugin must use a configured plugin user to send requests to
Domibus, the configuration being the same as for the Default JMS Plugin and the Default FS
Plugin.

SEE ALSO

Authorization Implementation

For more about how the authorization is implemented in the default WS Plugin
Plugin Management and Plugin Development.

NOTE Usernames need to be unique across existing tenant domains.

5.14.8. Switching from non Multitenancy to Multitenancy mode

When switching an existing installation of Domibus to Multitenancy mode, you need to perform the
instructions described in Multitenancy Configuration.

After the switch to Multitenancy mode is finished, the schema that was previously used in non
Multitenancy mode will be used by a specific tenant domain. Additionally the super user must
select the migrated tenant domain in Domibus Administration console and re-create the existing
users present in the Users and Plugin Users. This step is required because in Multitenancy mode
there is an automatic synchronization of domain users into the general schema.

SEE ALSO
For more information on how Multitenancy is implemented in Domibus, see
Domibus Software Architecture Document.

5.15. Alerts

234

5.15.1. Description

The purpose of the alert feature is to use different available media to notify the Domibus
administrator in case of unusual behaviour. Those notifications are presented to the Domibus
administrator under the form of configurable alerts. The alerts can be browsed in the Domibus
Admin Console in the Alerts section and can be sent by email.

Currently, only email notification channel is available, but other communication media will be
added in future releases.

Three topics are available for monitoring:

• Message status change

• Authentication issues

• Certificate expiration.

5.15.2. Main configuration

The properties, described below, can be configured in the domibus.properties configuration file.

By default, alerts are disabled. To activate alerts, set the following property to TRUE: .Alert
management

Enable/disable the entire alert module.
Pay attention to the fact that if the module is activated, all properties
Under the mandatory section should be configured.
domibus.alert.active=true

If you activate the Alerts module, you need to configure the SMTP server. To configure SMTP, the
following properties are mandatory:

Mandatory configuration start (if Alerts are enabled)

SMTP server url for sending alert
domibus.alert.sender.smtp.url=

SMTP server port
domibus.alert.sender.smtp.port=

SMTP server user
domibus.alert.sender.smtp.user=

SMTP server user password
domibus.alert.sender.smtp.password=

Alert sender email
domibus.alert.sender.email=

Alert email receiver.

235

domibus.alert.receiver.email=

The following properties are already preconfigured with default values and therefore are not
mandatory to be configured:

#The following properties can stay commented if no modifications to the default values are needed.

Mandatory configuration start (if Alerts are enabled)

CRON configuration for cleaning alerts
#domibus.alert.cleaner.cron=0 0 0/1 * * ?

Alerts lifetime in days of before cleaning
#domibus.alert.cleaner.alert.lifetime=20

Concurrency to process the alerts
#domibus.alert.queue.concurrency=1

Frequency of failed alerts retry
#domibus.alert.retry.cron=0 0/1 * * * ?

Elapsed time in minute between alert retry
#domibus.alert.retry.time=1

Number of retry for failed alerts
#domibus.alert.retry.max_attempts=2

By default, Domibus checks every hour for expired alerts. The default lifetime for an alert is 20 days
after which the alert is deleted from the system.

The concurrency property allows processing multiple alerts in parallel. Alerts can be configured
with a retry in case of dispatch failure.

By default Domibus will wait one minute between two alert dispatch attempts, and it will retry
twice.

5.15.3. Multitenancy

In Multitenancy mode, the four SMTP properties should be configured in the main
domibus.properties. Indeed only one SMTP server can be configured for all the tenants.

On the other hand, the sender and receiver properties must be configured in each domain
configuration file.

Multitenancy also introduces the existence of a super user. Authentication alerts can be configured
for it. Some specific global properties have been created for the super user. The following
properties are documented with their default value. They can be overwritten in domibus.properties
file:

236

Super user Alert management

Cron configuration for cleaning alerts.
#domibus.alert.super.cleaner.cron=0 0 0/1 * * ?

Lifetime in days of alerts before cleaning.
#domibus.alert.super.cleaner.alert.lifetime=20

Enable/disable the entire alert module.
#domibus.alert.super.active=true

Allow to disable alert mail sending.
#domibus.alert.super.mail.sending.active=false

Frequency of failed alerts retry.
#domibus.alert.super.retry.cron=0 0/1 * * * ?

Elapsed time in minutes between alert retry.
#domibus.alert.super.retry.time=1

Maximum number of attempts for failed alerts
#domibus.alert.super.retry.max_attempts=2

5.15.4. Message status change alerts

Domibus is able to track Message status changes. All status changes can be tracked but it is advised
not to track the status of frequently changing statuses (e.g.: From SEND_ENQUEUED to ACKNOWLEDGE) to
avoid being spammed.

Each alert topic (Message status change, authentication and certificate expiration) can be activated
or deactivated independently from each other. Pay attention that, in order for the alert feature to
work, the main alert module must always be activated (see 20.2 Main configuration).

By default, message status change alerts are not activated. In order to activate them, the following
property should be set to true:

Alert management: messaging module

#enable/disable the messaging alert module.
domibus.alert.msg.communication_failure.active=true

The following properties are already preconfigured with default values and therefore are not
mandatory to be configured:

Message status change that should be notified by the messaging alert
module. Comma-separated.
domibus.alert.msg.communication_failure.states=SEND_FAILURE

#Alert levels corresponding to message status defined in previous

237

property(domibus.alert.msg.communication_failure.states) .
Should be (HIGH, MEDIUM or LOW)
domibus.alert.msg.communication_failure.level=HIGH

Messaging alert module mail subject.
domibus.alert.msg.communication_failure.mail.subject=Message status change

By default, Domibus will only track message status change to SEND_FAILURE. The level of the alert
that will be triggered is HIGH. The last property allows configuring the subject of the mail sent.

If there is a need to track another message status change, a comma-separated list can be
configured:

Example: Tracking multiple status changes

`domibus.alert.msg.communication_failure.states=SEND_FAILURE,ACKNOWLEDGED`

If there is a need to set an alert level per status change it can also be done with a comma-separated
list:

Example: Setting alert level per status change

domibus.alert.msg.communication_failure.level=HIGH,LOW

In the example above, the alert level for each of the tracked changes (see, previous example: *
SEND_FAILURE status is set to have a high level of alert, while the * ACKNOWLEDGED status is set to have a
low level of alert.

5.15.5. Authentication Alerts

Domibus is able to track admin console login failure and user account disabling. The login failure
alert will occur for each unsuccessful attempt. Note that if the username encoded is unknown to the
system, no alert will be created. Only known user with invalid password will be tracked. The
account disabled alert will occur either because the user did too many invalid login attempts or
because an administrator disabled the account.

By default, login failure alerts are not activated. In order to activate them, the following property
should be set to true:

Alert management: Authentication module

Enable/disable the login failure alert of the authentication module
domibus.alert.user.login_failure.active=true

The following properties are already preconfigured with default values and therefore are not
mandatory to configure: (QUESTION: how are they set if they are commented?)

238

Alert management: Authentication module

Alert level for login failure.
#domibus.alert.user.login_failure.level=LOW

#Login failure mail subject.
#domibus.alert.user.login_failure.mail.subject=Login failure

By default,

• The alert level for a login failure is low.

• The domibus.alert.user.login_failure.mail.subject property allows configuring the subject of
the mail sent.

Account disabled alerts are not activated. In order to activate them, the following property should
be set to true:

Activating alerts of disabled accounts

Enable/disable the account disable alert of the authentication module.
domibus.alert.user.account_disabled.active=true

The following properties are already preconfigured with default values and therefore are not
mandatory to configure:

#Alert level for account disabled.
#domibus.alert.user.account_disabled.level=HIGH

#When should the account disabled alert be triggered.
2 possible values:
AT_LOGON: An alert will be triggered each time a user tries to login to a disabled
account.
WHEN_BLOCKED: An alert will be triggered once when the account got disabled.
#domibus.alert.user.account_disabled.moment=WHEN_BLOCKED

#Account disabled mail subject.
#domibus.alert.user.account_disabled.subject=Account disabled

By default, the alert level for an account disabled is high. The next property specifies when an
account_disabled alert should be triggered. It can be only at disabling time or at every new login
attempt after the account has been disabled. The default value WHEN_BLOCKED will therefore
create only one alert when the account is disabled.

The last property allows configuring the subject of the mail sent.

Multitenancy

The following super user authentication alerts properties are documented with their default value.

239

They can be overwritten in the domibus.properties file:

Super user alert management:Authentication module

#Enable/disable the login failure alert of the authentication module.
#domibus.alert.super.user.login_failure.active=true

#Alert level for login failure.
#domibus.alert.super.user.login_failure.level=LOW

#Login failure mail subject.
#domibus.alert.super.user.login_failure.mail.subject=Super user login failure

#Enable/disable the account disable alert of the authentication module.
#domibus.alert.super.user.account_disabled.active=true

#Alert level for account disabled.
#domibus.alert.super.user.account_disabled.level=HIGH

#When should the account disabled alert be triggered.
2 possible values:
AT_LOGON: An alert will be triggered each time a user tries to login to a disabled
account.
WHEN_BLOCKED: An alert will be triggered once when the account got disabled.
#domibus.alert.super.user.account_disabled.moment=WHEN_BLOCKED

#Account disabled mail subject.
#domibus.alert.super.user.account_disabled.subject=Super user account disabled

All that was mentioned earlier about console users is also true for the plugin users. There is an
identical set of configuration properties for them:

Alert management:Authentication module for Plugin users

Enable/disable the login failure alert of the authentication module
#domibus.alert.plugin.user.login_failure.active=true

Alert level for login failure.
#domibus.alert.plugin.user.login_failure.level=LOW

Login failure mail subject.
#domibus.alert.plugin.user.login_failure.mail.subject=Login failure

Enable/disable the account disable alert of the authentication module
#domibus.alert.plugin.user.account_disabled.active=true

Alert level for account disabled.
#domibus.alert.plugin.user.account_disabled.level=HIGH

When should the account disabled alert be triggered
2 possible values:

240

AT_LOGON: An alert will be triggered each time a user tries to login to a disabled
account
WHEN_BLOCKED: An alert will be triggered once when the account got disabled.
#domibus.alert.plugin.user.account_disabled.moment=WHEN_BLOCKED

Account disabled mail subject
#domibus.alert.plugin.user.account_disabled.subject=Account disabled

Account disabled mail subject
#domibus.alert.super.user.account_disabled.subject=Super user account disabled

5.15.6. User Password alerts

Domibus is able to track user password expiration and imminent expiration. Obviously the user
password expired alert occurs when a user password expires. The number of days the alert should
be triggered after the expiration is configurable. The imminent expiration alert occurs for some
time before the user password expiration. The number of days the alert should be triggered before
expiration is configurable. The alert frequency for both trackers can be configured.

By default, imminent user password expiration alerts are not activated. In order to activate them,
the following property should be set to true:

Alert management:Password policy

Enable/disable the imminent password expiration alert
#domibus.alert.password.imminent_expiration.active=true

The following properties are already preconfigured with default values and therefore are not
mandatory to configure:

Number of days before expiration as for how long before expiration
the system should send alerts
#domibus.alert.password.imminent_expiration.delay_days=15

Frequency in days between alerts
#domibus.alert.password.imminent_expiration.frequency_days=3

Password imminent expiration alert level
#domibus.alert.password.imminent_expiration.level=LOW

Password imminent expiration mail subject
#domibus.alert.password.imminent_expiration.mail.subject=Password imminent expiration

By default, Domibus will send user password imminent expiration alerts 15 days before the
expiration. It will send alerts at a pace of one alert every 3 days. The level of the alert will be LOW.
The last property allows configuring the subject of the mail sent.

By default, user password expired alerts are not activated. In order to activate them, the following

241

property should be set to true:

Enable/disable the certificate expired alert of certificate scanner module
domibus.alert.password.expired.active=true

The following properties are already preconfigured with default values and therefore are not
mandatory to configure:

Number of days after expiration as for how long the system should send alerts.
#domibus.alert.password.expired.delay_days=30

Frequency in days between alerts
#domibus.alert.password.expired.frequency_days=5

Password expiration alert level
#domibus.alert.password.expired.level=LOW

Password expiration mail subject
#domibus.alert.password.expired.mail.subject=Password expired

By default, Domibus will send user password expired alerts during 30 days after the expiration. It
will send alerts at a pace of one alert every 5 days. The level of the alert will be LOW. The last
property allows configuring the subject of the mail sent.

5.15.7. Plugin User Password alerts

Everything that was explained above about the console users alerts is also true for the plugin users.
Their corresponding properties are listed below:

Alert management: Plugin Password policy

Enable/disable the imminent password expiration alert
#domibus.alert.plugin_password.imminent_expiration.active=true

Number of days before expiration as for how long before
expiration the system should send alerts
#domibus.alert.plugin_password.imminent_expiration.delay_days=15

Frequency in days between alerts
#domibus.alert.plugin_password.imminent_expiration.frequency_days=3

#Password imminent expiration alert level.
#domibus.alert.plugin_password.imminent_expiration.level=LOW

#Password imminent expiration mail subject.
#domibus.alert.plugin_password.imminent_expiration.mail.subject=Password imminent
expiration

242

#Enable/disable the imminent password expiration alert
#domibus.alert.plugin_password.expired.active=true

#Number of days after expiration as for how long
the system should send alerts.
#domibus.alert.plugin_password.expired.delay_days=30

#Frequency in days between alerts.
#domibus.alert.plugin_password.expired.frequency_days=5

#Password expiration alert level.
#domibus.alert.plugin_password.expired.level=LOW

#Password expiration mail subject.
#domibus.alert.plugin_password.expired.mail.subject=Password expired

5.15.8. Certificate scanner alerts

Domibus is able to track certificate expiration and imminent expiration. Obviously the certificate
expired alert occurs when a certificate expires. The number of days the alert should be triggered
after the expiration is configurable. The imminent expiration alert occurs for some time before the
certificate expiration. The number of days the alert should be triggered before expiration is
configurable. The alert frequency for both trackers can be configured.

By default, imminent certificate expiration alerts are not activated. In order to activate them, the
following property should be set to true:

Alert management: Certificate scanner

#Enable/disable the imminent certificate expiration alert of certificate scanner
module.
domibus.alert.cert.imminent_expiration.active=true

The following properties are already preconfigured with default values and therefore are not
mandatory to configure:

Number of days before revocation as from when
the system should start sending alerts
#domibus.alert.cert.imminent_expiration.delay_days=61

Frequency in days between alerts
#domibus.alert.cert.imminent_expiration.frequency_days=14

Certificate imminent expiration alert level
#domibus.alert.cert.imminent_expiration.level=HIGH

Certificate imminent expiration mail subject
#domibus.alert.cert.imminent_expiration.mail.subject=Certificate imminent expiration

243

By default, Domibus will send certificate imminent expiration alerts 61 days before the expiration.
It will send alerts at a pace of one alert every 14 days. The level of the alert will be HIGH. The last
property allows configuring the subject of the mail sent.

By default, certificate expired alerts are not activated. In order to activate them, the following
property should be set to true:

Enable/disable the certificate expired alert of certificate scanner module
domibus.alert.cert.expired.active=true

The following properties are already preconfigured with default values and therefore are not
mandatory to configure:

Frequency in days between alerts
#domibus.alert.cert.expired.frequency_days=7

How long(in days) after the revocation should the system
trigger alert for the expired certificate
#domibus.alert.cert.expired.duration_days=92

Certificate expired alert level
#domibus.alert.cert.expired.level=HIGH

Certificate expired mail subject
#domibus.alert.cert.expired.mail.subject=Certificate expired

By default, Domibus will send certificate expired alerts during 92 days after the expiration. It will
send alerts at a pace of one alert every 7 days. The level of the alert will be HIGH. The last property
allows configuring the subject of the mail sent.

5.15.9. Configuration example

Example: domibus.properties

Below is shown only the section relevant to the alerts configuration in the domibus.properties
configuration file, when the SMTP server is running in the same host as domibus (localhost):

Alert management

Enable/disable the entire alert module.
Pay attention to the fact that if the module is activated,
all properties under the mandatory section should be configured.
domibus.alert.active=true

Allow to disable alert mail sending
domibus.alert.mail.sending.active=true
domibus.alert.mail.smtp.starttls.enable=false
domibus.alert.mail.smtp.auth=false

244

#domibus.alert.mail.smtp.timeout=10000

Mandatory configuration start (if domibus.alert.active=true)

SMTP server url for sending alert
domibus.alert.sender.smtp.url=localhost

SMTP server port
domibus.alert.sender.smtp.port=25

SMTP server user
#domibus.alert.sender.smtp.user=

SMTP server user password
#domibus.alert.sender.smtp.password=

#Alert sender email
domibus.alert.sender.email=sender@exemple.com

#Alert email receiver
domibus.alert.receiver.email=mcb@gmail.com

Mandatory configuration end

The following properties can stay commented
if no modifications to the default values are needed.
CRON configuration for cleaning alerts.
domibus.alert.cleaner.cron=0 0/1 * * * ?

Lifetime in days of alerts before cleaning
domibus.alert.cleaner.alert.lifetime=1

Concurrency to process the alerts
#domibus.alert.queue.concurrency=1

Frequency of failed alerts retry.
#domibus.alert.retry.cron=0 0/1 * * * ?

Elapsed time in minutes between alert retry.
#domibus.alert.retry.time=1

Maximum number of attempts for failed alerts
#domibus.alert.retry.max_attempts=2

Alert management:messaging module

Enable/disable the messaging alert module
#domibus.alert.msg.communication_failure.active=true

245

Message status change that should be notified by
the messaging alert module. Comma-separated.
domibus.alert.msg.communication_failure.states=SEND_FAILURE,WAITING_FOR_RETRY

Alert levels corresponding to message status defined
in previous property(domibus.alert.msg.communication_failure.states).
Should be (HIGH, MEDIUM OR LOW)
#domibus.alert.msg.communication_failure.level=HIGH

Messaging alert module mail subject
domibus.alert.msg.communication_failure.mail.subject=Message status change MCB

Alert management:Authentication module

Enable/disable the login failure alert of the authentication module
domibus.alert.user.login_failure.active=true

Alert level for login failure
#domibus.alert.user.login_failure.level=LOW

#Login failure mail subject
domibus.alert.user.login_failure.mail.subject=Login failure MCB

#Enable/disable the account disable alert of the authentication module
#domibus.alert.user.account_disabled.active=true

Alert level for account disabled
#domibus.alert.user.account_disabled.level=HIGH

When should the account disabled alert be triggered.
2 possible values:
AT_LOGON: An alert will be triggered each time a user tries to login to a disabled
account.
WHEN_BLOCKED: An alert will be triggered once when the account got disabled.
domibus.alert.user.account_disabled.moment=WHEN_BLOCKED,AT_LOGON

Account disabled mail subject
domibus.alert.user.account_disabled.subject=Account disabled MCB

Alert management:Certificate scanner

Enable/disable the imminent certificate expiration alert
of certificate scanner module
domibus.alert.cert.imminent_expiration.active=false

Number of days before revocation as from when
the system should start sending alerts
domibus.alert.cert.imminent_expiration.delay_days=20000

Frequency in days between alerts

246

#domibus.alert.cert.imminent_expiration.frequency_days=14

Certificate imminent expiration alert level
#domibus.alert.cert.imminent_expiration.level=HIGH

#Certificate imminent expiration mail subject
domibus.alert.cert.imminent_expiration.mail.subject=Certificate imminent expiration
MCB

#Enable/disable the certificate expired alert
of certificate scanner module
domibus.alert.cert.expired.active=false

Frequency in days between alerts
#domibus.alert.cert.expired.frequency_days=7

How long(in days) after the revocation should
the system trigger alert for the expired certificate
#domibus.alert.cert.expired.duration_days=90

Certificate expired alert level
#domibus.alert.cert.expired.level=HIGH

Certificate expired mail subject
domibus.alert.cert.expired.mail.subject=Certificate expired MCB

Below is shown only the section relevant to the alerts configuration in the dom50-
domibus.properties configuration file, where dom50 is the name of a domain:

Example: domain_name-domibus.properties

Proxy settings
Pull Retry Worker execution interval as a cron expression
dom50.domibus.pull.retry.cron=0/10 * * * * ?

Alert management
Enable/disable the entire alert module.
Pay attention to the fact that if
the module is activated, all properties
under the mandatory section should be configured.
dom50.domibus.alert.active=true

Allow to disable alert mail sending
dom50.domibus.alert.mail.sending.active=true

Mandatory configuration start (if domibus.alert.mail.sending.active=true)
Alert sender email
dom50.domibus.alert.sender.email=mcb@gmail.com

Alert email receiver

247

dom50.domibus.alert.receiver.email=mcb@gmail.com

Mandatory configuration end
The following properties can stay commented if
no modifications to the default values are needed

5.16. DSS extension configuration

5.16.1. Overview

Domibus now offers the possibility to perform incoming messages certificate chain validation with
the DSS library instead of the truststore. In order to achieve chain validation with DSS, Domibus
security policy should be configured with a PKI path (see the file
“eDeliveryAS4Policy_BST_PKIP.xml” in the distribution).

When PKI path is used, the full chain of certificates that contains the signing and its trust
certificates is embedded in the security header of the SOAP message.

Domibus DSS extension will download and use per default the European list of trusted lists (LOTL).

Dominus can verify the trust anchor of any certificate chain having a certificate authority present
within the LOTL.

The DSS extension also permits to configure custom trusted lists with additional certificate
authorities.

DSS generates a validation report with different constraints and status. The DSS extension allows
configuring the relevant constraints for the validation.

5.16.2. Installation

Enable Unlimited Strength Jurisdiction Policy

• Before Java 8 Update 151

For Java 8 Update 144 and earlier, you need to install the Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy files:

1. Download the unlimited strength JCE policy files from: Oracle by clicking here

2. Extract the downloaded file

3. Replace the existing policy JAR files in: $JAVA_HOME/jre/lib/securitywith the extracted
unlimited strength policy JAR files.

◦ Java 8 Update 151 and higher

The Unlimited Strength Jurisdiction Policy is included but not used by default. To enable it, you
need to edit thejava.securityfile in$JAVA_HOME/jre/lib/security(for JDK)
or$JAVA_HOME/lib/security(for JRE). Uncomment (or include) the following line:

248

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
https://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

crypto.policy=unlimited

Download and install DSS extension

For this step, you will have to use the following resources (see Downloading Resources):

• domibus-msh-distribution-5.1.5-authentication-dss-extension.zip

Unzip the artefact and copy the extensions directory under \{domibus.config.location}.

Configure proxy

In order to refresh the EU LOTL, DSS needs to connect to the Internet. No white list can be
configured at the proxy level, as changes in EU LOTL are dynamic. Therefore the DSS extension
needs dynamic Internet access.

If a proxy is required, please configure the following properties within
\{domibus.config.location}/extensions/config/authentication-dss-extension.properties:

Proxy Configuration

The https proxy host to use
#domibus.authentication.dss.proxy.https.host=

The https proxy port to use
#domibus.authentication.dss.proxy.https.port=

The https proxy user to use
#domibus.authentication.dss.proxy.https.user=

The https proxy password to use
#domibus.authentication.dss.proxy.https.password=

The https proxy excluded hosts. Allows multiple urls (separator ',',';' or ' ')
#domibus.authentication.dss.proxy.https.excludedHosts=

The http proxy host to use
#domibus.authentication.dss.proxy.http.host=

The http proxy port to use
#domibus.authentication.dss.proxy.http.port=

The http proxy user to use
#domibus.authentication.dss.proxy.http.user=

The http proxy password to use
#domibus.authentication.dss.proxy.http.password=

The http proxy excluded hosts. Allows multiple urls (separator ',', ';' or ' ')
#domibus.authentication.dss.proxy.http.excludedHosts=

249

NOTE
If the proxy server needs TLS authentication, please add the CA certificate of the
proxy server in the java cacert or in the dss-tls-truststore described below.

DSS extension truststores

The DSS extension uses truststores for two reasons:

• Store TLS certificates of servers containing the trusted lists to download.

• Store public certificates to verify the xml signature of the trusted lists.

Separate truststores are used for xml signature verification and tls. The Dss extension distribution
is provided with two truststores:

dss-tls-truststore.p12

Any extra TLS certificate (not present in the java cacert) needed to download custom or official
trusted lists should be installed in the dss-tls-truststore.

ojkeystore.p12

The EU LOTL downloaded by DSS is signed, and to verify the signature, a truststore containing
public certificates located at https://eur-lex.europa.eu/legal-content/EN/TXT/?
uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG needs to be configured. Those certificates are packaged
in the ojkeystore.

In case LOTL signing certificates need to be upgraded, please copy them from above url and add
them to the ojkeystore.p12.

Please note, that if the DSS extension is configured with custom trusted lists, a third truststore
should be configured to check the custom trusted list signature.

Configure LOTL truststore

1. Please copy truststore\ojkeystore.p12 to \{domibus.config.location}/keystores directory.

2. Please copy truststore\dss-tls-truststore.p12 to \{domibus.config.location}/keystores
directory and add any required TLS certificate to it.

Configure custom trusted list

If a certificate chain with a CA not present in the LOTL needs to be used, DSS offers the possibility to
configure custom trusted list. Please refer to the DSS documentation.

If a custom trusted list is required, please configure the following properties within
\{domibus.config.location}/extensions/config/authentication-dss-extension.properties:

Custom trusted list

Following properties should be used to add custom trusted list.
Custom trusted list url
domibus.authentication.dss.custom.trusted.lists.list1.url=

250

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/DSS

Path of the keystore containing the certificate used to sign the custom trusted list
#domibus.authentication.dss.custom.trusted.list.keystore.path=

The Keystore type
#domibus.authentication.dss.custom.trusted.list.keystore.type=

The Keystore password
#domibus.authentication.dss.custom.trusted.list.keystore.password=

If multiple custom trusted lists are needed, please add the new url and increment the list
number.For example:

Custom trusted list url
#domibus.authentication.dss.custom.trusted.lists.list2.url=

As for EU LOTL, custom trusted lists are signed and DSS will verify the signature of the custom
trusted lists before using it.

Please use domibus.authentication.dss.custom.trusted.list.keystore.path/type/password to
configure a truststore containing the certificate needed to verify the custom trusted list signature.
The recommendation is to add the custom trusted list truststore under
\{domibus.config.location}/keystores.

Configure PMode policy

To perform certificate validation, the DSS extension expects to find the full signing certificate chain
within the incoming AS4 message. To do so, Domibus should be configured with a security policy
configured with WssX509PkiPathV1Token11 as described in the WS-SecurityPolicy document.

NOTE
At startup, DSS generates stacktraces due to 2 old certificates which are wrongly
encoded.

To avoid the exceptions, please configure your logger for the
`eu.europa.esig.dss.tsl.service.TSLParser ` class accordingly.

Dss extension activation

In order to activate the DSS extension, please configure the following property:

domibus.extension.iam.authentication.identifier=DSS_AUTHENTICATION_SPI

found in the \{domibus.config.location}/domibus.properties file.

5.16.3. DSS extension properties

251

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200512/ws-securitypolicy-1.2-spec-cd-01.html

Configuration Property Default value Purpose

domibus.authentication.dss.officia
l.journal.content.keystore.type

PKCS12 Type of keystore containing
the public certificate
needed to validate the
trusted list.

domibus.authentication.dss.official.
journal.content.keystore.path

\{domibus.config.location}/keys
tores/ojkeystore.p12

Path of the keystore
containing the public
certificate needed to
validate the trusted list.

domibus.authentication.dss.official.
journal.content.keystore.password

dss-password Password of the keystore
containing the public
certificate needed to
validate the trusted list.

domibus.authentication.dss.current
.official.journal.url

https://eur-lex.europa.eu/legal-
content/EN/TXT/?
uri=uriserv:OJ.C_.2019.276.01.00
01.01.ENG

URL: Official Journal URL
where the EU trusted
certificates are listed.

domibus.authentication.dss.current
.lotl.url

https://ec.europa.eu/tools/lotl/eu-
lotl.xml

Official EU URL of the list of
trusted lists.

domibus.authentication.dss.lotl.cou
ntry.code

EU List of trusted list main
code.

domibus.authentication.dss.lotl.roo
t.scheme.info.uri

https://ec.europa.eu/
information_society/policy/
esignature/trusted-list/tl.html

Schema used to verify the
OJ validity.

domibus.authentication.dss.cache.p
ath

\{domibus.config.location}/exte
nsions/cache/dss/

Path where trusted lists are
cached.

domibus.authentication.dss.refresh
.cron

0 0 0/3 * * ? Cron expression used to
schedule DSS trusted list
refresh. Default is every 3h.

domibus.authentication.dss.full.tls.
refresh

false If this property is true, the
TL refresh job will force
delete on all Trusted lists
and download them again.

domibus.authentication.dss.constra
ints.constraint1.name

BBB_XCV_CCCBB Name of the first constraint
that will be validated
against the DSS validation
report. BBB_XCV_CCCBB
checks whether the
certificate chain can be
built till the trust anchor.

domibus.authentication.dss.constra
ints.constraint1.status

OK Constraint status needed to
validate the certificate.

252

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2019.276.01.0001.01.ENG
https://ec.europa.eu/tools/lotl/eu-lotl.xml
https://ec.europa.eu/tools/lotl/eu-lotl.xml
https://ec.europa.eu/information_society/policy/esignature/trusted-list/tl.html
https://ec.europa.eu/information_society/policy/esignature/trusted-list/tl.html
https://ec.europa.eu/information_society/policy/esignature/trusted-list/tl.html

Configuration Property Default value Purpose

domibus.authentication.dss.constra
ints.constraint2.name

Empty value, giving the
possibility to make a
second DSS constraint
validation.

domibus.authentication.dss.constra
ints.constraint2.status

Constraint status needed to
validate the certificate.

domibus.authentication.dss.constra
int1.name

BBB_XCV_ICTIVRSC Name of the second
constraint that will be
validated against the DSS
validation report.
BBB_XCV_ICTIVRSC checks
whether the current time is
in the validity range of the
signer’s certificate.

domibus.authentication.dss.constra
int1.status

OK Constraint status needed to
validate the certificate.

domibus.authentication.dss.enable.
custom.trusted.list.for.multitenant

false In multi-tenant
configuration, custom DSS
trusted lists are shared by
all tenants. Therefore they
are deactivated by default.

domibus.authentication.dss.excepti
on.on.missing.revocation.data

false Trigger an exception when
no revocation data is
accessible.

domibus.authentication.dss.check.r
evocation.for.untrusted.chains

false Execute revocation check
when anchor cannot be
found.

domibus.authentication.dss.custom.
trusted.lists.list1.url=

Following properties
should be used to add the
first custom trusted list
URL.

domibus.authentication.dss.custom.
trusted.lists.list1.url

Following properties
should be used to add the
second custom trusted list
URL.

domibus.authentication.dss.custom.
trusted.lists.list3.url

Following properties
should be used to add the
third custom trusted list
URL.

253

Configuration Property Default value Purpose

domibus.authentication.dss.custom.
trusted.lists.list3.code

Following properties
should be used to add the
third custom trusted list
code.

domibus.authentication.dss.custom.
trusted.lists.list2.code

Following properties
should be used to add the
second custom trusted list
code.

domibus.authentication.dss.custom.
trusted.list.keystore.path

Path of the keystore
containing the certificate
used to sign the custom
trusted list.

domibus.authentication.dss.custom.
trusted.list.keystore.type

The custom trusted list
Keystore type.

domibus.authentication.dss.custom.
trusted.list.keystore.password

The custom trusted list
Keystore password.

domibus.authentication.dss.proxy.h
ttps.host

The HTTPS proxy host to
use.

domibus.authentication.dss.proxy.h
ttps.port

The HTTPS proxy user to
use.

domibus.authentication.dss.proxy.h
ttps.user

The HTTPS proxy password
to use.

domibus.authentication.dss.proxy.h
ttps.excludedHosts

The HTTPS proxy excluded
hosts. Allows multiple
URL’s (separator ',', ';' or ' ').

domibus.authentication.dss.proxy.h
ttp.host

The http proxy host to use.

domibus.authentication.dss.proxy.h
ttp.port

The http proxy port to use.

domibus.authentication.dss.proxy.h
ttp.user

The http proxy user to use.

domibus.authentication.dss.proxy.h
ttp.password

The http proxy password to
use.

domibus.authentication.dss.proxy.h
ttp.excludedHosts

The http proxy excluded
hosts. Allows multiple
URL’s (separator ',', ';' or ' ').

domibus.authentication.dss.cache.n
ame

dss-cache Name of the ehcache
configured for DSS.

254

Configuration Property Default value Purpose

domibus.dss.ssl.trust.store.path \{domibus.config.location}/keys
tores/dss-tls-truststore.p12

TLS truststore for dss
dataloader. Should contain
all the TLS certificates
needed to download the EU
LOTL and Custom trusted
lists.

domibus.dss.ssl.trust.store.passwor
d

dss-tls TLS truststore password for
dss data loader

domibus.dss.ssl.trust.store.type JKS TLS truststore type dss data
loader.

domibus.dss.perform.crl.check False Perform crl check within
dss. False by default as it is
performed by domibus.

domibus.dss.data.loader.socket.tim
eout

3000 Domibus data loader socket
timeout in milliseconds.

domibus.dss.data.loader.connectio
n.timeout

3000 Domibus data loader
connection time out in
milliseconds.

5.17. Setting Logging levels at runtime

5.17.1. Description

Admin and Super admin users can change the Logging levels at runtime for the Domibus
application using the Admin Console Logging menu:

Input elements include:

• A Search box where the user could freely enter the name of the package of classes desired to

255

set the logging level. By default this is populated with ‘eu.domibus’ value.

NOTE
Wildcards are not accepted like ‘domi*’ are not recognised. Users must enter the full
description of the item to be searched (e.g:‘domibus’ or ‘apache’)

• A Show classes check box allows level setting for each package. See the next picture

• A Reset button will reset all logging levels to the default values defined in logback.xml

• Pagination controls to change the number of rows to be shown per page

NOTE

• In a multi-tenant environment, loggers' names are prefixed with the tenant’s
name to which the selected logging level is to be applied.

For example, if the server has two tenants named tenantOne and tenantTwo, you
can configure these loggers separately by naming them as:

tenantOne.eu.domibus
tenantTwo.eu.domibus

• Changing the logging levels only affects the currently running instance of
Domibus and will not change or update the existing logging configuration file
(logback.xml).

5.18. EU Login Integration

5.18.1. Description

Domibus is configured by default to use its own database for user authentication and authorization,
as seen in previous chapters.

But Domibus could also be configured and installed to use EU Login for user authentication and

256

authorization (even if this is not provided by default by EU Login).

NOTE

EU Login

EU Login is the European Commission’s central user authentication service. It
allows authorised users to access a wide range of Commission resources, including
websites, applications and services, using a single sign on based on (EC) email
address, password, and if required, additional authenticating factors.

Click here for more information on EU Login.

More details can also be found on internal Confluence page by clicking the
following link: https://webgate.ec.europa.eu/CITnet/confluence/pages/
viewpage.action?pageId=24641907

Domibus with EU Login integration is available only for Weblogic server.

5.18.2. Installation and Configuration

Installation

For installation of Domibus with EU Login, please follow the steps below:

1. Create DB schemas as per previous chapters for a single tenancy or Multitenancy installation

2. Download domibus-msh-distribution-xyz-weblogic-ecas-configuration.zip and domibus-msh-
distribution-xyz-weblogic-ecas-war.zip

3. Install and configure Domibus war and configuration files into Weblogic server – follow
Weblogic guidelines as per previous chapters

4. Check that the WebLog-sql-scripts.zipic server has the latest compatible ECASIdentityAsserter
installed:

◦ Go to the Weblogic Server console →

◦ Security Realms → myrealm → Providers:

5. Configure ecas-config-domibus.xml file and install it in the classpath of Weblogic server.

257

https://webgate.ec.europa.eu/cas/about.html?loginRequestId=ECAS_LR-3450166-N63zgmzcF3nwMyelJxzy8N4GQVFKtRta1zlE2UfXH9y6yjun8Wml4rogpNFzcIRrGxc3dAitaYiFtyDyTuXIn3F-PHslUMVSXYCySzcFlWvYJq-atOlLzj6PtzdbCeFzlGad4jt5zzRIwPJzbUQrQ6ZjOiba
https://webgate.ec.europa.eu/CITnet/confluence/pages/viewpage.action?pageId=24641907
https://webgate.ec.europa.eu/CITnet/confluence/pages/viewpage.action?pageId=24641907

An example of ecas-config-domibus.xml file is as shown below:

<client-config
 xmlns="https://www.cc.cec/cas/schemas/client-config/ecas/1.8"
 xmlns:cas="https://www.cc.cec/cas/schemas/client-config/cas/2.0">
 <ecasBaseUrl>https://ecasa.cc.cec.eu.int:7002</ecasBaseUrl>
 <groups>
 <group>*</group>
 </groups>
 <acceptStrengths>
 <strength>STRONG</strength>
 <strength>STRONG_SMS</strength>
 <strength>CLIENT_CERT</strength>
 </acceptStrengths>
 <assuranceLevel>LOW</assuranceLevel>
 <!-- renew is false only for local in order to speedup the development-->
 <cas:renew>true</cas:renew>
 <requestingUserDetails>true</requestingUserDetails>
</client-config>

For more details about steps d. and e., please refer to EU Login documentation in the Confluence
pages provided above.

Configuration

When a user is authenticated against EU Login he or she has specific LDAP groups associated with
him/her. These groups will be used for Domibus to map:

• User roles: AP_ADMIN, ADMIN and USER

• Default domain

The mapping of these groups is performed in domibus.properties which needs to be changed
accordingly. Look for the section related to EU Login mappings and update it:

domibus.security.ext.auth.provider.group.prefix=DIGIT_DOM

This is the prefix of EU Login LDAP groups that Domibus will take into account.

domibus.security.ext.auth.provider.user.role.mappings=DIGIT_DOMRUSR=ROLE_USER;DIGIT_DO
MRADM=ROLE_ADMIN;DIGIT_DOMRSADM=ROLE_AP_ADMIN;

This property will map each EU Login LDAP group to a corresponding Domibus user role. If one
user has more than one LDAP group/role associated, the role with the broader rights will be chosen.

domibus.security.ext.auth.provider.domain.mappings=DIGIT_DOMDDOMN1=domain1;

258

This property will map an EU Login LDAP group to a Domibus domain: it is useful in a Multitenancy
installation, as in single tenancy all users are mapped to Default domain.

If the current user has no roles/LDAP groups or domain associated, he/she could still authenticate
but he or she will not have the privileges to use the Domibus console.

EU Login mappings

All EU Login groups used by Domibus should have this prefix
domibus.security.ext.auth.provider.group.prefix=DIGIT_DOM

Pairs of strings separated by semicolons to map Domibus user roles
to EU Login LDAP groups, the format is
LDAP_GROUP_USER=ROLE_USER;LDAP_GROUP_ADMIN=ROLE_ADMIN;LDAP_GROUP_AP_ADMIN=ROLE_AP_ADMI
N;

Last semicolon is mandatory
domibus.security.ext.auth.provider.user.role.mappings=DIGIT_DOMRUSR=ROLE_USER;DIGIT_DO
MRADM=ROLE_ADMIN;DIGIT_DOMRSADM=ROLE_AP_ADMIN;

Pairs of strings separated by semicolons to map Domibus domain codes
to EU Login LDAP groups the format is
LDAP_GROUP_DOMAIN1=domain1;LDAP_GROUP_DOMAIN2=domain2;
last semicolon is mandatory
domibus.security.ext.auth.provider.domain.mappings=DIGIT_DOMDDOMN1=domain1;

5.18.3. Domibus UI changes

Access to the Domibus user interface is performed using EU Login.

This means when users access Domibus via the http://server:port/domibus URL, they are redirected
to the EU Login page where they need to fill in the username and password. (QUESTION they EU
Login crßedentials) After successfully entering their credentials, users are provided access to the
Domibus application.

Non-super-administrator users that can manage multiple domains will see a domain dropdown
allowing them to switch between all available domains with that role.

The user’s username appears on the right-hand corner on the Domibus Admin console but some
options might be disabled or unavailable (greyed out), such as:

• Change Password (from top right menu): as the password change is managed by the EU Login.

• Users (from left menu): adding or editing existing users will not be possible.

5.19. Domibus statistics
Dropwizard library has been added to Domibus allowing administrators to monitor Domibus with
JVM and custom metrics.

259

http://server:port/domibus

5.19.1. Metrics type

JVM metrics

A set of gauges for JVM memory usage, including stats on heap vs. non-heap memory, plus GC-
specific memory pools.

Memory metrics can be added or removed by modifying the following domibus property:

Memory usage

#Activate drop wizard memory metrics
domibus.metrics.monitor.memory=true

Contains a set of gauges for the counts and elapsed times of garbage collections.

Garbage collector metrics can be added or removed by modifying the following domibus property:

Garbage collector

#Activate drop wizard gc metrics
domibus.metrics.monitor.gc=true

Thread metrics can be added or removed by modifying the following domibus property:

Threads

#Activate drop wizard cached threads metrics
domibus.metrics.monitor.cached.threads=true

Custom metrics

Custom metrics to monitor messages exchange are also available for the following flows:

• Incoming UserMessage

• Incoming UserMessage receipt

• Incoming PullRequest

• Incoming PullRequest receipt

• Outgoing UserMessage

• Outgoing PullRequest

• Outgoing PullRequest receipt

Each of them will have a Dropwizard counter and timer metrics configuration. Please refer to
Dropwizard documentation:

• https://metrics.dropwizard.io/3.1.0/manual/core/#timers,

• https://metrics.dropwizard.io/3.1.0/manual/core/#counters.

260

https://metrics.dropwizard.io/3.1.0/manual/core/#timers
https://metrics.dropwizard.io/3.1.0/manual/core/#counters

JMS Queues count metrics

This metrics will monitor the count of JMS queues.

In order to enable it, please set the following Domibus property to TRUE:

#Activate drop wizard JMS Queues metrics
domibus.metrics.monitor.jms.queues=true

The following property will establish the interval (in seconds) upon which the JMS count are
recalculated:

How long (in seconds) the JMS count will be cached
defaults to 0 - the count isn't cached
domibus.metrics.monitor.jms.queues.refresh.period=0

The last property to set: by default only DLQ queue count is shown. Set to false to add metrics for all
JMS queues:

show counts only for DLQ queue
domibus.metrics.monitor.jms.queues.show.dlq.only=true

5.19.2. Metrics access

Log file

In order to log the metrics under the statistics.log file, please set the following property to true
(default):

#Enable sl4j reporter for dropwizard metrics.
domibus.metrics.sl4j.reporter.enable=true

In case of upgrade, please follow the upgrade procedure to add the relevant appender and logger
within the logback.xml file.

Servlet

Statistics can also be visualized within the browser under the following URL:

<server url>/domibus/metrics.

Metrics can be gauges, counters or timers.

Gauges

The size of the resources such as the JMS queues. If the property

261

domibus.metrics.monitor.jms.queues.show.dlq.only is true, then only the queues whose names
contain the string DLQ will be considered. Otherwise all destinations will be shown, except the ones
listed in eu.domibus.core.jms.JMSManagerImpl#SKIP_QUEUE_NAMES.

NOTE
In a cluster environment, only the queues that belong the the current node will be
monitored. We recommend checking the metrics on each managed server to get a
full picture.

The gauges refresh interval is configured by the property
domibus.metrics.monitor.jms.queues.refresh.period, when this property is set to 0, the queues will
be assessed for each request.

Counters

With this metric, you can count how many threads are currently executing a given method that was
annotated with eu.domibus.core.metrics.Counter.

Example

When dealing with two outgoing messages at the same time, during the processing the counter
eu.domibus.core.ebms3.sender.MessageSenderListener.onMessage.counter is 2 and once the
processing is done, the count is 0.

Timers

Timer implementation uses dropwizard timer that measures the methods annotated with
eu.domibus.core.metrics.Timer. Besides statistics about the duration of the execution of such
methods, it also counts how many times it was executed.

The following counters and timers are currently defined:

Class Name Description of what it counts or what it
times

ReceiptDao deleteMessages Deleting a batch of Receipt messages

SignalMessageDao deleteMessages Deleting a batch of Signal messages

SignalMessageRawEnve
lopeDao

deleteMessages Deleting a batch of Signal Message Raw
entries

UserMessageDao deleteMessages Deleting a batch of User Messages

UserMessageRawEnvelo
peDao

deleteMessages Deleting a batch of User Message Raw entries

MessageAttemptDao deleteMessages.deleteAttem
ptsByMessageIds

Deleting a batch of Message Attempt entries

ErrorLogServiceImpl deleteMessages.
deleteErrorLogsByMessageI
dInError

Deleting a batch of Error Log entries

262

Class Name Description of what it counts or what it
times

MessageAcknowledgeme
ntDao

deleteMessages.
deleteMessageAcknowledge
mentsByMessageIds

Deleting a batch of Message
Acknowledgements

SignalMessageLogDao deleteMessages.deleteMessa
geLogs

Deleting a batch of Signal Message Log
entries

UserMessageLogDao deleteMessages.deleteMessa
geLogs

Deleting a batch of User Message Log entries

MSHDispatcher dispatch Dispatching a SOAP message to the end point

UserMessageDao dropPartition Dropping of a partition

EArchivingRetentionS
ervice

earchive_cleanStoredBatche
s

Cleaning the E-archiving storage for a domain

EArchiveBatchDispatc
herService

earchive_createBatch Running the E-archive batch for a domain
and type

EARKSIPFileService earchive_createDataFile Writing an E-archive data file

EArchivingFileServic
e

earchive_getArchivingFiles Getting the archiving files for an entity id

EArchiveListener earchive_process_1_batch Running an E-archive batch for a batch id
and entity id

EArchivingDefaultSer
vice

earchive1_getEArchiveBatch Running an E-archive batch for a batch entity
id

FileSystemEArchivePe
rsistence

earchive2_createEArkSipStr
ucture

Creating an E-archive structure for a batch of
user messages

EArchivingFileServic
e

earchive24_getBatchFileJson Writing an E-archive batch JSON file

EArchivingDefaultSer
vice

earchive3_executeBatchIsEx
ported

Exporting an E-archive batch

FinalRecipientDao findEndpointUrl Searching for a final recipient endpoint

UserMessageDao findPotentialExpiredPartitio
ns

Searching for potentially expired Oracle
partitions

AS4ReceiptServiceImp
l

generateReceipt Generating a receipt for an incoming SOAP
message

UserMessageHandlerSe
rviceImpl

handleIncomingMessage Handling an incoming valid message

IncomingPullRequestH
andler

incoming_pull_request Handling an incoming pull request

IncomingPullReceiptH
andler

incoming_pull_request_recei
pt

Handling an incoming pull request receipt

MSHWebservice incoming_user_message Handling an incoming user message

263

Class Name Description of what it counts or what it
times

IncomingUserMessageR
eceiptHandler

incoming_user_message_rec
eipt

Handling an incoming user message receipt

SoapUtil logMessage Logging a SOAP message

BackendNotificationS
ervice

notifyMessageReceived Sending a backend notification for message
received

BackendNotificationS
ervice

notifyMessageReceivedFailu
re

Sending a backend notification for message
receive failure

BackendNotificationS
ervice

notifyMessageResponseSent Sending a backend notification for message
receive failure

BackendNotificationS
ervice

notifyOfMessageStatusChan
ge

Sending a backend notification for message
receive failure

BackendNotificationS
ervice

notifyOfSendSuccess Sending a notification of status change for a
user message

PluginMessageSendSuc
cessNotifier

notifyPluginSendSuccess Sending a notification for a successful
sending of a user message

MessageSenderListene
r

onMessage Processing an outgoing message

PluginAsyncNotificat
ionListener

onMessage Sending a plugin notification about
processing a message

RetentionListener onMessage.deleteMessages Deleting messages

PullReceiptListener outgoing_pull_receipt Sending a pull receipt for a pulled message

PullMessageSender outgoing_pull_request Processing a pull request

AbstractUserMessageS
ender

outgoing_user_message Validating and sending a user message

UserMessageHandlerSe
rviceImpl

persistReceivedMessage Validating and persisting a received message

MessageSubmitterHelp
er

persistSentMessage Persists a sent user message and user
message log

AbstractIncomingMess
ageHandler

processMessage Validating and processing a message

MessageRetentionDefa
ultService

retention_deleteExpiredMes
sages

Deleting and archiving expired messages
based on the retention policy

MessageRetentionPart
itionsService

retention_deleteExpiredMes
sages

Dropping a partition with no ongoing
messages based on the retention policy

UserMessageDefaultSe
rvice

scheduleSending Sending user messages to the appropriate
MSH JMS queue

JMSManagerImpl sendMessageToQueue_map1 Sending a user message of type
MAP_MESSAGE to the internal JMS queue

264

Class Name Description of what it counts or what it
times

JMSManagerImpl sendMessageToQueue_map2 Sending a user message of type
MAP_MESSAGE to the internal JMS queue

JMSManagerImpl sendMessageToQueue_text Sending a user message of type
TEXT_MESSAGE to the internal JMS queue

MessageSenderService sendUserMessage Validating and sending an AS4 message to C3

MessagingServiceImpl storeMessage Storing a received message or scheduling the
storing of a message to be sent

MessagingServiceImpl storePayloads Storing the payloads of a message

MessagePropertyValid
ator

submissionValidate Validating the properties of a submission

MessageSubmitterImpl submit Validating and submitting a message

MessagePropertyValid
ator

validate Validating the properties of a user message

Jmx

To access the metrics via jmx, please set the following property to true:

Enable jmx reporter for dropwizard metrics. The following warning:
We do not recommend that you try to gather metrics from your production environment.
JMX’s RPC API is fragile.
For development purposes and browsing, though, it can be very useful.
domibus.metrics.jmx.reporter.enable=false.

5.20. Payload Encryption
Data at rest is not encrypted by default in Domibus. This means that the payloads are stored in C2
exactly as they were received from C1. The same for payloads received from C2 and stored in C3.

The payloads stored in C2 and C3 are not accessible to third parties. Nevertheless, it is a good
practice to encrypt the payloads to increase the security level.

Data at rest encryption can be activated using the property domibus.payload.encryption.active=true.
Once activated, Domibus encrypts the payloads stored in C2 and C3 using symmetric encryption
with AES/GCM/NoPadding algorithm. Domibus generates the symmetric key used to encrypt
payloads the first time the payload encryption is activated. The generated symmetric key is stored
in the Domibus database. A symmetric key is generated for each domain in case of multitenancy.

Encrypting data at rest is transparent for C1/C4, so if C4 downloads a message from C3, it will
receive the payloads un-encrypted as they were sent by C1.

265

5.21. Message Prioritization

5.21.1. Introduction

When Domibus C2 receives concurrently from C1 a lot of UserMessages to be sent, it cannot keep
the pace of sending UserMessages to C3. Consequently, JMS messages start accumulating in the
SendMessageQueue.

As the JMS messages from the SendMessageQueue are processed in a random order, for some
UserMessages there might be a big delay between the time C1 submits a message to C2 for sending
and the actual sending of the UserMessage from C2 to C3.

Moreover, in some use cases there is a need to assign a high priority to some UserMessages. Due to
their urgency, these high priority messages must be sent as soon as possible regardless of when
they have been submitted to C2.

5.21.2. Solution overview

Domibus assigns a priority to each UserMessage based on service and action when the message is
submitted by C1. All UserMessages are scheduled for sending using the existing SendMessageQueue.

There are two options for processing messages from the SendMessageQueue:

1. Using the underlying JMS infrastructure if it supports message priority on a message queue.

2. Using dedicated JMS listeners (with a specific concurrency) for each configured message
priority that consumes only JMS messages having the configured priority using a JMS selector.
This solution can also take advantage on the JMS infrastructure support for message priority.

5.21.3. Solution detail

Domibus C2 assigns a priority to each UserMessage it receives from C1 to implement message
prioritization. The UserMessage priority is determined based on the service and action values of the
UserMessage. The priority varies from 1 to 9, 1 for low priority messages and 9 for high priority
messages.

For instance, for the following service and action values from the UserMessage:

<eb:CollaborationInfo>
<eb:Service type="tc1">bdx:noprocess</eb:Service>
<eb:Action>TC1Leg1</eb:Action>
</eb:CollaborationInfo>

In order to assign a priority to the above UserMessage a priority rule name must be defined first in
domibus.properties configuration file.

For instance, one can define a priority rule named medium:

266

domibus.dispatcher.priority.medium=Medium priority messages

Once the rule name is defined, other properties, like service, action, priority and concurrency can
be also defined using the rule name. As we will see in the next sections the concurrency property is
optional. For instance:

domibus.dispatcher.priority.medium.service= bdx:noprocess
domibus.dispatcher.priority.medium.action= TC1Leg1, TC1Leg2, TC1Leg3
domibus.dispatcher.priority.medium.value=5
domibus.dispatcher.priority.medium.concurrency=10-15

The action property configured for a specific rule supports a list of action values separated by
comma. The action property will match if any of the list of actions will match. In the example above
we have configured for instance three actions values separated by commas.

When a UserMessage having a service/action combination is matching a service/action combination
configured for a priority rule, the priority configured for the matching rule will be assigned to the
UserMessage.

It is not mandatory to configure both service and action for a priority rule. Only the service or only
the action can be configured, in which case the priority will match if the service or the action
configured will match.

NOTE service/action combinations configured for routing rules must be unique.

After the priority of the UserMessage has been determined, C2 schedules the UserMessage for sending
it to C3. This is performed by sending a JMS message to the SendMessageQueue containing the message
id of the message to be sent and the message priority using JMSPriority header. For the example
above the priority assigned to the message will be 5.

Once the priority has been determined for each UserMessage/JMSMessage, there are two options for
processing messages from the SendMessageQueue:

Using the underlying JMS infrastructure

This solution can be used if the underlying JMS infrastructure supports message priority on a
message queue. Such infrastructure will guarantee the priority delivery of high priority messages
using the JMSPriority header value. This approach is suited when there are low to medium number
of high priority messages processed by the system.

In this case there is only one JMS listener that is consuming JMS messages from the
SendMessageQueue. This JMS listener is the default listener that is used by Domibus to process all JMS
messages from the SendMessageQueue, regardless if message prioritization is used. The default JMS
listener can be configured in domibus.properties in the Dispatcher section.

Please find below an example about how to configure a rule for medium priority messages, the
concurrency property is not used:

267

domibus.dispatcher.priority.medium.service= bdx:noprocess
domibus.dispatcher.priority.medium.action= TC1Leg1, TC1Leg2, TC1Leg3
domibus.dispatcher.priority.medium.value=5

In case the SendMessageQueue is flooded with high priority messages only the high priority messages
will be consumed (most of JMS brokers will try to deliver high priority messages first), leaving the
lower priority messages in the queue potentially for long periods of time (in extreme cases even
days). For this specific case, the solution from the next section is more suited.

Using dedicated JMS listeners (with a specific concurrency) for each configured message
priority

This approach is suited in case a finer level of granularity is desired to JMS message consumption
or for tackling the case mentioned above when high priority messages are flooding the system. In
this scenario we have a quality of service which gives a chance to lower priority messages to be
consumed.

In this scenario, dedicated JMS listeners (with specific concurrency) consume only the JMS
messages with a specific priority given by the JMSPriority header. This is performed using a JMS
selector filtering messages for each configured message priority. This solution can also take
advantage o the JMS infrastructure support for message priority.

At start up Domibus reads all the priority rules configured in domibus.properties. For each
configured priority rule with a defined concurrency property, Domibus creates programmatically a
JMS listener with a specific JMS selector listening to the SendMessageQueue.

Please find below an example about how to configure a rule for medium priority messages with a
JMS selector, the concurrency property is mandatory:

domibus.dispatcher.priority.medium.service= bdx:noprocess
domibus.dispatcher.priority.medium.action= TC1Leg1, TC1Leg2, TC1Leg3
domibus.dispatcher.priority.medium.value=5
domibus.dispatcher.priority.medium.concurrency=10-15

Multiple JMS listeners are listening the SendMessageQueue using a JMS selector that takes into account
the message priority. JMS listeners that are processing messages with high priority can have a
higher concurrency assigned, meaning multiple threads are assigned to process concurrently high
priority messages. This way high priority messages can be processed faster than messages with
lower priority.

UserMessages not matching any priority rule will be scheduled on the same SendMessageQueue and
handled by a default JMS listener configured with a specific concurrency. This way it is not
mandatory to define a priority rule for all messages. The default JMS listener serves as a catch all
messages if they do not match any priority rule.

To understand the solution, the following example contains a configuration with 3 JMS listeners for
handling messages with low, medium and high priority:

268

#low priority
domibus.dispatcher.priority.low=Low priority messages
domibus.dispatcher.priority.low.service= service1
domibus.dispatcher.priority.low.action= action2
domibus.dispatcher.priority.low.value= 1
domibus.dispatcher.priority.low.concurrency=2-5

#medium priority
domibus.dispatcher.priority.medium=Medium priority messages
domibus.dispatcher.priority.medium.service= service2
domibus.dispatcher.priority.medium.action= action2
domibus.dispatcher.priority.medium.value= 4
domibus.dispatcher.priority.medium.concurrency=10-15

#high priority
domibus.dispatcher.priority.medium=High priority messages
domibus.dispatcher.priority.medium.service= service3
domibus.dispatcher.priority.medium.action= action3
domibus.dispatcher.priority.high.value= 9
domibus.dispatcher.priority.medium.concurrency=30-50
#default priority for messages not matching any priority rule above
domibus.dispatcher.concurrency=5-20

5.22. SSL Offloading
In this section you will find more details about how to configure SSL offloading and when to
actually use it. SSL offloading only makes sense in the context of dispatching Domibus messages to
secure endpoints (i.e. a receiving PMode party having its URL configured using the “https:// scheme,
instead of the “http://” one).

When dispatching to a secure endpoint, Domibus creates a secure SSL connection to the receiving
party within the application. This is sometimes not desired, for example in the case when Domibus
is running behind a forward SSL proxy installed as a DMZ proxy. The DMZ proxy may handle
connection from applications other that Domibus, making it the central node responsible for
relaying communication outside the trusted network it is serving. In this scenario, the DMZ proxy is
usually configured for setting the SSL connections itself, having all the required configuration like
truststores deployed in it. This is problematic, since the SSL connection cannot be initiated twice:
the creation of the SSL connection needs to be offloaded from Domibus to the DMZ proxy.

5.22.1. Configuration

In the current setup, Domibus uses CXF to dispatch messages between its corners - named further
below as C2 and C2. Internally, CXF uses java.net.URL for creating the connection between C2 and
C3, with the possibility to use an optional HTTP/SOCKS proxy.

In the case the receiving party has a secure HTTPS endpoint, the java.net.URL is responsible for
creating the SSL socket and starting the SSL handshake (see Fig. 9).

269

PMode Page (Fig. 9)

In order to offload the SSL to another application (e.g. SSL forward proxy), we need to prevent the
SSL handshake to happen in Domibus, in the C2 initiating corner. A new
domibus.connection.cxf.ssl.offload.enable Domibus property has been added to prevent this SSL
handshake from happening within Domibus, even when the C3 endpoint uses an HTTPS URL.

When this parameter is set to true, Domibus will replace the default HTTPS URL with a URL created
from the HTTP version of the endpoint address (see Fig. 10). This new URL will create a plain HTTP
connection and will not trigger an SSL handshake anymore.

In order to allow the SSL forward proxy to identify the correct endpoint address, the protocol of the
new HTTP URL is set back to HTTPS. The end result is that this HTTP URL will trigger a plain HTTP
connection on the HTTPS endpoint address.

PMode Page (Fig. 10)

270

Chapter 6. Administration Tools

6.1. Administration Console
Domibus administration console can be used by administrators and users to easily manage
Domibus application.

The administration dashboard is reachable via the following URLs:
http://<your_server>:<your_port_number>/domibus (Tomcat, WildFly and Weblogic).

The admin console is made of several sections:

Messages

in this page, the administrator can see the details of the messages and re-process them if
required. The administrator can also navigate through the messages history and download
specific messages if needed.

Message Filter

in this page, the administrator can set defined filters and access them individually for edition
directly in the list.

Error Log

in this page, the administrator can view the list of application errors, make searches on error
messages and filter them.

PMode

in this page, the administrator can upload, download and edit the PMode file. The administrator
can also edit the list of parties configured in the PMode and access them individually for
modification purposes. The user has also access to a list of archived PMode content that the user
can restore.

JMS Monitoring

in this page, the administrator can monitor and manage the contents of the JMS queues.

Truststores

in this section, the user can manage the truststores.

Under Domibus, the administrator can upload a new truststore to replace the current one. There
is also a button to reload the keystore from the file system (using the same keystore properties).

Under TLS Truststore, the user can manage the trusted certificates of the TLS truststore.

Users

On this page, the administrator can create and manage users including: grant access rights,
change passwords, assign roles, etc.

Plugin Users

On this page, the administrator can manage the plugin users: create, delete, edit, grant access

271

http://<your_server>:<your_port_number>/domibus

rights and roles, etc.

Audit

On this page, the administrator has an overview of changes performed in the PMode, Parties,
Message Filter and Users pages.

Alerts

This page displays the alerts generated by Domibus in case of unusual behaviour of the
application. The alerts are configured by the administrator.

Connection Monitoring

On this page the administrator can perform basic test of the communication configuration
between two access points and see the status of these connections.

Logging

This page displays the logging levels of various libraries and packages and to change their levels.

Properties

This page displays the Domibus and external modules properties and their values and allows to
change them.

Domains

This page displays the existing domains in Multi tenancy configuration and allows to activate or
de-activate them at runtime.

Change Password

It is accessible from the hamburger menu found at the top-right corner of the screen. On this
page the administrator can change his/her password if it is about to expire. This page is
displayed also automatically, after the login, if the user has the default password.

6.1.1. Multitenancy

In Multitenancy mode, each tenant domain has its own set of configuration files: Keystore,
Truststore, PMode, Domain properties, etc. Users are defined for each tenant domain.

The user named super with role ROLE_AP_ADMIN, has the privileges to access all the available
domains.

When logged as super, you are able to select a specific tenant domain in the upper right part of the
admin console in a drop-down list (default or dom50 domain in the example below):

6.2. Message Log
Domibus administration dashboard includes a message logging page that gives the administrator

272

information related to sent messages, received messages and their status (Sent, Received, Failed,
acknowledgeD, etc.):

There is also support for downloading the non-repudiation XML receipts.

The following state machines illustrate the evolution of the processing of messages according to the
encountered events:

State machine of Corner 2 (sending access point)

State machine of Corner 3 (receiving access point)

6.3. Message Filtering
Domibus allows the routing of messages to different plugins, based on some messages attributes:

• From: initial sender (C1)

• To: final recipient (C4)

• Action: defined as 'Leg' in the PMode

• Service: as defined in the PMode

The following rules apply:

273

• Domibus takes into account the ordered list of 'filters' to route all messages. The first filter
matching the filter criteria will define the target plugin. The order of the plugin is therefore
important in the routing process.

NOTE

• If the filters are all mutually exclusive, the order would not matter.

• The 'Persisted' column indicates whether the plugin filter configuration has
already been saved. If a plugin filter configuration has not already been saved,
the 'Persisted' value is unchecked and an error message is shown on the top of
the screen. In this case, it is strongly recommended to review the filters
configuration and save it afterwards.

• One plugin may be applied to multiple filters. This is done by the use of the 'OR' criteria. (cf.
backendWebservice in the example below).

• Multiple attributes could also be defined in one filter. This is done by the use of the 'AND'
criteria. (cf. the first filter in the example below).

• One filter may have no criteria, meaning that all messages (not matching previous filters) will
be routed to the corresponding plugin automatically. As a result, subsequent filters will
therefore not be considered for any incoming message. In the example below, the last filter
routes all remaining messages to plugin 'backendWebservice'.

Use the New and Delete buttons to create or delete a filter.

As the order matters, move up and down actions allow placing each filter in the right order:

Cf. Move Up and Move Down buttons.

274

After some changes have been applied to the filters, the Cancel and Save buttons become active:

• Press Cancel to cancel the changes

• Press Save to save the changes and activate them immediately.

The console will ask the user to confirm the operation, before proceeding.

Example of message attributes used for routing and matching the first filter used in the example
above:

• Action: TC1Leg1

• Service: bdx:noprocess:tc2

• From: domibus-blue:urn:oasis:names:tc:ebcore:partyid-type:unregistered

• To: domibus-red:urn:oasis:names:tc:ebcore:partyid-type:unregistered

That information can be found in the incoming message received by Domibus (e.g. see below):

<ns:PartyInfo>
 <ns:From>
 <ns:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
blue</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns:Role>
 </ns:From>
 <ns:To>
 <ns:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
red</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder</ns:Role>
 </ns:To>
</ns:PartyInfo>
<ns:CollaborationInfo>
 <ns:Service type="tc1">bdx:noprocess</ns:Service>
 <ns:Action>TC1Leg1</ns:Action>
</ns:CollaborationInfo>

6.4. Application Logging

6.4.1. Domibus log files

Domibus has three log files listed below:

domibus.log

this is the main log file log and contains both the security and business logs plus miscellaneous
logs as debug information, logs from one of the framework used by the application, etc.

275

domibus-security.log

this log file contains all the security related information. For example, you can find information
about the clients who connect to the application. By default, the security information is included
in domibus.log and this log is disabled

domibus-business.log

this log file contains all the business related information. For example, when a message is sent
or received, etc. By default, the business information is included in domibus.log and this log is
disabled.

statistics.log

includes information on the occurrence of different events (receive message, submit message,
etc).

6.4.2. Logging properties

It is possible to modify the configuration of the logs by editing the logging properties file:

<edelivery_path>/conf/domibus/logback.xml

Async logging

It is possible to improve logging speed and reduce logging latency by using async logging. An
example is present in the logging properties file: <edelivery_path>/conf/domibus/logback.xml.

1. Uncomment the part:

<!-- Async logging: uncomment this-->
<!-- <appender name="DEFAULT-ASYNC-FILE"
class="ch.qos.logback.classic.AsyncAppender">-->
<!-- <queueSize>3000</queueSize>-->
<!-- <discardingThreshold>0</discardingThreshold>-->
<!-- <appender-ref ref="file" />-->

276

<!-- </appender>-->

2. Comment the line

<appender-ref ref="file"/>

3. Uncomment the line:

<!--
<appender-ref ref="DEFAULT-ASYNC-FILE" />
-->

4. The root logging should look like this:

<root level="WARN">
 <appender-ref ref="DEFAULT-ASYNC-FILE" />
 <appender-ref ref="stdout"/>
</root>

5. Restart the application server

6.4.3. Error Log page

To go to the error log page of the Domibus Admin Console, click on the Error log menu entry.

This option lists all the Message Transfers error logs and includes the ErrorSignalMessageId,
ErrorDetail and Timestamp. You can sort messages by using the up or down arrow to search for a
specific message.

Domibus – Error Log page

6.5. PMode
In the Administration console you can view the content of the current PMode:

PMode page

277

You can edit the content of your current PMode in the administration console and save the changes
by clicking on Save or discard the changes by clicking on Cancel. You can upload a PMode file or
download the current one.

Under Archive the history of the PMode changes is displayed:

Domibus keeps a snapshot of the PMode each time the PMode is modified. The user can restore a
particular version and make it the current PMode by clicking on the restored button at the far right
of the table.

278

Under Parties, the user can manage the parties in the PMode. Parties can be searched using filter
criteria, they can be added, updated or deleted.

The PMode is updated and a new PMode snapshot is created when parties are added, updated or
deleted.

6.6. Queue Monitoring

NOTE

To prevent the user from moving messages from any queue to any other queue:

• The user should be able to move messages only to the original queue which can
be retrieved from the JMS Messsage properties.

• In case the original queue cannot be determined, the user can move to any
queue the message except the source.

• In case of more than one message to be moved, all messages must have the same
original queue. Otherwise, an error message is displayed.

• In case the original queue is the same as the source queue, an error message is
displayed.

Domibus uses the following JMS queues to handle the messages:

Destination
type

JNDI name Comment Description

Queue jms/domibus.internal.dispatch.queue No redelivery
because
redelivery of
MSH messages
is handled via
ebMS3/AS4.

This queue is used
for scheduling
messages for
sending via the
MSH.

279

Destination
type

JNDI name Comment Description

Queue jms/domibus.internal.notification.unknown Notifications about
received messages
(by the MSH) that
do not match any
backend routing
criteria will be sent
to this queue. In
production
environment, this
queue should be
monitored in order
to handle those
messages manually.

Topic jms/domibus.internal.command This topic is used
for sending
commands to all
nodes in a cluster.
For example, it is
used after a PMode
was uploaded in
order to notify all
nodes to update
their PMode cache
(in case caching is
enabled).

Queue jms/domibus.backend.jms.replyQueue This queue is used
for sending replies
back to the sender
of a message.
Replies contain: a
correlationId,
ebMS3 messageId
(if possible), error
messages (if
available).

Queue jms/domibus.backend.jms.outQueue Messages received
by the MSH (that
match the routing
criteria for the JMS
plugin) will be sent
to this queue.

280

Destination
type

JNDI name Comment Description

Queue jms/domibus.backend.jms.inQueue This queue is the
entry point for
messages to be sent
by the sending
MSH.

Queue jms/domibus.backend.jms.errorNotifyConsu
mer

This queue is used
to inform the
receiver of a
message that an
error occurred
during the
processing of a
received message.

Queue jms/domibus.backend.jms.errorNotifyProduc
er

This queue is used
to inform the
sender of a
message that an
error occurred
during the
processing of a
message to be sent.

Queue jms/domibus.notification.jms Used for sending
notifications to the
configured JMS
plugin.

Queue jms/domibus.internal.notification.queue This queue is used
to notify the
configured plugin
about the status of
the message to be
sent.

Queue jms/domibus.notification.webservice Used for sending
notifications to the
configured WS
plugin.

281

Destination
type

JNDI name Comment Description

Queue jms/domibus.DLQ This is the Dead
Letter Queue of the
application. The
messages from
other queues that
reached the retry
limit are redirected
to this queue.

Table 4 - Queue Monitoring

All these queues can be monitored and managed using the JMS Monitoring page, which is
accessible from the JMS Monitoring menu of the administration console:

Warning:

For Tomcat server, the maximum number of shown messages in the queue monitoring is defined
by the ‘domibus.listPendingMessages.maxCount’ property.

In the Source field, we have all the queues listed, along with the number of messages pending in
each queue:

If a queue is used internally by the application core, its name will start with [internal]. A regular
expression is used to identify all the internal queues. The value for this regular expression can be
adapted in the domibus.jms.internalQueue.expression property from the
<edelivery_path>/conf/domibus/domibus.properties* file.

In the JMS Monitoring page the following operations can be performed:

1. Inspecting and filtering the messages from a queue based on the fields:

a. JMS type: the JMS header

b. Selector: in this field you can enter any JMS message properties with the correct expression
to filter on it

NOTE
For more information on the JMS message headers and the JMS message
selector, please check the official documentation at https://docs.oracle.com/

282

https://docs.oracle.com/cd/E19798-01/821-1841/bnces/index.html

cd/E19798-01/821-1841/bnces/index.html.

2. Move a message:

a. Move the message from the DLQ to the original queue: Select the JMS message from the DLQ
and press the Move icon (in RED marker):

Select the original queue from the Destination dropdown list in the dialog box:

Press the Ok button in the dialog, and the message will be moved to

the original queue.

+ NOTE: the details of a message can be viewed by selecting it (double-clicking) from the message
list:

283

https://docs.oracle.com/cd/E19798-01/821-1841/bnces/index.html

+

1. Click Close to exit the dialog box.

2. Move multiple messages from the DLQ to the original queue:

3. Select multiple JMS messages from the DLQ and press the Move icon button:

4. Select the original queue from the Destination dropdown list, and click Ok.

284

NOTE
Please make sure that all the selected messages came from the same source
queue. Use the filtering capabilities to ensure this.

5. Delete message(s): delete one or more messages from one queue:

6. Select one or several JMS messages from the source queue and press the Delete button:

7. By clicking the Delete button, the selected messages are removed from the screen, but you still
have to confirm your changes by clicking on the Save button. As long as you have not clicked on
the Save button, your changes are not taken into account in the system.

285

8. To cancel the changes you made, click on the Cancel button instead:

6.7. Configuration of the queues
Queues should be configured appropriately and according to the backend system needs and re-
delivery policy.

6.7.1. Tomcat

Domibus uses ActiveMQ as JMS broker. The various queues are configured in the
<edelivery_path>/conf/domibus/internal/activemq.xml* file.

Please see ActiveMQ redelivery policy and configure the parameters below if needed:

<redeliveryPlugin fallbackToDeadLetter="true" sendToDlqIfMaxRetriesExceeded="true">
<redeliveryPolicyMap>
<redeliveryPolicyMap>
<defaultEntry>

286

http://activemq.apache.org/redelivery-policy.html

<!-- default policy-->

<redeliveryPolicy maximumRedeliveries="10" redeliveryDelay="300000"/>
</defaultEntry>

<redeliveryPolicyEntries>
 <redeliveryPolicy queue="domibus.internal.dispatch.queue"
maximumRedeliveries="0"/>
 <redeliveryPolicy queue="domibus.internal.pull.queue" maximumRedeliveries="0"/>
</redeliveryPolicyEntries>

</redeliveryPolicyMap>
</redeliveryPolicyMap>
</redeliveryPlugin>

Access to the JMS messaging subsystem is protected by a username and a password in clear text
defined in the domibus.properties file <edelivery_path>/conf/domibus/domibus.properties.

It is recommended to change the password for the default user:

• activeMQ.username=domibus

• activeMQ.password=changeit

NOTE
The user activeMQ.username and the password activeMQ.password defined in the
domibus.properties file are referenced in the authentication section of the
activemq.xml file provided.

6.7.2. WebLogic

Please use the admin console of WebLogic to configure the re-delivery limit and delay if necessary.

6.7.3. WildFly

Please use the admin console of WildFly to configure the re-delivery limit and delay if necessary.

6.8. Truststores
In the Truststores section, you can manage the Domibus truststores and TLS truststores.

You can upload a new truststore to replace the current one and define its password.

When starting Domibus for the first time, the keystore and truststore pointed to by the
corresponding properties are read from the disk and saved in the database for further use. On
subsequent restarts, Domibus checks if truststores are present in the database and if it is the case,
Domibus will use them.

To force the reading of the keystore from the disk (even if present in the database), there is a reload
button on this page.

287

In the TLS Truststore screen, you can manage the trusted certificates of the TLS truststore. You can
upload a new truststores to replace the current one and define its password, download it and also
add/remove certificates to it.

When starting Domibus for the first time, the TLS truststore present in the
clientauthentication.xml file is read from the disk and saved in the database for further use. On
subsequent restarts, Domibus checks if it is present in the database and, if it is the case, Domibus
will use it.

[image]

6.9. Users

6.9.1. Adding new users

New users can be added to the existing default users (admin and user) by clicking on New:

2. For each new user, you must enter a username, an email, a role and a password:

3. Click on OK:

288

4. Again, once the user has been created, do not forget to click on the Save button on the Users
page to register your changes in the system:

6.9.2. Changing passwords

All user passwords have an expiration period, configured in the domibus properties. Some days
before expiring (also configured in properties), the user receives a warning after the login and also
an alert. The new password cannot be one of the last 5 used passwords (the number can be
configured). Also, the password must meet complexity rules configured in the properties. If it does
not meet them, then an error message is displayed (can also be configured).

The passwords of the default users (admin, user and super users) automatically expire after 3 days.
This period can be configured. Once logged-in with the default password, the system redirects the
user to the Change Password page so that he/she can immediately change it. The default password
check can be disabled from the properties.

1. In order to change the password for a user, navigate to the Users menu entry to obtain the list

289

of configured users:

2. To edit the user details, click on the EDIT icon (in RED). DO NOT click on the BIN icon as this
would DELETE the record.

3. In the popup window, choose a new password using the rules shown:

4. Confirm the password:

290

5. Click on OK:

6. When done, either click on Save, to save the new password or Cancel to leave the password
unchanged.

6.9.3. User Account Lockout Policy

A user account lockout policy has been implemented on Domibus Admin Console. By default, if a
user tries to log to the Admin Console with a wrong password 5 times in a row, his account will be
suspended (locked):

291

You can define in the domibus.properties file the number of failed attempts after which a user’s
account will be locked.
See also, Domibus Properties.

By default, a user remains suspended during one hour before his account is automatically unlocked
and the user can try to log again.

If the user wants his account to be unlocked without waiting the default one hour, he can ask his
administrator to unlock the account. To unlock the account, the administrator must change the
user’s status on the Admin Console from “Suspended” to “Active”.

Select the suspended user and click on “Edit”:

Re-activate the user (unlock it) by checking the “Active” status and confirming with OK:

292

Do not forget to click on Save on the next window and then on Yes to confirm the change.

6.10. Plugin Users
In Multitenancy mode the plugins security is activated by default, no matter if value configured in
domibus.properties for the domibus.auth.unsecureLoginAllowed property.

This is needed in order to identify the request performed by the user and associate it to a specific
domain. As a result, every request sent to Domibus needs to be authenticated.

A plugin must use a configured plugin user associated to a specific domain in order to authenticate
every request sent to Domibus. The management of the plugin users is implemented in the Plugin
Users page:

All plugin user passwords have an expiration period, configured in the domibus properties. The
new password cannot be one of the last 5 used passwords (the number can be configured). Also, the
password must meet complexity rules configured in the properties. If it does not meet them, then
an error message is displayed (can also be configured).

The passwords of the default users expire in 1 day. This period can be configured.

The example below shows a plugin user that has been added:

293

Note that the Original user ID can be obtained from the orginalSender Property in the SoapUI
project as shown here:

Do not forget to click on Save on the next window and then on Yes to confirm the change.

6.11. Audit
Audit support: Domibus keeps track of changes performed in the PMode, Parties, Message Filter
and Users pages.

6.12. Alerts
Users can configure the alert feature as described in Alerts.

The purpose of the alert feature is to use different available media to notify the Domibus
administrator in case of unusual behaviour. Currently alerts can be sent via mail.

The notification emails are sent to the destination recipient or recipients, configured in domibus
properties. Also, for the alerts pertaining to the admin console users, the alerts are sent to the saved
email address of the user to whom the notification is addressed.

294

There are three types of alerts that can be configured:

• Message Status Change

• Authentication Issues

• Certificate expiration

Example: If the CERT_IMMINENT_EXPIRATION alert is selected, the following screen is presented:

The generated alerts can be checked in the Alerts page of the Administration console.

6.12.1. Example: Alerts on SEND_FAILURE

295

6.13. Connection Monitoring
The Connection Monitoring section allows communication partners to perform a basic test of the
communication configuration (including security at network, transport and message layer, and
reliability) in any environment, including the production environment.

All parties that are defined in the Domibus properties are listed on the Connection Monitoring
page of the Administration console, as shown below.

The user can activate or deactivate the monitoring feature by clicking on the Monitoring button of
the desired party. Once activated, the monitoring service will send a test message on a frequency
defined in the ‘domibus.monitoring.connection.cron’ property of the domibus.properties file.

The user can also activate or deactivate the monitoring of parties in the
‘domibus.monitoring.connection.party.enabled’ property of the domibus.properties file.

SEE ALSO

For a:

• Brief introduction, see the Domibus Properties.

• Full reference of the Domibus properties, see the Properties Reference
Guide.

The user can manually trigger a test by clicking on the Arrow under Actions.

To see the details of the connection that was tested, the user can click on the magnifying glass
under Actions:

296

Clicking on Test will launch a connection test manually and clicking on Update will refresh the
connection test information.

6.14. Logging
In the Logging section of the Administration Console, the list of all packages logging levels are
displayed and can also be modified or reset.

6.15. Domains
In the Domains section of the Administration Console, the list of all available domains is displayed
and you can activate or deactivate a domain at runtime.

297

6.16. Properties
For a full list of the domibus properties and their specification, see the Domibus Properties
Reference Guide. Some of the displayed properties can be edited, others are read-only.

NOTE
When the Domibus server(s) is(are) restarted, the Domibus properties are reverted
back and changes made via the Administration Console are lost. This feature is
useful when a user wants to test a change in a Domibus property at runtime.

To change a Domibus property, the user clicks in the Property Value field and edits it (if the
property is read-only, the user will not be able to edit that field). Once done, the user clicks on the
Save icon to save the changes.

To revert the changes, the user can click on the Back arrow next to the Save icon: The back-arrow is
only active while editing a specific field, and only restores the property to the value it had at the
moment of starting editing, but not to the initial value in the domibus.properties file.

298

Chapter 7. Operational Guides
In this section you will find some recommendations about how to administer Domibus efficiently.
The following topics are tackled: JMS Queue management, log management, capacity planning,
database management and the monitoring of message life cycle.

7.1. JMS Queue Management
Domibus provides following out-of-the-box features to manage the JMS Queues used in Domibus
(see also Queue Monitoring:

• Inspecting and filtering the messages from a queue based on the contents of Source, Period, JMS
Type or Selector

• Move message from the DLQ (Dead Letter Queue) to the original Queue

• Delete stuck or pending message(s) from Queues

It is recommended to monitor the Queue size and number of messages in the different Queues. If
some messages are stuck in any of the Queue then alerts must be sent to the Domibus
Administrator.

Please pay special attention to the dead letter queue (DLQ). Messages stuck in this queue is a signal
that there is some issue in Domibus that needs to be analysed and an alert should be sent to the
Domibus Administrator.

The ‘ListPendingMessages’ operation on WS Plugin browses the JMS queue. Max count is
limited to destination MaxBrowsePageSize which can be changed via the
‘domibus.listPendingMessages.maxCount’ Domibus property.

If the received messages are not returned by the webservice listPendingMessages method, you
should:

1. increase the value of the domibus.listPendingMessages.maxCount property

2. delete the messages from the domibus.notification.webservice queue with selector
NOTIFICATION_TYPE=MESSAGE_SEND_SUCCESS using JMX tools: http://activemq.apache.org/how-
can-i-monitor-activemq.html.

7.2. Log Management

7.2.1. Log Level

It is recommended that the log level is correctly set in all the environments:

• The log level should be set to INFO/DEBUG in all the test environments for debugging purpose.

• The log level should be set to ERROR/WARN in production environment (keeping log level to
INFO in production environment will degrade the performance of Domibus).

299

http://activemq.apache.org/how-can-i-monitor-activemq.html
http://activemq.apache.org/how-can-i-monitor-activemq.html

7.2.2. Log Rotation and Archiving

It is recommended that log rotation and archiving logic is implemented.

Domibus provides by default log rotation, but Domibus administrator should manage Domibus
archiving logic.

7.2.3. Log Monitoring

It is recommended to monitor continuously Domibus logs. It can be done using an automated script
which looks for keywords like "ERROR", WARNING", etc. and reports all the errors and warnings to
the Domibus administrator.

7.3. Capacity Planning

7.3.1. JVM Memory Management

Hereafter some recommendations:

• the JVM memory parameters must first be tested in a test environment with the load expected
in production

• the JVM parameters i.e. heap size must be monitored with the help of automated scripts and any
abnormal hikes in heap size must be reported to the administrator.

7.3.2. CPU, IO operations and Disk Space Monitoring

CPU, IO operations and disk space must be continuously monitored using automated scripts. Any
abnormal hikes must be reported to Domibus administrator and further investigated.

7.4. Database Management

7.4.1. Database Monitoring

It is important to monitor the database size.

The Payload of the message is deleted from the sending Access Point. Only the metadata of the
message stays in the table. The Payload from the receiving Access Point is deleted based on the
retention policy defined in the PMode settings.

Domibus uses approximately 40 MB of table space to store the metadata of 1000 messages.

7.4.2. Database Archiving

Since the Database contains AS4 receipts that are used for non-repudiation purposes, they should
be archived before purging the database.

The metadata of the database can be purged if it is no longer required.

300

7.4.3. Monitor Message Life Cycle

It is recommended to monitor the message status in the TB_MessageLog table. Automated scripts
can be used to count different status in the table.

Please pay special attention to the following statuses:

WAITING_FOR_RETRY

this means that there is some issue between C2 and C3 that must be resolved.

SEND_FAILURE

this means that that there is some issue between C2 and C3 that must be resolved.

SEND_ENQUEUED

this is part of the successful message life cycle, however abnormal increase in the count of
messages with this status means that there is an issue. Further investigation is recommended.

7.5. Domibus Monitoring/Domibus IsAlive AP

7.5.1. Database Monitoring

Monitoring or IsAlive external service, checks the status of Domibus database, JMS Broker and
Quartz Triggers using REST API.

7.5.2. Check Domibus DB, JMS Broker and Quartz Trigger isAlive

This REST endpoint will get the monitoring details of Domibus by checking its DB, JMS Broker and
Quarter Trigger with or without the filters.

• HTTP method: GET

• http://localhost:8080/domibus/ext/monitoring/application/status

• Response: HTTP 200 status with body:

{
"services":[
 {"name":"Database",
 "status":"NORMAL"
 },
 {"name":"JMSBroker",
 "status":"NORMAL"
 },
 {"name":"QuartzTrigger",
 "status":"NORMAL",
 "quartzTriggerInfos":[]
 }
]
}

301

http://localhost:8080/domibus/ext/monitoring/application/status

7.5.3. DataBase Monitoring

Domibus checks the database connection by fetching the user details from the TB_USER table. If
Domibus user details are successfully fetched from the database without any exception, API returns
the DB status as NORMAL, otherwise the API returns the status as ERROR.

• HTTP method: GET NORMAL

• http://localhost:8080/domibus/ext/monitoring/application/status?filter=db

• Response: HTTP 200 status with body:

{
"services":[
 {"name":"Database",
 "status":"NORMAL"}
]
}

7.5.4. JMS Monitoring

Domibus tries to get the number of JMS messages in the first queue that contains pull in the JMS
Broker. If there is no exception, API returns the JMS Broker status as NORMAL, otherwise the API
returns the status as ERROR.

• HTTP method: GET

• http://localhost:8080/domibus/ext/monitoring/application/status?filter=jmsBroker

• Response: HTTP 200 status with body:

{
"services":[
 {"name":"JMSBroker",
 "status":"NORMAL"}
]
}

7.5.5. Quartz Trigger Monitoring

Domibus tries to get the Quartz triggers in BLOCKED or ERROR status. If there are no triggers in
ERROR status or BLOCKED for longer than 10 minutes, the API returns the Quartz trigger status as
NORMAL, otherwise the API returns the status as ERROR with the list of Quartz jobs in ERROR
status.

• HTTP method: GET

• http://localhost:8080/domibus/ext/monitoring/application/status?filter=quartzTrigger

• Response: HTTP 200 status with body:

302

http://localhost:8080/domibus/ext/monitoring/application/status?filter=db
http://localhost:8080/domibus/ext/monitoring/application/status?filter=jmsBroker
http://localhost:8080/domibus/ext/monitoring/application/status?filter=quartzTrigger

{
"services":[
 {"name":"QuartzTrigger",
 "status":"NORMAL",
 "quartzTriggerInfos":[]
 }
]
}

• Response: HTTP 200 status with Triggers with blocked and error state:

{
 "services": [
 {
 "name": "Quartz Trigger",
 "status": "ERROR",
 "quartzTriggerInfos": [
 {
 "jobName": "alertCleanerJob",
 "domainName": "Default",
 "triggerStatus": "BLOCKED"
 },
 {
 "jobName": "errorLogCleanerJob",
 "domainName": "Default",
 "triggerStatus": "ERROR"
 }
]
 }
]
}

More API details of these external services are present in Domibus REST Service Open API
documentation which is part of the Domibus distribution artefacts (see eDelivery AS4 Profile).

7.6. Useful Resources

7.6.1. Usage of certificates in PEPPOL and OASIS

C2 C3

PEPPOL

Keystore Truststore Keystore Truststore

Sender’s (issued by
CA)

Empty Receiver’s CA’s

303

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4+conformant+solutions

C2 signs the message
with its private key

C2 discover C3 public
certificate from the
SMP

C3 signs the receipt
with its private key

The receiver trusts
all senders whose
certificates were
issued by these CA’s

OASIS

Keystore Truststore Keystore Truststore

Sender’s (issued by
CA)

SMP’s Receiver’s CA’s

C2 signs the message
with its private key

C2 discover C3 public
certificate from the
SMP
To trust the SMP, the
sender needs its
public certificate

C3 signs the receipt
with its private key

The receiver trusts
all senders whose
certificates were
issued by these CA’s

7.6.2. POM samples

Find Domibus latest production parent POM file (pom.xml) from the link below: https://ec.europa.eu/
digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/pom.xml

It contains Domibus dependencies list.

304

https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/pom.xml
https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/pom.xml

Chapter 8. Testing Guide
This content targets specifically the eDelivery’s Access Point sample implementation, Domibus, and
provides user guidance on how to perform a set of basic checks on an installation. It is can be used,
for example, by:

• developers after updating Domibus;

• testers as starting points for custom test cases.

Guide Topics Overview

• Test environment setup and test tool configuration;

• Test scenarios description and guidance on how to run them;

• Instructions on how to check messages' status in the Administration console.

Service Terms and Conditions

Applicable eDelivery terms and conditions are featured in the Master Service Arrangement page,
available from the eDelivery digital web portal.

Definitions and Acronyms

To help you with this guide check the eDelivery digital web portal for the:

• Key terms definition in the Definitions page.

• Key acronyms definition in the Glossary page.

8.1. Prerequisites
Here you can find how to set the test environment and configure the testing tool.

1. Install and configure two AS4 Access Points

This guide assumes that two AS4 Access Points, named here as blue and red are properly
installed and configured as defined in the [quick_start] for Domibus latest release.

2. Download and install SoapUI
SoapUI is an open source test tool for Web Service testing. A free unrestricted version is
available for download online and is sufficient to run the tests included in this package.

The version we use to create tests is SoapUI 5.2.1.

3. Configure SoapUI

From SoapUI:

◦ Create a new workspace: File→New Workspace

◦ Load the project found in this package, AS4-test-guide-soapui-project.xml: File→Import
Project.

305

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Master+Service+Arrangement
https://ec.europa.eu/digital-building-blocks/wikis/display/CEFDIGITAL/CEF+Definitions
https://ec.europa.eu/digital-building-blocks/wikis/pages/viewpage.action?spaceKey=CEFDIGITAL&title=CEF+Glossary
https://www.soapui.org/getting-started/installing-soapui/
https://www.soapui.org/downloads/soapui/source-forge.html

In SoapUI’s navigator, left-click on the `AS4_test_guide`project and select Custom
Properties from the Properties panel.

◦ Set the localUrl property with the IP address and port of the machine that is running the
blue Access Point as value.

◦ Set the remoteUrl property with the IP address and port of the machine that is running red
Access Point as value.

Now the service endpoints in the test steps will automatically be created from these values and no
further configuration is required.

• The WSDL of the services were loaded when creating the test project and they are stored in the
project file. If they need to be reloaded, ensure that a local Access Point is up and running,
otherwise, the URL of the WSDL (e.g http://localhost:8080/domibus/services/wsplugin?wsdl) will
not be accessible.

• The MTOM option is already pre-configured in the test request properties that need it. Changing
this value might result in failures when transmitting the binary content of the exchanged
messages.

NOTE
Message Transmission Optimization Mechanism, is a method to efficiently send
binary data to and from Web Services.

306

http://localhost:8080/domibus/services/wsplugin?wsdl

Figure 7. Custom Properties

Figure 8. Test Request properties

• The the current version of the SoapUI project’s default setup is enough to run the test case as it
doesn’t additional authentication or authorization.

• The default installation based on the Quick Start Guide allows users to send messages via the
default Web Service plugin.

IMPORTANT
To be able to test sending messages to the JMS plugin via the sample SoapUI
project, the Apache ActiveMQ libraries need to be added to the lib folder of
SoapUI. Be sure to restart SoapUI to make sure the new libraries are loaded.

SEE ALSO

• Web Service Plugin Interface Control Document is available in the
documentation section of the Domibus release via https://ec.europa.eu/
digital-building-blocks/wikis/display/DIGITAL/Domibus]. The [quick_start]
includes an optional section on deploying the default JMS plugin.

• The JMS plugin Interface Control Document is available via is available in
the documentation section of the Domibus release via https://ec.europa.eu/
digital-building-blocks/wikis/display/DIGITAL/Domibus].

307

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
http://activemq.apache.org/download.html
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

8.2. Test scenarios
In this section you can find a list of test scenarios and guidance on how to run them.

• Web Service Submission

• JMS Submission

• Load Test

8.2.1. Web Service Submission

Business Scenario

In this scenario, the sending Access Point (party blue_gw with ID domibus-blue) will first send a
request to the receiving Access Point (party red_gw with ID domibus-red). Then, the receiving Access
Point is being polled for new messages. When the new message has arrived, it will be downloaded
from the receiving Access point. Finally, the Access Points will switch roles and the receiving Access
Point will send a response to the sending Access Point.

Overview of the business scenario

The detailed steps are listed below:

1. domibus-blue: the sendMessage step submits a message to the Web Service plugin of the Access
Point that is located at localUrl.

The message contains an XML message according to the sample PMode configuration files as
defined in the Quick Start Guide (businessContentPayload). Its MimeType must be set to text/xml.
The businessContentAttachment is optional and can contain any type of binary attachment.

Regardless of the specific type of attachment used, its content type must be set to
"application/octet-stream". In this specific test step, the Attachment is not present. To modify the
Payload or Attachment, see Attachment Alternatives. The response from the Web Service plugin
contains the message ID of the AS4 message that will be exchanged between the sending and
receiving Access Points.

2. domibus-blue: In the background, the Access Point running at localUrl uses the message from

308

step 1 as input to construct an AS4 message and send it to the Access Point that is running at
remoteUrl.

3. domibus-red: Steps ParameterTransfer and ResponseParameters are used for storing the MessageID
parameters of the AS4 message.
This parameter will be used in subsequent steps for verifying that the message is correctly
received and can be downloaded from the receiving Access Point.

4. domibus-red: Steps waitConditional, checkIfMessageIsAvailable and waitUntilMessageArrives
are looping and waiting for the message to arrive at the receiving Access Point.

5. domibus-red: In the background, the Access Point that is running at remoteUrl will receive the
message that is sent in step 2. Upon reception, the message will be stored in the database of the
Access Point. Afterwards, the message is available via the listPendingMessages and
retrieveMessage Web Service operations exposed by the Access Point. If the retrieveMessage
operation succeeds, the Access Point will delete the message from the database (assuming that
the retention parameters are set according to the sample configuration from the [quick_start]).

6. domibus-blue: Step getStatus calls the getStatusWithAccessPointRole operation at the sending
Access Point. If the message is correctly received and acknowledged by the receiving Access
Point, the operation will return the value ACKNOWLEDGED.

7. domibus-blue: Step getMessageErrors calls the getMessageErrorsWithAccessPointRole operation at
the sending Access Point. If the message is correctly received and acknowledged by the
receiving Access Point, the operation will return a response where the getMessageErrorsResponse
element is empty.

8. domibus-red Step downloadMessage submits a retrieve request to the Web Service plugin of the
receiving Access Point that is located at remoteUrl. The input of the operation is the MessageID
stored in step 3. The output of the operation is a response containing the contents of the
message sent and additional information such as the message timestamp.

9. domibus-red Step sendResponse, submits a message to the Access Point that is located at
localUrl. The message contains an XML message according to the sample PMode configuration
files as defined in the Quick Start Guide (businessContentPayload). Its MimeType must be set to
"text/xml". The businessContentAttachment is optional and can contain any type of binary
attachment. Regardless of the specific type of attachment used, its content type must be set to
application/octet-stream. In this specific test step, the Attachment is not present. To modify the
Payload or Attachment, refer to Attachment alternatives.
The response from the Web Service plugin contains the message ID of the AS4 message that will
be exchanged between the sending and receiving Access Points.

10. domibus-red In the background, the Access Point running at remoteUrl will use the message
from step 9 as input to construct an AS4 message and send it to the Access Point that is running
at localUrl.

To run this test scenario, open the Demo test case and click the green Play button. As each test
step is executed, a green progress bar indicates the test’s steps successful completion.

Running the business scenario

309

Attachment alternatives

The sample PMode configuration files as defined in the Quick Start Guide define two payloads:

• A mandatory businessContentPayload(cid:message) for which the MimeType must be set to
text/xml.

• An optional businessContentAttachment(cid:attachment) for which the MimeType must be set to
application/octet-stream.

The test case Attachment alternatives contains different test steps with alternative options for
submitting a message to the default Web Service plugin.

1. Test step Message in payload contains an XML message which is base64 encoded inside the
Soap Body of the request to the Web Service plugin.

2. Test step Message as attachment contains an XML message which is added as an attachment in
the request message of SoapUI. SoapUI will base64 encode the message and include it in the Soap
Body of the request to the Web Service plugin.

3. Test step Message as mtom contains an XML message which is added as an attachment in the
request message of SoapUI. Since the TestRequest Properties "Enable MTOM" and "Force MTOM"
are enabled, SoapUI will send the message as a multipart MIME message and include the XML
in a separate MIME part of the request to the Web Service plugin.

4. Test step Optional attachment in payload adds an optional attachment in addition to the XML
message. The attachment is base64 encoded inside the Soap Body of the request to the Web
Service plugin.

5. Test step Optional attachment as attachment adds an optional attachment in addition to the
XML message. The attachment is added as an attachment in the request message of SoapUI.
SoapUI will base64 encode the message and include it in the Soap Body of the request to the
Web Service plugin.

6. Test step Optional attachment as mtom adds an optional attachment in addition to the XML
message. The attachment is added as an attachment in the request message of SoapUI. Since the

310

TestRequest Properties Enable MTOM and Force MTOM are enabled SoapUI will send the
message as a multipart MIME message and include the attachment in a separate MIME part of
the request to the Web Service plugin.

To visualise the raw message that SoapUI sends, click on the tab Raw after submitting the message.

Visualising the raw message sent by SoapUI

8.2.2. JMS Submission

The default JMS plugin provides an alternative way to submit messages to a sending Access Point.
Instead of performing a Web Service request, users can post a message to a JMS queue on the
sending Access Point.
The sending Access Point will read the message from its queue, construct an AS4 message based on
the JMS message and send it to the receiving Access Point where it will be available for download.

The test step sendMessage in the JMS Scenario test suite contains a groovy script to post a message
to the JMS queue of the sending Access Point. Currently, this code is only valid for Tomcat server
deployment. In the future, we will provide a test suite that will also support WebLogic and WildFly
servers.

311

The script assumes that the configuration of the sending Access Point is done according to the
instructions in the [quick_start]. If custom settings are used, the variables in the script need to be
updated.

Upon running the script, the message is posted to the JMS queue of the sending Access Point. If the
script executes successfully, a log message "message sent" will be written to the script Log Output
panel in SoapUI. Contrary to the Web Service plugin, the JMS plugin does not return the message ID
that will be used for constructing the AS4 message which is sent to the receiving Access Point.
However, optionally, the message ID can be set in the JMS message and in this case the sending
Access Point will use this message ID (if it is not a duplicate message ID which has been used
before).

Sending a JMS message

8.2.3. Load Test

The Web Service LoadTest will send several messages in parallel to the Web Service interface of the
sending Access Point.

In the default configuration of the LoadTest, the same small message is being sent 100 times in 3
parallel threads using a simple load testing strategy. This LoadTest can be updated to send other or
larger messages and to use different settings based on specific needs. To update the attachments of
the load test, follow the guidelines described in Attachment alternatives.

The LoadTest will complete successfully if all the messages are successfully submitted to the Web
Service plugin of the Sending Access point. However, this does not mean that all messages will be
transferred successfully between the sending and the receiving Access Points. The latter can be
verified in the message log of the Administration Console of both the sending and receiving Access
Points.

Executing a load test

312

8.3. Verifying message status
Verifying the message status in the Administration Console

verification of status for received or sent messages scan be performed in the administration
console. Both administration consoles of the sending and receiving Access Point can be used for this
purpose. Upon sending a message to the Web Service plugin, the synchronous response contains
the message ID of the AS4 message that will be exchanged between the sending and receiving
Access Points. This "messageID" can be used to verify the status of the message in the sending and
receiving Access Points. Verifying received or sent messages status can be performed in the
administration console. Both administration consoles of the sending and receiving Access Point can
be used for this purpose. Upon sending a message to the Web Service plugin, the synchronous
response contains the message ID of the AS4 message that will be exchanged between the sending
and receiving Access Points. This "messageID" can be used to verify the status of the message in the
sending and receiving Access Points.

Verifying received or sent messages status can be performed in the administration console.Both
administration consoles of the sending and receiving Access Point can be used for this purpose.
Upon sending a message to the Web Service plugin, the synchronous response contains the message
ID of the AS4 message that will be exchanged between the sending and receiving Access Points. This
"messageID" can be used to verify the status of the message in the sending and receiving Access
Points.

Example 1

The figure below shows that the message with ID 22cd3f12-29f3-11eb-a0a3-34f39a981a57@domibus.eu
has the status ACKNOWLEDGED on the sending Access Point.
This indicates that the message has been received successfully received and acknowledged from the
receiving Access Point.

Example 2

313

The same figure below shows that the message with ID 2633e90a-29f3-11eb-af7a-
34f39a981a57@domibus.eu has the status RECEIVED on this Access Point.
It indicates that the message has been successfully sent from the other Access Point to this Access
Point.

Example 3

The same figure below shows that the message with ID It indicates that the initially received
message has been successfully downloaded from this Access Point (assuming that the retention
time for downloaded messages has not yet expired for the message in question).

Verifying the message status in the administration console

If a message cannot be sent because for example the other Access Point is not available, then the
administration console on the sending Access Point will indicate that the message is in state
SEND_FAILURE once the number of SendAttempts has reached the value in SendAttemptsMax.

+ NOTE: With the current component configuration, the message sender submitMessage operation
synchronously returned an HTTP 200 OK with the messageID). In the figure above, the message with
ID 36e89acc-29f2-11eb-a0a3-34f39a981a57@domibus.eu has the status SEND_FAILURE on the sending
Access Point.

While the retrial policy is active and a message is being resent, its status will be WAITING_FOR_RETRY
and the NextAttempt value will define the time when the next retry attempt will be made. In the
figure above, the message with ID 2faed2d5-29f3-11eb-a0a3-34f39a981a57@domibus.eu has the status
WAITING_FOR_RETRY on the sending Access Point.

8.4. Multitenancy
Domibus supports multitenancy since the 4.0 release: on each access point, multiple domains can
be configured with each domain having its own set of configuration files (Keystore, Truststore,
PMode, Domain properties, etc.). This allows message exchange to be extended to domain level.

314

8.4.1. Configuration

By following Multitenancy the configuration instructions regarding the previously mentioned blue
and red access points.

8.4.2. Update the soapUI project

Assuming the configurations mentioned in the previous section, consider the additional
configurations:

AP Name Configured Domain Names

blue • blue_Domain1

◦ Associated user: blue_user1

• blue_Domain2

◦ Associated user: blue_user2

red • red_Domain1

◦ Associated user: red_user1

• red_Domain2

◦ Associated user: red_user2

NOTE
Since plugin users are defined for each domain, authentication needs to be added in
each request.

Web Service Submission

For webservice submission, authentication needs to be added in each SOAP request test step.

1. Select Add New Authorization from the Authorization tab:

Adding new authorization.

315

2. Select the Basic authorization option:

Selecting Basic authorization

3. Type the user and password linked to the targeted domain (sender side) and select the
Authenticate pre-emptively option:

Authorization credentials

◦ In this case, by authenticating with plugin user blue_user1, the domain blue_domain1 will be
selected as sender of the message from the blue access point.

◦ Depending on the PMode configuration (see Domibus Configuration), the message will be
received either by red_domain1 or red_domain2 from the red access point.

JMS Submission

For JMS submission, authentication needs to be added via extra properties in the groovy test step:

316

Setting user authentication for JMS

8.4.3. Checking the messages in the Admin console

Messages sent/received for each domain can only be viewed in the Admin console by users linked
to the targeted domain (or by the admin of the access point).

User other than access point admin user

When connected to the admin console with a standard user (not an access point admin user), the
domain linked to that user is displayed in the Messages page.
Only messages sent/received for that domain are displayed:

Admin console for normal user

Access point admin user

When connected to the Admin console with an access point’s admin user, all messages from all
domains can be viewed. Messages for each domain can be displayed by toggling between domains
via the selection on the top right corner of the Admin console (see figure below).

Admin console for AP admin

317

:leveloffset: -1

318

Plugins

319

Chapter 9. Default Plugins
This section lists the different types of plugins and their registration process.

• Domibus provides three default plugins: File System, WS and JMS.

Plugins Interface Descriptions

• FS Plugin Interface

• WS Plugin Interface

• JMS Plugin Interface

Plugin resources
For the:

• JMS plugin, get → domibus-distribution-5.1.5-default-jms-plugin.zip

• WS plugin, get → domibus-distribution-5.1.5-default-ws-plugin.zip

• File System plugin, get → domibus-distribution-5.1.5-default-fs-plugin.zip

See 5.1.5 Release Page to download the plugins.

320

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Domibus+-+v5.1.5

Chapter 10. FS Plugin
The FS Plugin acts as an interface to the Access Point (Corner Two and Corner Three in the four-
corner topology that will be explained later in this document) component of the eDelivery building
block.

10.1. FS Plugin Interface
Here we outline the file system messages exchange as part of the default File System (FS) backend
integration solution for the Domibus Access Point.

Here we covers the service interface of the Access Point from the perspective of the File System
backend integration.

It includes information regarding the description of:

• FS Plugin Configuration

• Supported File Systems

• Folders Structure

• Send and Receive Workflow

Interface described

Interface Description Version

FS backend integration The FS Plugin 3.x.y

This specification addresses no more than the file system interface of the Access Point FS Plugin. All
other aspects of its implementation are not covered by this document.

Audience

This document is aimed at Directorate Generals and Services of the European Commission, Member
States (MS) and also companies of the private sector wanting to set up a connection between their
backend system and the Access Point. In particular:

• Architects will find it useful for determining how to best use the File System Plugin to create a
fully-fledged solution and as a starting point for connecting a Back-Office system to the Access
Point.

• Analysts will find it useful to understand the File System Plugin that will enable them to have a
holistic and detailed view of the operations and data involved in the use cases.

• Developers will find it essential as a basis of their development concerning the File System
Plugin interface.

• Testers can use this document in order to test the interface by following the use cases
described.

321

SEE ALSO

• Overview of eDelivery
Access Point

• PEPPOL Transport
Infrastructure BusDox
Common Definitions

• ebXML Reference
Documentation

• WSDL 1.1 Reference
Documentation

• XML Schema 1.1

• HTTP 1.1

• SOAP Messages with
Attachments

• AS4 Profile of ebMS 3.0
Version 1.0

• eDelivery AS4 profile

• eDelivery - PMode
Configuration

• XSDsfor ebms3

• OASIS ebXML Messaging
Services

• Apache VFS-Supported File
Systems

• WS Plugin Interface
Documentation

• Domibus (eDelivery
Portal)

Acronyms

• FS Plugin: File System Plugin

• ebMS: ebXML Messaging Service Specification

• MEP: Message Exchange Pattern. A Message Exchange Pattern describes
the pattern of messages required by a communications protocol to
establish or use a communication channel.

• ebXML: Electronic Business XML. Project to use XML to standardise the
secure exchange of business data.

• PMode: Processing Mode

• MSH: Message Service Handler. The MSH is an entity that is able to
generate or process messages that conform to the ebMS specification, and
which act in at least one of the two ebMS roles: Sender and Receiver.

In terms of SOAP processing, an MSH is either a SOAP processor or a chain
of SOAP processors. In either case, an MSH has to be able to understand
the eb:Messaging header (qualified with the ebMS namespace).

• VFS: Virtual File System. It presents a uniform view of the files from
various different sources, such as the files on local disk or remote shares.

• UNC: Universal Naming Convention

When sending files via a "lower-upper" String, e.g. "5-10", or a simple upper limit String, e.g. "10"
(the lower limit will be 1 in this case)

fsplugin.password.encryption.properties

322

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Access+Point+software
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Access+Point+software
https://www.oasis-open.org/committees/download.php/40926/PEPPOL%20D8_2%20-%20Attachment%20I%20%20BusDox%20Common%20Definitions.pdf
https://www.oasis-open.org/committees/download.php/40926/PEPPOL%20D8_2%20-%20Attachment%20I%20%20BusDox%20Common%20Definitions.pdf
https://www.oasis-open.org/committees/download.php/40926/PEPPOL%20D8_2%20-%20Attachment%20I%20%20BusDox%20Common%20Definitions.pdf
http://www.ebxml.org/
http://www.ebxml.org/
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/TR/2001/NOTE-wsdl-20010315
https://www.w3.org/XML/Schema
https://datatracker.ietf.org/doc/html/rfc2616
https://www.w3.org/TR/SOAP-attachments/
https://www.w3.org/TR/SOAP-attachments/
https://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-v1.0-os.html
https://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/os/AS4-profile-v1.0-os.html
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms-header-3_0-200704.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.html
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms_core-3.0-spec.html
https://commons.apache.org/proper/commons-vfs/filesystems.html
https://commons.apache.org/proper/commons-vfs/filesystems.html
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

The FS Plugin configuration allows to define specific properties per domain (e.g., the messages
location in the file system, the file actions, etc.). The domain properties have the following
convention:

fsplugin.domains.<domain_identifier>.<property_name>=<value>

• <domain_identifier>: Represents the domain identifier e.g., DOMAIN1.

• <property_name>: The domain property name which is being defined or redefined from the
general properties.

• <value>: represents the specific domain property value.

Example of domain-specific property

fsplugin.domains.DOMAIN1.messages.location=/home/domibus/fs_plugin_data/DOMAIN1

This means that all messages belonging to DOMAIN1 will be stored in the appropriate file system
location.

10.1.1. Functional Specification

In order to understand the Use Cases that will be described below it is important to explain the
topology, i.e. the four – corner model.

The four corner model

In this model we have the following elements:

• Corner 1 (FS1): Backend FS1 is the file system that will be polled by the sending AP (Access
Point) FS Plugin

• Corner 2 (C2): Sending Access Point C2

• Corner 3 (C3): Receiving Access Point C3

• Corner 4 (C4): Backend C4 is the file system where the Access Point will save the received
payloads

There are two backend adapters (i.e. corner one and corner four). Corner 1 sends messages do
Corner 2 and Corner 4 receives messages from Corner 3. Corners 2 and 3 communicate with each

323

other via the information contained in the PMode configuration files. The FS backend is described
in this document, it provides the facility to send and receive messages as files in the backends file
system.

The ICD specification provides both the provider (i.e. the implementer) of the services and their
consumers with a complete specification of the following aspects:

• Detailed use cases, which specifies the set of use cases available in the file system interface;

• Interface Behavioural Specification, which specifies the expected sequence of steps when
interacting with the file system interface;

Key definitions

Purpose of the File System Plugin

The purpose of the File System Plugin is to allow the Backends (corner 1 and corner 4) to
exchange messages as files simply using the file system interface without the need of accessing
web services.

Access Point

According to eDelivery, an Access Point is an implementation of the OpenPEPPOL AS2 Profile or
the eDelivery AS4 Profile. The data exchange protocols of eDelivery are profiles, meaning that
several options of the original technical specifications were narrowed down in order to increase
consistency, interoperability and to simplify deployment. The profile of AS2 was developed by
OpenPEPPOL6, and the profile of AS4 was developed by e-SENS in collaboration with several
service providers while being implemented in the e-Justice domain by e-CODEX. An Access Point
exposes two interfaces:

• An interface to connect the Backend system with the Access Point. Typically, this interface is
customisable as communication between Access Points and Backend systems may use any
messaging or transport protocol.

• A standard messaging interface between Access Points, this interface is configurable
according to the options of the profiles supported by eDelivery. It is important to note that
eDelivery standardises the communication only between the Access Points.

eDelivery AS4 Profile

The eDelivery AS4 profile is an open technical specification for the secure and payload-agnostic
exchange of data using Web Services. According to OASIS, the AS4 protocol is the modern
successor of the AS2 protocol. AS4 itself is a profile of the ebXML Messaging Services (ebMS)
v.3.0, a broader specification built on top of the SOAP with attachments specification.

Use case overview

Actors' Description

Actor Description

FS Plugin Admin Any participant with administrative rights to configure the FS Plugin
behaviour and access to the backend file system.

324

Actor Description

Backend FS1 User Any participant (human or system) sending file messages to a recipient
Backend C4 and using the Sending AP C2 in that purpose via the FS Plugin.

Backend FS2 User Any participant (human or system) downloading file messages from any
sender Backend C1 and using the Receiving AP C3 in that purpose via the
FS Plugin.

[image2]

FS Plugin (Actor)

ID UC Short Description System

UC01 Configure FS Plugin Configure the available properties for the FS
Plugin file system access and behaviour

Backend File System
1
Backend File System
2

[image3]

Backend FS1 (Actor)

ID UC Short Description System

UC02 Access FS Access or connect to the file system interface
(local or remote). This operation may
require authentication if the file system is
secured. For more information see section
3.2 - Supported File Systems.

Backend File System
1

UC03 Configure Metadata Configure the metadata.xml file in order to
define the file messages submission
properties (e.g., From PartyId, To PartyId).

Backend File System
1

UC04 Send Files Drop the files in the backend file system OUT
folder in order to trigger the sending process
according to the existing metadata. The files
are polled by the FS Plugin of C2.

Backend File System
1

UC05 Check File Status Check the sending process status listing the
file name that will be updated according to
the messageId and status.

Backend File System
1

[image4]

Backend FS2 (Actor)

ID UC Short Description System

UC02 Access FS Access or connect to the file system interface
(local or remote). This operation may
require authentication.

Backend File System
2.

325

ID UC Short Description System

UC06 Receive Files Receive the sent files in the configured
backend file system location. These file
messages are PUSHED by the FS Plugin into
the receiving backend file system.

Backend File System
2

Example 1. Use Cases

The Interface Functional Specification is described in the detailed uses cases using the given
examples.

IMPORTANT
Note that the Inputs and Outputs provided as examples for the uses
cases are based on a specific PMode configuration.

As defined in the AS4 Profile of ebMS 3.0, a processing mode – or PMode – is a collection of
parameters defining how user messages are exchanged between a pair of Access Points with
respect to Quality of Service, Transmission Mode and Error Handling. A PMode maps the
recipient Access Point from the partyId, which represents the backend offices associated to this
Access Point.

UC01 - Configure FS Plugin

▼ Click to Open

UC01 - Configure FS Plugin

Brief description

The FS Plugin Admin configures the plugin behaviour by editing the fs-plugin.properties file.

Actors

FS Plugin Admin

Preconditions

• The FS Plugin must be installed on the Access Point.

• The system user (FS Plugin Admin) as read/write access to the fs-plugin.properties file.

Basic flow event

1. The system user (FS Plugin Admin) edits the fs-plugin.properties file.

2. The system user (FS Plugin Admin) updates the existing properties according to the full
specification of configuration options is listed in FS Plugin Configuration and section 3.2.

Alternative flows

N/A

Exception flows

• 2a. The system user (FS Plugin Admin) creates or updates a FS Plugin property with an
invalid value.

• 2a1. The FS Plugin will decay the invalid configuration into the property default value as

326

listed in FS Plugin Configuration.

Post conditions

• Successful conditions: The FS Plugin is successfully configured. After the Access Point
restart, it is ready to exchange messages from the file system interface.

• Failure conditions: The FS Plugin is not correctly configured and is not ready to properly
send and receive files as AS4 messages.

Top FS Plugin (Actor) Backend FS1 (Actor) Backend FS2 (Actor)

UC02 - Access FS

Brief description

To use the file system interface, the Backend FS1 User needs to access the Access Point - FS
Plugin via the configured file system folder within a domain. This use case is realized by the
Backend FS1 User by the navigating into the configured folder (locally or remotely). If the file
system domain location is secured then the user must provide its credentials to connect.

For detailed information about Domains and Supported File Systems please see chapters 3.1.4, 3.1.5
and 3.2.

Actors

Backend FS1 User

Preconditions

• The Backend FS1 User must have read/write access on its domain folder and subfolders.

Basic flow event

1. The Backend FS1 User navigates into the configured outgoing/incoming folder. This can be
done using a graphical explorer or via command line.

Alternative flows

• 1a. If the folder is remote and secured by username and password then the credentials will
be required and prompted in the first access.

• 1a1. The Backend FS1 User specifies his valid username and password.

Exception flows

• 1a2. The Backend FS1 User specifies invalid credentials.

Post conditions

• Successful conditions: The Backend FS1 User accesses the contents of the filesystem folder.

• Failure conditions: The Backend FS1 User cannot access the contents of the filesystem
folder.

▼ Click to Open

UC02 - Access FS

Brief description

To use the file system interface, the Backend FS1 User needs to access the Access Point - FS
Plugin via the configured file system folder within a domain. This use case is realized by the

327

Backend FS1 User by the navigating into the configured folder (locally or remotely). If the file
system domain location is secured then the user must provide its credentials to connect.

For detailed information about Domains and Supported File Systems please see chapters 3.1.4,
3.1.5 and 3.2.

Actors

Backend FS1 User

Preconditions

• The Backend FS1 User must have read/write access on its domain folder and subfolders.

Basic flow event

1. The Backend FS1 User navigates into the configured outgoing/incoming folder. This can be
done using a graphical explorer or via command line.

Alternative flows

• 1a. If the folder is remote and secured by username and password then the credentials
will be required and prompted in the first access.

• 1a1. The Backend FS1 User specifies his valid username and password.

Exception flows

• 1a2. The Backend FS1 User specifies invalid credentials.

Post conditions

• Successful conditions: The Backend FS1 User accesses the contents of the filesystem
folder.

• Failure conditions: The Backend FS1 User cannot access the contents of the filesystem
folder.

• Top • FS Plugin (Actor) • Backend FS1 (Actor) • Backend FS2 (Actor)

UC03 – Configure Metadata

▼ Click to Open

UC03 – Configure Metadata

Brief description

The Backend FS1 User writes the metadata.xml file which contains the basis of the AS4
metadata that will be used by the FS Plugin to create the User Message (mapped to the
Submission) that will be sent to Access Point. The metadata.xml file name is reserved by the
FS Plugin and it needs to always be present as a child of the OUT folder or any sub-directory
under the OUT folder.

The metadata file format is detailed in Section 3.3 and is available an example
(example_metadata.xml) in the config/ directory.

Actors

Backend FS1 User

328

Preconditions

• The Backend FS1 User must have read/write access on its domain folder and subfolders.

Basic flow event

1. The Backend FS1 User navigates to the OUT folder or any of its sub-directories.

2. The Backend FS1 User creates the metadata.xml file based on a template (Cf.: 6.2 -
metadata.xml example) in the outgoing folder.

3. The Backend FS1 User edits the metadata.xml file to specify the AS4 metadata, namely the
UserMessage, according to the format detailed in section 3.3.

Alternative flows

N/A

Exception flows

• 2a. The Backend FS1 does not create the metadata.xml file in the outgoing folder.

• 3a. The Backend FS1 creates a metadata.xml file containing an invalid structure.

Post conditions

Successful conditions: The metadata.xml is configured and prepared to define the
UserMessage header in the FS Plugin AS4 messages.

Failure conditions: The metadata.xml is not properly configured and is not prepared to define
the UserMessage header in the FS Plugin AS4 messages. Either because it does not exist or has an
invalid structure.

• Top • FS Plugin (Actor) • Backend FS1 (Actor) • Backend FS2 (Actor)

UC04 – Send Files

▼ Click to Open

UC04 – Send Files

Brief description

This Use Case is triggered by the Backend FS1 User, by dropping a content file into the
outgoing folder (C1) of one of the locations configured in fs-plugin.properties file. It is
assumed that valid metadata has been configured via UC03 beforehand. This Use Case should
result in an AS4 message delivery from C2 to C3.

On its own schedule, Domibus core eventually connects to the applicable destination gateway
and delivers the message in conformance to the AS4 protocol.

For detailed information about the Send Files sequence see chapter 3.4.

Actors

Backend FS1 User

Preconditions

• The FS Plugin is properly configured and activated in the Domibus Access Point.

• The outgoing folder is prepared to send files as AS4 messages having the metadata.xml file

329

properly created and configured.

Basic flow event

1. The Backend FS1 User navigates into the outgoing folder of C1.

2. The Backend FS1 User drops one or more content files into the outgoing folder.

3. The FS Plugin (C2) continually polls the various configured locations for a list of existing
files in the outgoing folders.

4. The FS Plugin (C2) creates as AS4 message for each content file and submits to Domibus
core. If the content file (i.e file1.doc) is accompanied by a corresponding .lock file (i.e.
file1.doc.lock), the content file is not touched. Once the content file starts being processed,
the FS Plugin creates the corresponding. lock file.

5. The FS Plugin (C2) renames the submitted content file adding the AS4 message identifier. It
also deletes the corresponding. lock file.

6. On its own schedule, Domibus core eventually connects to the applicable destination
gateway and delivers the message in conformance to the AS4 protocol.

Alternative flows

• 4a. The FS Plugin (C2) skips to create the AS4 message because metadata.xml file is
missing.

• 4a1. The FS Plugin (C2) logs the skipped files warning that the metata.xml is missing.

Exception flows

• 4b. The FS Plugin (C2) fails to create the AS4 message because metadata.xml file is invalid.

• 4b1. The FS Plugin (C2) logs the schema validation error.

• 4c. The FS Plugin (C2) fails to create the AS4 message because the content file can’t be
accessed.

• 4c1. The FS Plugin (C2) logs the file access error.

• 4c2. The FS Plugin (C2) marks the current message transaction for rollback (and let
Domibus retry in its next polling).

Post conditions

• Successful conditions: The content file is successfully submitted as an AS4 message and
delivered from (C2) to (C3).

• Failure conditions: The AS4 message is not successfully created and can’t be submitted to
Domibus core (C2). Error details are logged.

• Top • FS Plugin (Actor) • Backend FS1 (Actor) • Backend FS2 (Actor)

UC05 – Check File Status

▼ Click to Open

UC05 – Check File Status

Brief description

Backend FS1 User may periodically refresh his view of Backend FS1 so he gets an update on
the status of files sent using UC04. The sending status is indicated by the names and locations

330

of the various content files which the FS Plugin modifies according to the rules and states
described in section 3.5 - Check File Status Sequence.

Actors

Backend FS1 User

Preconditions

• The content file is successfully submitted to Domibus (C2) as an AS4 message.

Basic flow event

1. The Backend FS1 User lists the existing files under the outgoing folder of C1 until the
observed files are successfully or failed sent.

2. The FS Plugin (C2) renames the processed files according to the status change event for
each message, see section 3.5 - Check File Status Sequence.

3. The FS Plugin (C2) receives a Send Success event and deletes or archives the processed file
(according to the FS Plugin configuration).

Alternative flows

• 3a. The FS Plugin (C2) receives a Send Failed event and deletes or archives the processed
file (according to the FS Plugin configuration).

Exception flows

• 2a. The FS Plugin (C2) cannot access and rename the processed file.

• 2a1. The FS Plugin (C2) logs the rename error.

• 3b. The FS Plugin (C2) cannot access and rename the successfully sent file.

• 3b1. The FS Plugin (C2) logs the rename error.

• 3a1. The FS Plugin (C2) cannot access and rename the failed sent file.

• 3a1b. The FS Plugin (C2) logs the rename error.

Post conditions

• Successful conditions: The content file is successfully submitted as an AS4 message and it
is successfully deleted or archived.

• Failure conditions: The content file name is not properly renamed according to the
message status change events; the event is registered in the log files.

Top • FS Plugin (Actor) • Backend FS1 (Actor) • Backend FS2 (Actor)

UC06 – Receive Files

▼ Click to Open

UC06 – Receive Files

Brief description

Backend FS2 User initiates this Use Case by listing the files within the incoming folder of any
domain configured for the FS Plugin on Backend FS2. Assuming files were successfully
received and are present, the user may obtain any of them via regular file system operations.

For detailed information about the Receive Files sequence, see chapter 3.6.

331

Actors

Backend FS2 User

Preconditions

• The content file is successfully sent from Access Point (C2) to (C3) as an AS4 message.

Basic flow event

1. The FS Plugin downloads the received AS4 message from the Access Point (C3).

2. The FS Plugin resolves the destination domain from the AS4 metadata Service and Action
values.

3. The FS Plugin creates the received AS4 message as a file in the resolved incoming folder of
the Backend filesystem (C4).

4. The Backend FS2 User lists the received files under the incoming folder of C4.

Alternative flows

N/A

Exception flows

• 2a. If no domain is found to match the pair Service/Action, the main location is selected as
the destination folder.

• 3a. The FS Plugin (C3) can’t access and create the received message as a file.

• 3a1. The FS Plugin (C3) logs the access error and marks the transaction for rollback. The
deliver message operation will be retried by the receiving Access Point.

Post conditions

• Successful conditions: The content file is successfully received as an AS4 message.

• Failure conditions: The fail message is logged by the FS Plugin.

Top • FS Plugin (Actor) • Backend FS1 (Actor) • Backend FS2 (Actor)

10.1.2. Behavioural Specification

FS Plugin Configuration

The FS Plugin configuration is done in the fs-plugin.properties file.

Jump to topic:

Password Encryption

Passwords configured in fs-plugin.properties are stored by default in clear text.

The FS Plugin can encrypt the configured passwords using symmetric encryption with
AES/GCM/NoPadding algorithm. In order to activate the password encryption please set the property
fsplugin.password.encryption.active=true. Once activated all the passwords configured under the

332

property fsplugin.password.encryption.properties will be encrypted.

For instance, the property domibus.security.keystore.password=test123 will be encrypted to
fsplugin.authentication.password=ENC(4DTXnc9zUuYqB0P/q7RtRHpG9VJLs3E=).

Workers Scheduling

These properties define the FS Plugin workers scheduling.

Property name Default value Description

fsplugin.messages.send.wor
ker.repeatInterval

10000 The time interval (in milliseconds) used to poll the
sending File System for new files.

fsplugin.messages.sent.pur
ge.worker.cronExpression

0/60 * * * * ? The CRON expression used to trigger the worker to
purge the sent files that were archived.

fsplugin.messages.failed.p
urge.worker.cronExpression

0/60 * * * * ? The CRON expression used to trigger the worker to
purge the failed files that were archived.

fsplugin.messages.received
.purge.worker.cronExpressi
on

0/60 * * * * ? The CRON expression used to trigger the worker to
purge the received files.

General properties

The general properties described below can be overridden per domain according to the format
described in Domain specific properties.

Property name Default value Description

fsplugin.messages.locatio
n

/home/domibu
s/fs_plugin_dat
a/MAIN

The location of the folder that the plugin will use to
manage the messages to be sent and received in case
no domain expression matches. This location must be
accessible to the Domibus instance. See section 3.2 -
"Supported File Systems".

fsplugin.messages.sent.ac
tion

delete The file action executed when the file is successfully
sent: 'delete' to permanently remove the file or
'archive' to move it into the SENT folder.

fsplugin.messages.sent.pu
rge.expired

600 The expiration limit (expressed in seconds) used to
purge the older files in the SENT folder. If the value is
0 or empty, the purge functionality is deactivated.

fsplugin.messages.failed.
action

delete The file action executed when the file is fails to send:
'delete' to permanently remove the file or 'archive' to
move it into the FAILED folder.

fsplugin.messages.failed.
purge.expired

600 The expiration limit (expressed in seconds) used to
purge the older files in the FAILED folder. If the value
is 0 or empty, the purge functionality is deactivated.

333

Property name Default value Description

fsplugin.messages.receive
d.purge.expired

600 The expiration limit (expressed in seconds) used to
purge the older files in the IN folder. If the value is 0
or empty, the purge functionality is deactivated.

fsplugin.messages.locks.p
urge.expired

600 Expiration limit (expressed in seconds) used to delete
lock files used to lock a data file while it is sent via FS
Plugin. If the value is 0 or empty, the purge
functionality is deactivated.

fsplugin.authentication.u
ser

(none) The user name to be used to authenticate on domains
by default

fsplugin.authentication.p
assword

(none) The password used to authenticate on domains by
default

fsplugin.messages.payload
.id

cid:message The payload identifier for messages processed on the
default domain

fsplugin.send.queue domibus.fsplug
in.send.queue

This queue is used by the plugin to send the files in
parallel

fsplugin.send.queue.concu
rrency

5-20 Specify queue concurrency limits

fsplugin.messages.send.de
lay

2000 The delay (in milliseconds) to allow the writing
process to finish writing.

fsplugin.password.encrypt
ion.active

false Encrypts the configured passwords if activated.

Domain specific properties

in which the domains will be evaluated. This property is not mandatory – domains without order
definition will be resolved randomly after the ordered domains. The order is defined with numeric
values greater than 0. E.g.: 1

Property name Default value Description

fsplugin.domains.<domain_
id>.messages.expression

(none) Regular expression used to match the domain for the
reception of messages. This regular expression will be
evaluated against the Service and Action values from
the incoming message separated by #.
E.g.:DOMAIN1SampleService.

fsplugin.domains.<domain_
id>.messages.location

(none) The location of the folder that the plugin will use to
manage the messages to be sent and received in case
no domain expression matches. This location must be
accessible to the Domibus instance. The domain
locations must be independent from each other and
should not overlap. For more information about the
location format and values see section 3.2 - Supported
File Systems. E.g.:
/home/domibus/fs_plugin_data/DOMAIN1.

334

Property name Default value Description

fsplugin.domains.<domain_
id>.messages.user

(none) The user used to access the domain location specified
by property :
fsplugin.domains.<domain_id>.messages.location.

This value must be provided if the location access is
secured at the file system level so that users from
other domains cannot access its contents. In a secured
File System, e.g.: SFTP, if the credentials are not
provided, the FS Plugin will not be able to access it to
perform the file messages exchange. For more
information see section 3.2 - Supported File Systems.

fsplugin.domains.<domain_
id>.messages.password

(none) The password used to access the domain location. This
value must be provided if the location access is
secured at the file system level.

fsplugin.domains.<domain_
id>.authentication.user

(none) Mandatory in Multitenancy mode. The user that
submits messages to Domibus. It is used to associate
the current user with a specific domain.

fsplugin.domains.<domain_
id>.authentication.passwo
rd

(none) Mandatory in Multitenancy mode. The credentials of
the user defined under the property username.

fsplugin.domains.<domain_
id>.messages.payload.id

cid:message The payload identifier for messages processed on a
particular domain.

fsplugin.domains.<domain_
id>.send.queue.concurrenc
y

5-20 Specify queue concurrency limits on a particular
domain when sending files via a "lower-upper" String,
e.g. "5-10", or a simple upper limit String, e.g. "10" (the
lower limit will be 1 in this case)

fsplugin.domains.<domain_
id>messages.send.delay

2000 The delay (in milliseconds) on a particular domain to
allow the writing process to finish writing.

Domain resolution

In order to support multiple domains configurations, the domain resolution is done according to
the values of the domain specific properties:

• fsplugin.domains.<domain_id>.order Defines the order in which the domains will be evaluated.

• fsplugin.domains.<domain_id>.messages.expression Regular expression used to match the
domain for the reception of messages. This regular expression will be evaluated against a
concatenation of the Service and Action values from the incoming message using the character
as separator, for example:

BRISReceptionService#SendEmailAction

An expression per domain will define to which domain the message is intended for. As a
convention for the PMode, it is recommended to prefix the Service with the identifier of the
business domain.

335

Example:

fsplugin.domains.BRIS.messages.expression=BRISReceptionService This regular expression means
that all messages containing AS4 headers where the Service is set to BRISReceptionService and
having any Action value will be mapped into the domain BRIS. A sample match is
BRISReceptionService#WelcomeAction.

NOTE
Java Regular Expression Syntax reference:
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html.

Property name Default value Description

fsplugin.domains.<domain_
id>.order

(none) Integer defining the order

Supported File Systems

FS Plugin - VFS abstraction

The FS Plugin supports multiple file system types via Apache VFS. There are 4 file systems currently
supported:

• Local

• SMB/CIFS

• SFTP

• FTP

▼ Click to Open

Local

A local file system is simply a directory on the local physical system. The URI format is:

• [file://]absolute-path

Where absolute-path is a valid absolute directory name on the local platform. UNC names are
supported under Windows.

This type of file system does not support authentication hence the domibus user needs read/write

336

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

access to this directory.

Examples:

• file:///home/someuser/somedir

• file:///C:/Documents and Settings

• /home/someuser/somedir

• c:\program files\some dir

• c:/program files/some dir

▼ Click to Open

SMB/CIFS

A SMB/CIFS file system is a remote directory shared via Samba or Windows Share, with the
following URI format:

• smb://hostname[:port]/sharename[/relative-path]

Notice that a share name is mandatory.

This type of file system supports authentication via user and password domain properties. See FS
Plugin Configuration.

Examples:

• smb://somehost/shareA

• smb://somehost/shareB/nesteddir

• smb://otherhost:445/shareC

▼ Click to open

SFTP

An SFTP file system is a remote directory shared via SFTP. Uses an URI of the following format:

sftp://hostname[:port][/relative-path]

The path is relative to whatever path the SFTP server has configured as base directory, usually
the user’s home directory.

This type of file system supports authentication via user and password domain properties. See FS
Plugin Configuration.

Examples:

• sftp://somehost/pub/downloads/

• sftp://somehost:22/pub/downloads/

▼ Click to open

FTP

An FTP file system is a remote directory shared via FTP. Accepts URIs of the following format:

337

• ftp://hostname[:port][/relative-path]

The path is relative to whatever path the FTP server has configured as base directory, usually the
user’s home directory.

This type of file system supports authentication via user and password domain properties. See FS
Plugin Configuration. .Examples:

• ftp://somehost/pub/downloads/

Due to incompatibilities between the current version of VFS and certain FTP servers on Linux
(e.g.: vsftpd), using a relative path prevents some of the plugin’s functionality from working
correctly. For that reason, in those cases an absolute path must be specified, e.g.:

• ftp://somelinuxhost/home/someuser/pub/downloads/

Metadata format

Below is the metadata UserMessage schema.

Check an an example in metadata.xml Example.

Name Description

UserMessage/mpc This OPTIONAL attribute occurs once and contains data about
the Message Partition Channel (MPC). Max length:255
characters.

MPCs allow for partitioning the flow of messages from a
Sending MSH to a Receiving MSH into several flows that can
be controlled separately and consumed differently.

UserMessage/PartyInfo This REQUIRED element occurs once, and contains data about
originating party and destination party.

UserMessage/CollaborationInfo This REQUIRED element occurs once, and contains elements
that facilitate collaboration between parties.

338

Name Description

UserMessage/MessageProperties This REQUIRED element occurs once, and contains message
properties that are user-specific. These properties allow for
more efficient monitoring, correlating, dispatching and
validating functions (even if these are out of scope of ebMS
specification) which would otherwise require payload access.

• PartyInfo

• CollaborationInfo

• MessageProperties

▼ Click to Open

PartyInfo

PartyInfo schema

Name Description

PartyInfo/From The REQUIRED element occurs once, and contains information
describing the originating party.

PartyInfo/From/PartyId@type The optional type attribute indicates the domain of names to
which the string in the content of the PartyId element belongs.

E.g.: urn:oasis:names:tc:ebcore:partyid-type:unregistered

PartyInfo/From/PartyId The REQUIRED PartyId element occurs one or more times. If it
occurs multiple times, each instance MUST identify the same
organization.

E.g.: domibus-blue

PartyInfo/From/Role The REQUIRED eb:Role element occurs once, and identifies the
authorized role (fromAuthorizedRole or toAuthorizedRole) of
the Party sending (when present as a child of the From
element) or receiving (when present as a child of the To
element) the message.

E.g.: http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/
200704/initiator

339

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator

Name Description

PartyInfo/To The OPTIONAL element occurs once, and contains information
describing the destination party. The element need not be
provided by a sender if the sending Access Point (C2) is
configured for Dynamic Discovery.

PartyInfo/To/PartyId (Same as PartyInfo/From/PartyId). This OPTIONAL element
need not be provided for C2 configured for Dynamic Discovery.

PartyInfo/To/PartyId@type The optional type attribute indicates the domain of names to
which the string in the content of the PartyId element belongs.

E.g.: urn:oasis:names:tc:ebcore:partyid-type:unregistered

PartyInfo/To/Role (Same as PartyInfo/From/Role). This OPTIONAL element does
not need to be provided for C2 configured for Dynamic
Discovery.

▼ Click to Open

CollaborationInfo

CollaborationInfo schema

Name Description

CollaborationInfo/AgreementRef This OPTIONAL element occurs at most once. The
AgreementRef element is a string that identifies the entity or
artifact governing the exchange of messages between the
parties.

E.g.: https://joinup.ec.europa.eu/

CollaborationInfo/Service This REQUIRED element occurs once. It is a string identifying
the service that acts on the message and it is specified by the
designer of the service. It SHOULD identify a set of related
business transactions. NOTE: “Business transactions” can be
mapped into “Actions” in the AS4 context. or other message
exchanges in the context of a business process or use case.

E.g.: SupplierOrderProcessing

340

https://joinup.ec.europa.eu/

Name Description

CollaborationInfo/Action This REQUIRED element occurs once. The element is a string
identifying an operation or an activity within a Service that
may support several of these. It SHOULD identify the
different types of business transactions or other message
exchanges in the context of an identified Service.

E.g.: NewOrder

▼ Click to Open

MessageProperties

MessageProperties schema

This required element occurs at most once, and contains message properties that are
implementation specific. As parts of the header such properties allow for more efficient
monitoring, correlating, dispatching and validating functions (even if these are out of scope of
ebMS specification) which would otherwise require payload access.

These elements hold a set of name-value properties that will hold for instance the identifiers for
the 'originalSender' and 'finalRecipient'.

Name Description

Property Element is of xs:anySimpleType (e.g. string, URI). message
properties that are implementation specific. As parts of the
header such properties allow for more efficient monitoring,
correlating, dispatching and validating functions (even if
these are out of scope of ebMS specification) which would
otherwise require payload access.

These elements hold a set of name-value properties that will
hold for instance the identifiers for the 'originalSender' and
'finalRecipient'.

E.g.: C1

The property values have a max size of 1024 characters. If
this size is exceeded, then an EbMS3Exception is thrown by
the AP (Domibus) and the message is not sent.

Property@name The value of this required attribute must be agreed upon
between partners.
E.g.: originalSender

The property name has a max size of 255 characters.

341

Name Description

Property@type This optional attribute allows for resolution of conflicts
between properties with the same name, and may also help
with Property grouping, e.g. various elements of an address.

metadata.xml Example

A sample file with this content, example_metadata.xml is also distributed in the config/ directory.

<?xml version="1.0" encoding="UTF-8" ?>
<UserMessage
 xmlns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">
 <PartyInfo>
 <From>
 <PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">
 domibus-blue
 </PartyId>
 <Role>
 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator
 </Role>
 </From>
 <!--Optional:-->
 <To>
 <PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">
 domibus-red
 </PartyId>
 <Role>
 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder
 </Role>
 </To>
 </PartyInfo>
 <CollaborationInfo>
 <!--You may enter the following 4 items in any order-->
 <!--Optional:-->
 <!-- <AgreementRef type="">A1</AgreementRef> -->
 <Service type="tc1">bdx:noprocess</Service>
 <Action>TC1Leg1</Action>
 </CollaborationInfo>
 <MessageProperties>
 <!--1 or more repetitions:-->
 <!--originalSender and finalRecipient are mandatory-->
 <Property
 name="originalSender">
 urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1
 </Property>
 <Property

342

 name="finalRecipient">
 urn:oasis:names:tc:ebcore:partyid-type:unregistered:C4
 </Property>
 </MessageProperties>
</UserMessage>

Send Files Sequence

Send Files sequence diagram

The FS Plugin (C2) continually polls the various configured locations for a list of existing files in the
outgoing folder and subfolders, multiple files can be found simultaneously in the same folder. It
then filters that list by excluding metadata files, content files that have been processed previously
(those which file name contains a message id) and files with .lock suffix to create a set of eligible
content files. For each eligible content file, the plugin uses the metadata file named "metadata.xml"
within the same directory than the considered content file.

For each content file, the plugin put a message to an internal queue – FSPluginSendQueue and the
messages are consumed from JMS queue by several consumers – the numbers of these consumers
could be changed in fs-plugin.properties , property:

• fsplugin.send.queue.concurrency=5-20

The value could be changed as well per domain:

• fsplugin.domains.DOMAIN1.send.queue.concurrency=5-20

343

The name of the queue could be changed in the property:

• fsplugin.send.queue=domibus.fsplugin.send.queue

For each message in the JMS queue, the plugin then creates an AS4 message for each eligible file by
retrieving information from metadata file (metadata.xml within the same directory) to populate the
message properties and adding the content file as AS4 payload. The MIME type for the payload is
derived from the content file’s extension (or file content itself if the file has no extension) according
to the supported formats[multiblock footnote omitted]. This message is then submitted to the
Domibus core and the content file is renamed by adding the message id to the original file name, as
follow:

• originalName_messageId.originalExtension

On its own schedule, Domibus core (C2) eventually connects to the applicable destination gateway
(C3) to deliver the message.

Check File Status Sequence

Check File Status sequence diagram

Every time the Domibus core delivers a message status change event to the FS Plugin, the plugin
classifies it into one of three categories, according to the new status:

• Sending events: set of events through which the message navigates while transfer is in
progress.

• Sent successfully events: set of final events into which messages ends after a successful
transfer.

344

• Sent failed events: final event into which messages ends after an unsuccessful transfer.

SEE ALSO
For more about available states and transitions, see WS Plugin Use Cases
Details.

SEND events

List of available Send Events:

• READY_TO_SEND

• SEND_ENQUEUED

• SEND_IN_PROGRESS

• WAITING_FOR_RECEIPT

• WAITING_FOR_RETRY

• SEND_ATTEMPT_FAILED

Sending events result in a rename of the content file according to the rule:

• originalName_messageId.ext.NEW_STATUS

Example:

• message1_3c5558e4-7b6d-11e7-bb31-be2e44b06b34@domibus.eu.xml.READY_TO_SEND

Successful SEND events

Corresponding set of events:

• ACKNOWLEDGED

• ACKNOWLEDGED_WITH_WARNING

When a message is sent successfully, the original content file is either deleted or archived,
according to the value configured in property fsplugin.messages.sent.action or its domain-specific
variation.

When archiving, the original file is moved from the OUT folder to the SENT folder, while maintaining
the same sub-folder hierarchy, for example:

<domain root>/OUT/subfolder1/subfolder2/file

is moved to:

<domain root>/SENT/subfolder1/subfolder2/file

When archiving, the file is also renamed according to the rule:

originalName_messageId.originalExtension

Example:

message1_3c5558e4-7b6d-11e7-bb31-be2e44b06b34@domibus.eu.xml

345

Failed SEND events

Corresponding set of events :

• SEND_FAILURE

When a message suffers a send failure, the original content file is either deleted or archived,
according to the value configured in property fsplugin.messages.failed.action or its domain-
specific definition. In all cases, an additional error file is created detailing the error (more details
below).

When archiving, the original file is moved from the OUT folder to the FAILED folder, while
maintaining the same sub-folder hierarchy, for example:

<domain root>/OUT/subfolder1/subfolder2/file

is moved to:

<domain root>/FAILED/subfolder1/subfolder2/file

When archiving, the file is also renamed as follows:

originalName_messageId.originalExtension

An error file is always created and placed in the "FAILED" folder while maintaining the original
sub-folder hierarchy. Its name follows the form:

originalName_messageId.originalExtension.error

Example:

message1_3c5558e4-7b6d-11e7-bb31-be2e44b06b34@domibus.eu.xml.error

The error file’s contents have the following format:

errorCode: <error_code_value>
errorDetail:http://192.168.1.66:8080/domibus/services/msh
 [<error_detail_value>]
 messageInErrorId:
 mailto:92620d75-c900-4007-b1f9-fc2c3fae0c61@domibus.eu
 [<message_id_value>]
 mshRole: <msh_role_value>
 notified: <notified_null>
 timestamp: <timestamp_value>

All the error values are provided to the FS Plugin by the Domibus Access Point.

SEE ALSO
For more about messages and error codes, see the WS Plugin Interface Message
Standards.

Example:

346

errorCode: EBMS:0005
errorDetail: Error dispatching message to
http://192.168.1.66:8080/domibus/services/msh
[http://192.168.1.66:8080/domibus/services/msh]
messageInErrorId: mailto:92620d75-c900-4007-b1f9-fc2c3fae0c61@domibus.eu
[92620d75-c900-4007-b1f9-fc2c3fae0c61@domibus.eu]
mshRole: SENDING
notified: null
timestamp: 2017-09-07 11:48:03.0

Receive Files Sequence

Receive Files sequence diagram

When the Domibus core (C3) receives an AS4 message it passes it to the FS Plugin. The FS plugin
starts by extracting the Service and Action values from the message and crosses that information
with the various domain expressions to select the applicable domain location defining the
destination directory. The domain expressions are taken from properties
fsplugin.domains.<domain_id>.messages.expression and are evaluated in order, according to
properties fsplugin.domains.<domain_id>.order. If no domain is found to match the pair
Service/Action, the main location is selected as the destination folder.

If the AS4 message contains a single payload, a new file is created in the incoming folder of the
location identified above. This file will have a name in the form:

messageID.extension

Where messageId is the id of the message and extension is a file extension derived from the MIME
type of the payload.

If the AS4 message contains multiple payloads, multiples files are created. NOTE: Though only one
payload can be sent at once using the FS Plugin, reception of multiple payloads is possible if
initiated with other plugins.

Those files will be named similar to the above but also contain the CID of the payload, in the form:

347

• messageID_partInfoCid.extension

Example:

• 6d38e798-26d7-45a9-9314-3a280cf02c8d_message.pdf

10.1.3. Plugin Notifications

Domibus core notifies the FS Plugin on the following events:

• MESSAGE_RECEIVED

• MESSAGE_SEND_FAILURE

• MESSAGE_RECEIVED_FAILURE

• MESSAGE_SEND_SUCCESS

• MESSAGE_STATUS_CHANGE

The type of events received can be configured using the FS Plugin property:
fsplugin.messages.notifications. The property can be found in fs-plugin.properties file in the
domibus-distribution-xxx-default-fs-plugin.zip.

SEE ALSO For more see the Plugin Cookbook.

10.1.4. Multitenancy

The Default FS Plugin can be used when Domibus is configured in Multitenancy mode.

In Multitenancy mode the plugins security is activated by default, regardless of the configured
value in domibus.properties for the domibus.auth.unsecureLoginAllowed property.

As a result, every request to Domibus to send a file must be authenticated via plugin username and
password, which are configured in fs-plugin.properties per domain. Please find below a
configuration example for domain DOMAIN1:

Mandatory in Multitenancy mode.
The user that submits messages to Domibus.
It is used to associate the current user
with a specific domain.
fsplugin.domains.DOMAIN1.authentication.user=

Mandatory in Multitenancy mode.
The credentials of the user defined under the property username.
fsplugin.domains.DOMAIN1.authentication.password=

SEE ALSO
For more information on how to create plugin users for authentication use, see
Plugin Users.

348

FS Plugin Configuration

Prerequisites

Domibus 3.3 or a later version needs to be already installed in a folder called edelivery. See
Administration Guide or the Quick Start Guide guides.

The FS Plugin can either be installed on the Sending Access Point or on the Receiving Access Point,
or on both.

Configuration Procedure

The FS (File System) Plugin configuration procedure includes:

• Downloading and installing the FS Plugin

• Specifying the FS Plugin location and setting its permissions

• Configuring the message filter

• Configuring the metadata.xml file

• Configuring the PMode

Each of these steps is described in details below.

Download and installation

• Download the domibus-distribution-5.1.5-default-fs-plugin.zip from the Digital website (See
☞ FS Plugin Properties Configuration).

• Extract the zip file downloaded previously

• Copy the domibus-default-fs-plugin-5.1.5.jar file to edelivery /conf/domibus/plugins/lib folder
(where edelivery is the Domibus installation location)

• Copy the fs-plugin.xml and the fs-plugin.properties files specific to the Application Server used
tomcat, weblogic or wildfly) to <edelivery>/conf/domibus/plugins/config.

Location configuration

The FS Plugin supports multiple file system types via Apache VFS. There are 4 file systems currently
supported:

• Local

• SMB/CIFS

• SFTP

• FTP

These four file systems are described below.

Local

A local file system is simply a directory on the local physical system. The URI format is:

349

• [file://]absolute-path

Where absolute-path is a valid absolute directory name on the local platform. UNC names are
supported under Windows.

This type of file system does not support authentication hence the Domibus user needs read/write
access to this directory.

SEE ALSO ☞ File System Permissions

Examples:

• file:///home/someuser/somedir

• file:///C:/Documents and Settings

• /home/someuser/somedir

• c:\program files\some dir

• c:/program files/some dir

SMB/CIFS

A SMB/CIFS file system is a remote directory shared via Samba or Windows Share, with the
following URI format:

• smb://hostname[:port]/sharename[/relative-path]

Notice that a share name is mandatory.

This type of file system supports authentication via user and password domain properties. See FS
Plugin Configuration for more details.

Examples:

• smb://somehost/shareA

• smb://somehost/shareB/nesteddir

SFTP

An SFTP file system is a remote directory shared via SFTP. Uses an URI of the following format:

• sftp://hostname[:port][/relative-path]

The path is relative to whatever path the SFTP server has configured as base directory, usually the
user’s home directory.

This type of file system also supports authentication via user and password domain properties. See
section FS Plugin Configuration for more details.

Example:

350

file:///home/someuser/somedir
file:///C:/Documents

• sftp://somehost/pub/downloads/

FTP

An FTP file system is a remote directory shared via FTP. It accepts URIs of the following format:

• :port[/relative-path]

The path is relative to whatever path the FTP server has configured as base directory, usually the
user’s home directory.

This type of file system also supports authentication via user and password domain properties. See
section FS Plugin Configuration for more details.

Example:

• ftp://somehost/pub/downloads/

Due to incompatibilities between the current version of VFS and certain FTP servers on Linux (e.g.:
vsftpd), using a relative path prevents some of the plugin’s functionality from working correctly.
For that reason, in those cases an absolute path must be specified, e.g.:

• ftp://somelinuxhost/home/someuser/pub/downloads/

FS Plugin Properties Configuration

1. Choose a name for the File System Plugin folder, where various types of messages will be stored
(e.g: filestore refers to this folder in our documentation). Create the folder and make sure it
can be read and written by the user running Domibus.

2. Edit the edelivery_path/conf/domibus/plugins/conf/fs-plugin.properties.

3. Set fsplugin.messages.location=<PATH>/filestore where <PATH> is the full path to the filestore
folder.

Example:

fsplugin.messages.location=/home/domibus/fs_plugin_data/MAIN.

4. Optional: Set the_ fsplugin.messages.payload.id property (Default is cid:message).

5. Restart Domibus.

The following folders should automatically be created under the filestore folder, after the
successful start of Domibus:

• IN: folder where the messages are received.

• SENT: folder where the messages sent are stored.

• FAILED: folder where the messages that failed to be sent are stored.

• OUT: folder from where the messages are sent.

NOTE It is possible to configure multiple locations for incoming and outgoing files to be

351

ftp://hostname
ftp://somehost/pub/downloads/
ftp://somelinuxhost/home/someuser/pub/downloads/

sent with the Domibus file plugin. The procedure of configuring different domains
is described in Specific Domain Setup.

Properties defined in the property file <edelivery_path> /conf/domibus/plugins/conf/fs-
plugin.properties can be used to configure the FS Plugin.

The list of FS Plugin properties can be found in the FS Plugin ICD document

Message Filter configuration

Log on the Administration Console. Make sure that the FS Plugin is the first in the the order of
Plugins that are processed using the following procedure in the Admin Console:

1. Choose Messages filter:

2. Select the backendFSPlugin, then click on Move Up to move it up to the top of the list:

3. Save the changes.

Metadata.xml configuration

The metadata.xml contains the details of the sender and receiver party IDs as well as other
information and affects all future message exchanges immediately after the file is placed in the
OUT(tray) folder of the Sending Access Point.

A sample metadata.xml file is provided, which needs to be modified to match the PMode

352

specifications of the sending and receiving Access points used.

<?xml version="1.0" encoding="UTF-8" ?>

<UserMessage
 xmlns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">
 <PartyInfo>
 <From>
 <PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">
 domibus-blue
 </PartyId>
 <Role>
 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator
 </Role>
 </From>
 <!--Optional:-->
 <To>
 <PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
red</PartyId>
 <Role>
 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder
 </Role>
 </To>
 <!--Optional:-->
 </PartyInfo>

 <CollaborationInfo>
 <!--You may enter the following 4 items in any order-->
 <!--Optional:-->
 <!-- <AgreementRef type="">A1</AgreementRef> -->
 <Service type="tc1">bdx:noprocess</Service>
 <Action>TC1Leg1</Action>
 </CollaborationInfo>
 <MessageProperties>
 <!--1 or more repetitions:-->
 <!--originalSender and finalRecipient are mandatory-->
 <Property
 name="originalSender">
 urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1
 </Property>
 <Property
 name="finalRecipient">
 urn:oasis:names:tc:ebcore:partyid-type:unregistered:C4
 </Property>
 </MessageProperties>
 <PayloadInfo>

353

 <PartInfo href="cid:message">
 <PartProperties>
 <Property name="MimeType">text/xml</Property>
 </PartProperties>
 </PartInfo>
 </PayloadInfo>
</UserMessage>

Sample Metadata.xml file

• Copy the metadata.xml file to the sender’s filestore /OUT folder.

NOTE
For each message received a metadata.xml file is also generated by FS-Plugin and
stored in the /IN/FINAL_RECIPIENT/MESSAGE_ID/… folder

PMode configuration

Using the sample PMode file provided with the Domibus software:

• Edit the PMode file and remove the 2 instances of

• payloadProfile="MessageProfile" below:

<?xml version="1.0" encoding="UTF-8"?>
……..
……..
<legConfigurations>
 <legConfiguration
 name="pushTestcase1tc1Action"
 service="testService1"
 action="tc1Action"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
 <legConfiguration name="testServiceCase"
 service="testService"
 action="testAction"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryAS4Policy"
 receptionAwareness="receptionAwareness"
 propertySet="eDeliveryPropertySet"
 payloadProfile="MessageProfile"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
 </legConfigurations>

354

 <process name="tc1Process"
 ……..
 ……..
 ……..

• Upload the PMode to the Access point using the PMode Option in the admin console:

Sending Procedure Options

In this section we will demonstrate, using examples, how messages Payloads are sent from one
Access Point to another.

If FS-plugin is used for the sending as well as the receiving:

1. Place the metadata.xml file under the sender’s filestore/OUT folder.

2. Any subsequent file(s) placed in the same filestore/OUT folder will automatically be sent to the
receiver’s Access Point and placed under the receiver’s filestore/IN folder.

If WS-plugin is used to send a message to an FS-plugin access point, then:

1. The metadata.xml file is not used at the sender side, instead you can use SoapUI or another
client backend application.

2. Sent payloads will be also placed under the receiver’s filestore/IN folder.

355

NOTE
The next sections describe the structure of the receiver’s filestore /IN folder which
contains received messages.

Scenario 1: WS-plugin is used at the sender’s side

If WS-plugin is used at the sender’s side, we will have two configuration choices:

Using PayloadName

1. If the PayloadName Property_name is used as shown below, where SoapUI is used as Backend, the
received payload name will be the value given to the PayloadName parameter (testing1.xml):

<ns:Property
 name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns:Property>
</ns:MessageProperties>
<ns:PayloadInfo>
<ns:PartInfo href="cid:message">
<ns:PartProperties>
<ns:Property name="MimeType">text/xml</ns:Property>
<ns:Property name="PayloadName">testing1.xml</ns:Property>
</ns:PartProperties>
</ns:PartInfo>
</ns:PayloadInfo>
</ns:UserMessage>
…

2. The SoapUI response is shown here:

3. At the Receiver’s IN folder, a first subfolder is created and named using the finalRecipient
parameter value from the Sender’s metadata.xml file (e.g: urn_oasis_names_tc_ebcore_partyid-
type_unregistered_C4).

NOTE
That the colon ":" in the folder name has been replaced by the underscore (_)
character:

4. Within the finalRecipient folder, is then created a second subfolder named using the MessageID
(e.g: 1b8da6f2-bc5e-42ab-9a10-583938609367@domibus.eu in this case).

356

5. Finally, the payload (testing1.xml) and the metadata.xml file are stored in the second folder,
the MessageID folder (1b8da6f2-bc5e-42ab-9a10-583938609367@domibus.eu) as shown here:

PayloadName not used option

1. The received payload name will be the value given after href="cid:xxxxx" as shown
(e.g:message.xml) or a random string if href is absent (e.g.: 476cb7ab-df21-456f-bb6e-
619e1d6fb1ea.xml):

…
<ns:Property
name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns:Property>

</ns:MessageProperties>
<ns:PayloadInfo>
<ns:PartInfo href="cid:message">
<ns:PartProperties>
<ns:Property name="MimeType">text/xml</ns:Property>
</ns:PartProperties>
</ns:PartInfo>
</ns:PayloadInfo>
</ns:UserMessage>….

2. The SoapUI response is shown here:

3. At the Receiver’s IN folder, a first subfolder is created and named using the finalRecipient
parameter value (e.g: urn_oasis_names_tc_ebcore_partyid-type_unregistered_C4). Note that the
colon ":" in the folder name has been replaced by the underscore (_) character:

4. Within the finalRecipient folder a second subfolder is created, with a name using the current
MessageID value (e.g: f090cfe0-4896-49a6-8942-42c6bd98913c@domibus.eu in this case)

357

mailto:1b8da6f2-bc5e-42ab-9a10-583938609367@domibus.eu

5. Finally, the payload (message.txt) and the metadata.xml file are stored in the second MessageID
folder (f090cfe0-4896-49a6-8942-42c6bd98913c@domibus.eu) as shown here:

Scenario 2: FS-plugin is used at the sender’s side

1. With the finalRecipient parameter, in metadata.xml, set to urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4:

<MessageProperties>
 <Property
 name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</Property>
 <Property
 name="finalRecipient">[.mark]##urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4
 </Property>
 </MessageProperties>
</UserMessage>

2. And a payload (e.g: test.txt) is placed in the Sender’s OUT folder, to be sent, as shown here:

3. At the Receiver’s OUT folder, a first subfolder named using the finalRecipient parameter value
is created (e.g: urn_oasis_names_tc_ebcore_partyid-type_unregistered_C4).

NOTE
that the colon ":" in the folder name has been replaced by the underscore (_)
character:

4. Within the finalRecipient folder is then created a second subfolder named using the current
MessageID value (e.g: e15fb76e-8806-48e7-8368-db784e12648b@domibus.eu in this case).

5. Finally, the payload (test.txt) and the metadata.xml file copied from the Sender’s OUT folder are

358

stored in the second folder, the MessageID folder (e15fb76e-8806-48e7-8368-
db784e12648b@domibus.eu) as shown here:

NOTE

Using the finalRecipient value from the Sender’s metadata.xml, the name of
Receiver’s finalRecipient folder will be modified is such a way that:

• cAll characters that are not alphanumeric characters[A-Za-z0-9], not dots (.) and
not dashes (-) will be replaced by the underscore character (_)

• e.g: urn:oasis:names:tc:ebcore:partyid-type:unregistered:C4 will be changed to:
urn_oasis_names_tc_ebcore_partyid-type_unregistered_C4.

Fine Tuning

Delete/Archive Message

The fs-plugin.properties can be setup to either delete sent or failed messages or archive them in
the sent or failed folders under filestore.

Delete

• fsplugin.messages.sent.action=delete: message Deleted after being sent

• fsplugin.messages.failed.action=delete: message Deleted after send failure

Archive

• fsplugin.messages.failed.action=archive: message Archived in the FAILED folder after failing to
be sent.

• fsplugin.messages.sent.action=archive: message Archived in the SENT folder after being sent.

Purge

• fsplugin.messages.received.purge.expired=600: will trigger a quartz job that will delete the
entire message_id folder under IN/FINAL_RECIPIENT.

• fsplugin.messages.sent.purge.expired= will keep the message in the SENT folder indefinitely (the
fsplugin.messages.sent.action=archive must be set first).

Specific Domain Setup

Multiple Locations

In order to configure multiple locations for incoming and outgoing files to be sent with the
Domibus file plugin, multiple domains can be setup in order to store messages in Domain specific
locations.

Setting multiple domains

1. Create a SOMEDOMAIN folder, before (re)starting Domibus where SOMEDOMAIN is a user defined

359

name. You can have as many SOMEDOMAIN folders as needed (SOMEDOMAIN1, SOMEDOMAIN2 etc…) or
your multiple locations purpose.

1. Add the following details to the fs-plugin.properties files (see the below highlighted
sections in yellow):

▪ The new Domain expression which includes the domain name and location (e.g:
SOMEDOMAIN), the Domain Service (e.g: SomeDomainService) and the Domain Action (e.g:
SomeDomaineAction).

Example Domain1

#fsplugin.domains.DOMAIN1.order=1
Regular expression used to match the domain for the reception of
messages. This regular expression will be evaluated
against the Service and Action values from the incoming message
separated by #.

Example DOMAIN1SampleService

#fsplugin.domains.DOMAIN1.messages.expression=
#fsplugin.domains.SOMEDOMAIN.messages.expression=SomeDomainService#SomeDomainAction
The location of the folder that the plugin will use to manage the
messages to be sent and received in case no domain
expression matches. This location must be accessible to the Domibus
instance. The domain locations must be independent
from each other and should not overlap.

Example /home/domibus/fs_plugin_data/DOMAIN1

#fsplugin.domains.DOMAIN1.messages.location=
#fsplugin.domains.SOMEDOMAIN.messages.location=/PATH/SOMEDOMAIN
The user used to access the domain location specified by the property
fsplugin.domains.<domain_id>.messages.location.
This value must be provided if the location access is secured at the
file system level so that users from other

NOTE
(Optional) Set the fsplugin.domains.SOMEDOMAIN.messages.payload.id property
(Default is cid:message)

NOTE
• Create the SOMEDOMAIN folder before (re)starting Domibus.

• IN, OUT, SENT and FAILED folders will be automatically created under SOMEDOMAIN.

The following properties defined in the property file
<edelivery_path>/conf/domibus/plugins/conf/fs-plugin.properties can be used to configure the FS-
Plugin for a particular domain:

360

Metadata.xml Domain Configuration changes

Insert an additional Service and Action in the metadata.xml as in the following example:

<?xml version="1.0" encoding="UTF-8" ?>
<UserMessage
 xmlns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/">
 <PartyInfo>
 <From>
 <PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">
 domibus-blue
 </PartyId>
 <Role>
 http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator
 </Role>
 </From>
 <!--Optional:-->
 <To>
 <PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">
 domibus-red
 </PartyId>
 <Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder</Role>
 </To>
 </PartyInfo>
 <CollaborationInfo>
 <!--You may enter the following 4 items in any order-->
 <!--Optional:-->
 <!--<AgreementRef type="">A1</AgreementRef-->
 <Service type="tc1">SomeDomainService</Service>
 <Action>SomeDomainAction</Action>
 </CollaborationInfo>
 <MessageProperties>
 <!--1 or more repetitions:-->
 <!--originalSender and finalRecipient are mandatory-->
 <Property
 name="originalSender">
 urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1
 </Property>
 <Property
 name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-type:unregistered:
 </Property>
 </MessageProperties>
</UserMessage>

361

PMode Domain-Specific Configuration

Insert the following additions to the existing Pmode:

NOTE

• SomeDomainService,SomeDomainAction and SOMEDOMAIN are user defined names.

• SomeDomainService describes the service specific to the new Domain

• SomeDomainAction describes the action that the new domain service can perform.

• SOMEDOMAIN is the name of the subfolder of the File System Plugin folder where
messages for the new domain will be stored.

<?xml version="1.0" encoding="UTF-8"?>

<--! ... -->

<services>
 <service name="testService1" value="bdx:noprocess" type="tc1"/>
 <service name="SomeDomainService" value="SomeDomainService" type="tc1"/>
</services>
<actions>
 <action name="tc1Action" value="TC1Leg1"/>
 <action name="tc2Action" value="TC2Leg1"/>
 <action name="SomeDomainAction" value="SomeDomainAction"/>
</actions>

<--! ... -->

<legConfiguration name="pushTestcase1tc3Action"
service="SomeDomainService
action="SomeDomainAction"
 defaultMpc="defaultMpc"
 reliability="AS4Reliability"
 security="eDeliveryPolicy"
 receptionAwareness="receptionAwareness"
 errorHandling="demoErrorHandling"
 compressPayloads="true"/>
 undefined</legConfigurations>undefined<process name="tc1Process"
 agreement=""
 mep="oneway"
 binding="push"
 initiatorRole="defaultInitiatorRole"
 responderRole="defaultResponderRole">
<initiatorParties>
 <initiatorParty name="blue_gw"/>
 <initiatorParty name="red_gw"/>
</initiatorParties>
<responderParties>
 <responderParty name="blue_gw"/>
 <responderParty name="red_gw"/>
</responderParties>

362

<legs>
 <leg name="pushTestcase1tc1Action"/>
 <leg name="pushTestcase1tc2Action"/>
 <leg name="pushTestcase1tc3Action"/>
</legs>undefined</process>undefined</businessProcesses>undefined</db:configuration>

Once the PModes are loaded in the sender and receiver’s Access points, the user is able to drop the
Payload into the /PATH/SOMEDOMAIN/OUT folder. The payload is received in the receiver’s
/PATH/SOMEDOMAIN/IN folder.

Multitenancy

The FS Plugin can be used when Domibus is configured in Multitenancy mode.

In Multitenancy mode the plugins security is activated by default, regardless of the configured
value in domibus.properties for the domibus.auth.unsecureLoginAllowed property. As a result, every
request to Domibus to send a file must be authenticated via plugin username and password, which
are configured in fs-plugin.properties per domain.

Example for DOMAIN1

Mandatory in Multitenancy mode.
The user that submits messages to Domibus.
It is used to associate the current user with a specific domain.
fsplugin.domains.DOMAIN1.authentication.user=
Mandatory in Multitenancy mode. The credentials of the user defined
under the property username.
fsplugin.domains.DOMAIN1.authentication.password=

More information on how to create plugin users used for authentication can be found in Plugin
Users).

Different recipients

To send multiple files to different recipients, create different sub-folders under the Sender’s OUT
folder, for each recipient. (One OUT/sub-folder per recipient).

Each of the subfolders would contain a metadata.xml file that contains details of its corresponding
recipient.

The FS Plugin would then scan each of these sub-folders and send the message present in each
using the metadata.xml details.

NOTE
To put the message to be distributed in each of the sub-folders, either create a script
which copies the message to each sub-folder, using a pre-prepared list of recipients
or develop a client program that does a similar task.

363

File System Permissions

Domibus must be able to write the incoming messages to the specified IN folder at the receiver end,
whether a domain setup is used or not.

Local File Systems

For local file systems, the Domibus user must have the necessary write permissions to the IN, OUT,
SENT and FAILED folders.

Remote File Systems

For remote file systems like SMB (Server Message Block), SFTP or FTP protocols, where the location
access is secured at the file system level and where users from other domains cannot access its
contents, the fs-plugin.properties file must include the credentials of a user (or users) allowed to
access the IN, OUT, SENT and the FAILED folders specific to each domain.

The fields to setup include are described in the following example. See FS Plugin Configuration for
more details:

……
fsplugin.domains.DOMAIN1.messages.user= user_name
fsplugin.domains.DOMAIN1.messages.password=user_password
…….

NOTE
A typical error that would occur if the sent Payload cannot be written to the
receiver’s IN folder is described here:

Example:

2017-10-18 15:25:08,772 [] []
#ERROR e.d.p.f.w.FSSendMessagesService:66 - Error setting up folders for domain:
SOMEDOMAIN
eu.domibus.plugin.fs.exception.FSSetUpException: IO error setting up folders
at
eu.domibus.plugin.fs.FSFilesManager.getEnsureChildFolder(FSFilesManager.java:104)

In this situation, the message is moved to the sender’s SENT folder, even though it has not actually
been successfully delivered to the receiver’s IN folder.

The message will only be released to the receiver’s IN tray when the correct (e.g.: write) permissions
are set.

364

Chapter 11. WS Plugin

11.1. WS Plugin Interface
▼ About this content

This content defines the participant’s interface to the Access Point (Corner Two and Corner Three
in the four-corner topology that will be explained later in this document) component of the
eDelivery building block. This document describes the WSDL and the observable behaviour of
the interface provided by Domibus and included in the default-ws-plugin.

This section describes the WSDL and the observable behaviour of the interface provided by
Domibus 4.x.y and included in the default-ws-plugin.

Here you can find information to understand the Access Point (Corner Two and Corner Three in
the four-corner model) services provided by Domibus delivered by eDelivery.

There is one interface described in this document:

Actor list

Interface Description

WebServicePlugin.wsdl The webservices interface for Domibus WS default plugin

▼ Scope

This content covers the service interface of the Access Point. It includes information regarding
the description of the services available, the list of use cases, the information model and the
sequence of message exchanges for the services provided. This specification is limited to the
service interface of the Access Point. All other aspects of its implementation are not covered by
this document.

▼ Audience

The intended target audience for this guide are:

• The Directorate Generals and Services of the European Commission, Member States (MS) and
also companies of the private sector wanting to set up a connection between their backend
systems and the Access Point. In particular:

◦ Architects will find it useful for determining how to best exploit the Access Point to create
a fully-fledged solution and as a starting point for connecting a Back-Office system to the
Access Point.

◦ Analysts will find it useful to understand the Access Point that will enable them to have
an holistic and detailed view of the operations and data involved in the use cases.

◦ Developers will find it essential as a basis of their development concerning the Access
Point plugin services.

◦ Testers can use this document in order to test the interface by following the use cases
described.

365

▼ Useful Resources

Below you can find useful information sources:

• Access Point Offering

Document holding technical specifications and implementation instructions.

• HTTP Methods for RESTful Services

Short descriptions and using HTTP Methods for RESTful Services

• Business Document Metadata Service Location

BDMSL Software Architecture Document

This document is the Software Architecture document of the CIPA eDelivery Business
Document Metadata Service Location application (BDMSL) sample implementation.
It intends to provide detailed information about the project:

1. An overview of the solution

2. The different layers

3. The principles governing its software architecture

• ebXML

About the Electronic Business using eXtensible Markup Language(ebXML)

• Web Services Description Language (WSDL) 1.1

WS-I Basic Profile Version 1.1

• XML Schema 1.1

• Extensible Markup Language (XML) 1.1

• Hypertext Transfer Protocol 1.1

• SOAP Messages with Attachments

• AS4 Profile of ebMS 3.0 Version 1.0

• e-SENS AS4 Profile 1.11

• eDelivery AS4 profile

• eDelivery Pmode Configuration

• XSDs for ebms3

• ebXML

Electronic Business using eXtensible Markup Language (ebXML)

Overview

Services' implementers and consumers can find a complete specification of the WS Plugin:

366

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Access+Point+software
http://www.restapitutorial.com/lessons/httpmethods.html
https://www.oasis-open.org/committees/download.php/40926/PEPPOL%20D8_2%20-%20Attachment%20I%20%20BusDox%20Common%20Definitions.pdf
http://www.ebxml.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
https://www.w3.org/TR/xml11/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/SOAP-attachments
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/AS4-profile-v1.0.html
http://wiki.ds.unipi.gr/display/ESENS/PR+-+AS4
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms-header-3_0-200704.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/cs02/ebms_core-3.0-spec-cs-02.pdf

• Functional Specification, this specifies the set of services and the operations provided by each
service and this is represented by the flows explained in the use cases.

• Behavioural Specification, this specifies the expected sequence of steps to be respected by the
participants in the implementation when calling a service or a set of services and this is
represented by the sequence diagrams presented in the use cases.

• Message Standards, this specifies the syntax and semantics of the data.

Functional Specification

Purpose of the Access Point component

The Access Point provides the functionality supporting Corner Two and Corner Three components.

In order to understand the Use Cases that will be described below it is important to explain the
topology; i.e. the four – corner model.

The four corner model

In this model we have the following elements:

• Corner One (C1): Backend C1 is the system that will send messages to the sending AP (Access
Point)

• Corner Two (C2): Sending Access Point C2

• Corner Three (C3): Receiving Access Point C3

• Corner Four (C4): Backend C4 is the system that received messages from the receiving AP
(Access Point)

There are two backend adapters (i.e. corner one and corner four). They send messages to and
download messages from the AS4 APs configured in the PMode configuration files.

Use Cases Overview

Actors

367

Actor Definition

Backend C1 Any participant submitting messages to any other Backend C4 and using the
Sending AP C2 for that purpose.

Backend C4 Any participant retrieving messages from any other Backend C1 and using the
Receiving AP C3 for that purpose.

NOTE

Greyed use cases in this paragraph show deprecated operations in the WSDL (in
these diagrams, the use cases below these replace them). Since deprecated and
replacing operations have the same functionality (only technical changes), in each
case only one use case is presented for both.

Backend C1 Use Cases

ID UC Description Operation System

UC01 Submit Message Submit any type of document from
a Backend C1 to a Backend C4

submitMes
sage

Domibus
4.x.y

UC03 Get Status of the
Message

Get the status of the Message with
messageId and access point role.

getStatusW
ithAccessP
ointRole

Domibus 5.1

Backend C1 Use Cases Diagram

Backend C4 Use Cases

ID UC Description Operation System

UC02 Download Message Retrieve the message from the
Receiving AP C3

retrieveMe
ssage

Domibus
4.x.y

UC02 Get Status of the
Message

Get the status of the Message getStatus Domibus
4.x.y

368

ID UC Description Operation System

UC04 ListPending Messages Check the pending messages to be
retrieved by the Backend C4 from
C3

listPending
Messages

Domibus
4.x.y

Backend C4 Use Cases Diagram

Use Cases Detail

The following paragraphs define the use cases listed above with more detail.

The Interface Functional Specification is described in the detailed uses cases using the Request and
the Response examples. It is important to remark that the Inputs and Responses provided as
examples for the use cases are based on a specific PMode configuration.

As defined in the eDelivery Specification Library, a PMode is the contextual information that
governs the processing of a particular message (thus is basically a set of configuration parameters).
The PMode associated with a message determines, among other things, which security and/or
which reliability protocol and parameters, as well as which MEP (Message Exchange Pattern) is
being used when sending a message. The technical representation of the PMode configuration is
implementation dependent.
C1 and C4 may be one or more participants.

The state machine diagrams presented below depict the various states in which a message may be
during its lifecycle when submitting or downloading the message. These are presented to have a
more comprehensive vision of the process that the messages go through. It is also important to
remark that also the sequence diagram of the basic flow is presented in the use cases.

The state machine diagram for submitting the message in C2:

C2 State machine

369

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4

The state machine diagram for downloading the message in C3:

C3 State machine

UC01 Submit Message

▼ Click to Open

UC01 Submit Message

Brief description

Submit any message with attachments from Backend C1 to the Backend C4. The response from
C2 to C1 is synchronous and contains a messageId.
MTOM feature is required when sending large files so that the attachments are send outside
the XML envelope, as parts. Otherwise, the attachments will be encoded base64 and sent
inside the envelope and the maximum limit would be 128Mb.
The state machine of the outgoing messages is the following:

Sequence Diagram C1 to C2 – SubmitMessage

Actors

370

Actors

C1 Backend C1

C2 Access Point C2

C3 Access Point C3

Preconditions

Preconditions

C1 Backend C1 has a message to submit.

C1 The message is valid. A message is valid if it respects the message standard format
(See ☞ Message Standards).

C2,C3 The Sending AP (C2) and the Receiving AP (C3) are up and running and properly
configured.

Basic Flow

Actor Step Description C2
Message

State

C3
Message

state

C1 1 Backend C1 submits the message. N/A -

C2 2 C2 sends an ACK to C1 containing the ID of the
message.

SEND_ENQU
EUED

-

C2 3 The message directly passes through to
SEND_ENQUEUED, meaning that it is available
for processing. All messages go through this
step regardless of load.

SEND_ENQU
EUED

-

C2 4 Once the sending process finishes the status
changes to WAITING_FOR_RECEIPT.

WAITING_FO
R_RECEIPT

-

C3 5 Once the reception is finished by C3, the status
changes to RECEIVED.

WAITING_FO
R_RECEIPT

RECEIVED

C3 6 The Receiving AP (C3) responds ACK to C2 WAITING_FO
R_RECEIPT

RECEIVED

C2 7 The status of the message changes to
ACKNOWLEDGED.
If configured in the PMode for non-
repudiation, the receipt SHOULD contain a
single ebbpsig:NonRepudiationInformation
child element. The value of
eb:MessageInfo/eb:RefToMessageId MUST refer
to the message for which this signal is a receipt.

ACKNOWLE
DGED

RECEIVED

- 8 Use case ends in successful condition. - -

Exception Flow

371

Actor Step Description C2
Messag

e
State

C3
Messag
e state

C2 E2.1 The ID provided by C1 already exists - -

C2 E2.1.1 The
parameterPMode[1].ReceptionAwareness.DuplicateDetectio
nmust be set to TRUE The status of the message changes to
SEND_FAILURE.

SEND_F
AILURE

-

C2 E2.1.2

C2 E11.1 Wrong receipt received or any other failure (e.g
connection lost)

- -

C2 E11.1.1 The status changes to WAITING_FOR_RETRY. WAITIN
G_FOR_
RETRY

-

C2 E11.1.2 Continue to step 3 - -

C2 E11.1.3.
1

The maximum number or retries (Configurable via
PMode on a by-usecase basis) has been reached

- -

C2 E11.1.3.
1.1

The status of the message changes to SEND_FAILURE. SEND_F
AILURE

-

C2 E11.1.3.
1.1

A notification can be sent to the Backend C1 that initially
submitted the message.

SEND_F
AILURE

C2 E11.1.3.
1.3

Use case ends in failure condition. - -

Post conditions

Success
ful
conditi
ons

The operation is a success if getStatus in C2 is ACKNOWLEDGED and this means that
the Receiving AP (C3) has received the message submitted by the Backend C1 and the
status in C3 is RECEIVED. The method getStatus must be called with the identifier of
the message received in the response or specified in the request.

Failure
Conditi
ons

Errors may be sent as SOAP Fault or as http:5XX.

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:ns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:_1="http://eu.domibus.wsplugin/">
 <soap:Header>
 <ns:Messaging> +
<#ns:UserMessage## mpc=”
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC”>
 <ns:PartyInfo>

372

 <ns:From>
 <ns:PartyId
type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-blue</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns:Role>
 </ns:From>
 <ns:To>
 <ns:PartyId
type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-red</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder</ns:Role>
 </ns:To>
 </ns:PartyInfo>
 <ns:CollaborationInfo>
 <ns:Service type="tc1">bdx:noprocess</ns:Service>
 <ns:Action>TC1Leg1</ns:Action>
 </ns:CollaborationInfo>
 <ns:MessageProperties>
 <ns:Property
name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns:Property>
 <ns:Property
name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns:Property>
 </ns:MessageProperties>
 <ns:PayloadInfo>
 <ns:PartInfo href="cid:message">
 <ns:PartProperties>
 <ns:Property name="MimeType">text/xml</ns:Property>
 </ns:PartProperties>
 </ns:PartInfo>
 </ns:PayloadInfo>
 </ns:UserMessage>
 </ns:Messaging>
</soap:Header>
<soap:Body>
 <_1:submitRequest>
 <|--Optional-->
 <bodyload>
 <value>cid:bodyload</value>
 </bodyload>
 <payload payloadId="cid:message" contentType="text/xml">

<value>PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsb
z4=</value>
 </payload>
 </_1:submitRequest>
</soap:Body>undefined</soap:Envelope>undefined<soap:Body>
<_1:submitRequest>
 <payloadpayloadId="cid:message"contentType="text/xml">

373

<value>PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsb
z4=</value>
 </payload>
 <payloadpayloadId="cid:attachment"contentType="application/octet-stream">

<value>PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsb
z4=</value>
 </payload>
</_1:submitRequest>undefined</soap:Body>undefined</soap:Envelope>

Response Example

<soap:Envelopeundefinedxmlns:soap="http://www.w3.org/2003/05/soap-
envelope">undefined<soap:Body>
<ns5:submitResponse
 xmlns:ns6="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5="http://eu.domibus.wsplugin"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <messageID>23dce7d9-2781-4623-beeb-6b43ab9e7d37@domibus.eu</messageID>
</ns5:submitResponse>undefined</soap:Body>undefined</soap:Envelope>

Special requirements

• N/A

UC02 Retrieve Message

▼ Click to Open

UC02 - Retrieve Message

Brief description

Retrieve any type of message sent from Backend C1 to Backend C4. The retrieval of the
message is based on a PULL mechanism. C4 downloads the message from C3.

Please note that retrieveMessage method replaces the deprecated method downloadMessage
to support the retrieval of large files. MTOM feature is required when retrieving large files.

Sequence Diagram C4 to C3 – retrieveMessage

Actors

Actors

C3 Access Point C3

C4 Backend C4

374

Preconditions

Preconditions

C3 There is at least one message sent by AP C2 and successfully received in the Receiving
AP C3.

C3 The Receiving AP (C3) is up and running and properly configured.

C4 C4 Has previously requested information about pending messages from C3.
C3 has returned a response containing the messageID('s) of the message(s) received
(cf. UC04).

Basic Flow

Actor Step Description C3 Message State

C4 1 Requests, to the Receiving AP C3, the service
retrieveMessage by providing the messageId and
the attribute markAsDownloaded with the value
true (which is the default value when this
optional attribute is missing)

RECEIVED

C3 2 Receiving AP C3 retrieves and sends the
information retrieveMessageResponse to C4 as
response to his request. This is the payload
(message content and attachments) and
metadata, analogous to the message sent from
C1 to C2 in UC01. The status of the message
changes to DOWNLOADED when the message
is retrieved by the Backend C4.

DOWNLOADED

C4 3 Receives the message as sent by C1 DOWNLOADED

C3 4 Deletes the payload of the message from the
database if retention timeout for downloaded
messages = 0.
NB: While the message metadata is still
recoverable by a Domibus administrator all
payload data is purged. This is necessary to be
able to prove message exchanges in case of
disputes. It is possible to produce the signature
of a payload but not the payload itself.

DELETED

C3 5 The status of the message changes to DELETED
when the message is deleted by C3 after the
configured retention timeout for downloaded
messages (retention_downloaded) expired.
Note: If retention_downloaded has a negative
value, the message will never be deleted from
C3. If the message was not downloaded, the
retention_undownloaded value will be used as
timeout for deletion.

DELETED

375

Alternative Flow

Actor Step Description C3 Message State

C3 A1.1 Configured retention time has passed RECEIVED

C3 A1.1.1 Go directly to step 4 RECEIVED

Alternative Flow 2

Actor Step Description C3 Message State

C4 A2.1 Requests, to the Receiving AP C3, the service
retrieveMessage by providing the messageID
and the attribute markAsDownloaded with the
value False.

RECEIVED

C3 A2.2 Receiving AP C3 retrieves and sends the
information retrieveMessageResponse to C4 as
response to his request. This is the payload
(message content and attachments) and
metadata, analogous to the message sent from
C1 to C2 in UC01.

RECEIVED

C4 A2.3 Receives the message as sent by C1. RECEIVED

C4 A2.4 Requests, to the Receiving AP C3, the service
markMessageAsDownloaded by providing the
messageId.

RECEIVED

C3 A2.5 C3 responds with a confirmation message
containing the messageID if the message was not
marked as DOWNLOADED until then or an
error message otherwise. The status of the
message changes to DOWNLOADED when the
message is retrieved by the backend C4.

DOWNLOADED

C3 A2.6 Go to step 4 DELETED

Alternative Flow 2

Actor Step Description C3 Message State

C3 E2.1 Wrong messageID (malformed or missing),
this is a condition of failure.

(NOT FOUND)

C3 E2.1.1 The NOT FOUND status is a pseudo state for
messages that are not available for download
(were never received or were rejected).

(NOT FOUND)

C3 E2.1.2 Use case ends in failure
condition

Post conditions

376

Success
ful
conditi
ons

It is a success if the Message Status is ACKNOWLEDGED on C2 and DOWNLOADED or DELETED on
C3.
Payload of the message may be deleted from C3’s database.

Failure
Conditi
ons

No message payload is returned to C4. The response contains a description of the
encountered error. The operation is not a success if GetStatus is SEND_FAILURE on C2
and NOT FOUND on C3 and this means that the Backend C4 has not been able to
download the message submitted by the Backend C1. If the retrieveMessage method is
called with a wrong messageID (malformed or missing), this is a condition of failure.
The NOT FOUND status is a pseudo state for messages that are not available for download
(were never received or were rejected).

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:_1="
 http://eu.domibus.wsplugin/">
 <soap:Header/>
 <soap:Body>
 <_1:retrieveMessageRequest>
 <messageID>$\{ResponseParameters#messageID}</messageID>
 </_1:retrieveMessageRequest>
 </soap:Body>
</soap:Envelope>

Response Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header>
 <ns6:Messaging mustUnderstand="false"
 xmlns:ns6="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5=" http://eu.domibus.wsplugin/"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <ns6:UserMessage> mpc=”http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/defaultMPC”>
 <ns6:MessageInfo>
 <ns6:Timestamp>2017-10-02T17:32:14.956+02:00</ns6:Timestamp>
 <ns6:MessageId>d05051c6-951c-4f40-90b5-
459eca9d8302@domibus.eu</ns6:MessageId>
 </ns6:MessageInfo>
 <ns6:PartyInfo>
 <ns6:From>
 <ns6:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
blue</ns6:PartyId>
 <ns6:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns6:Role>
 </ns6:From>

377

 <ns6:To>
 <ns6:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
red</ns6:PartyId>
 <ns6:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder</ns6:Role>
 </ns6:To>
 </ns6:PartyInfo>
 <ns6:CollaborationInfo>
 <ns6:Service type="tc1">bdx:noprocess</ns6:Service>
 <ns6:Action>TC1Leg1</ns6:Action>
 <ns6:ConversationId>52f1c57d-bd35-4ab2-a0a5-
da9a15101dba@domibus.eu</ns6:ConversationId>
 </ns6:CollaborationInfo>
 <ns6:MessageProperties>
 <ns6:Property
 name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns6:Property>
 <ns6:Property
 name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns6:Property>
 </ns6:MessageProperties>
 <ns6:PayloadInfo>
 <ns6:PartInfo href="cid:message">
 <ns6:Schema/>
 <ns6:PartProperties>
 <ns6:Property name="MimeType">text/xml</ns6:Property>
 </ns6:PartProperties>
 </ns6:PartInfo>
 </ns6:PayloadInfo>
 </ns6:UserMessage>
 </ns6:Messaging>
 </soap:Header>
 <soap:Body>
 <ns5:retrieveMessageResponse
 xmlns:ns6="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5=" http://eu.domibus.wsplugin/"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <payload payloadId="cid:message">

<value>PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsb
z4=</value>
 </payload>
 </ns5:retrieveMessageResponse>
 </soap:Body>
</soap:Envelope>

Security

In Multitenancy mode, the general property domibus.auth.unsecureLoginAllowed is
ignored and authentication is always required. For more about authentication options, see the

378

Domibus Authentication section in the Administration.

UC03 Get the status of the Message

▼ Click to Open

UC03 - Get the status of the Message

Brief description

Get the status of the Message sent from Backend C1 or received by the Backend C4:

Sequence Diagram – GetStatus

Actors

Actors

C1 Backend C1

C2 Access Point C2

C3 Access Point C3

C4 Backend C4

Preconditions

Preconditions

There is at least one message sent by Backend C1 or to be retrieved by Backend C4.

The Sending AP C2 and the Receiving AP C3 are up and running and properly
configured.

Basic flow event

1. Backend C1 or the Backend C4 launch a statusRequest using the messageId and access point
role.

2. The Access Point (Sending AP C2 or Receiving AP C3) retrieve the getStatusResponse.

3. Use case ends.

Exception flow

• N/A

Post Conditions

379

Success
ful
conditi
ons

The operation is a success if GetStatusResponse retrieves any status of the following:

* SEND_ENQUEUED * WAITING_FOR_RECEIPT * ACKNOWLEDGED * SEND_FAILURE * NOT_FOUND *
WAITING_FOR_RETRY * RECEIVED * DELETED * DOWNLOADED

Failure
Conditi
ons

The message does not exist.

Special requirements

• N/A

Security

In Multitenancy mode, the general property domibus.auth.unsecureLoginAllowed is
ignored and authentication is always required.
For more about authentication options, see the Domibus Authentication section in the
Administration.

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:_1="
 http://eu.domibus.wsplugin/">
 <soap:Header/>
 <soap:Body>
 <_1:statusRequest>
 <messageID>d05051c6-951c-4f40-90b5-459eca9d8302@domibus.eu</messageID>
 </_1:statusRequest>
 </soap:Body>
</soap:Envelope>

Response Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Body>
 <ns5:getStatusResponse
 xmlns:ns6="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5=" http://eu.domibus.wsplugin/"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime">NOT_FOUND</ns5:getStatusResponse>
 </soap:Body>
</soap:Envelope>

UC04 List Pending Messages

▼ Click to Open

UC04 List Pending Messages

380

Brief description

List the status Messages pending to be received by the Backend C4.

Sequence Diagram C4 to C3 – ListPendingMessages

Actors and Preconditions

Actors

C4 Backend C4

Preconditions

There is at least one message be downloaded by Backend C4.

The Receiving AP C3 is up and running and properly configured.

Basic Flow event

Steps: 1. Backend C4 launches the service listPendingMessages. 2. The Access Point (Receiving AP
C3) retrieves the list of messageIds for messages with status RECEIVED. 3. Use case ends.

Exception Flow

• N/A

Post conditions

Success
ful
conditi
ons

The operation is a success if listPendingMessagesResponse contains all the messageIDs
of the pending messages to be retrieved or the list is empty in the case that there are
no pending messages.

Failure
Conditi
ons

N/A

Special requirements

• N/A

Security

In Multitenancy mode, the general property domibus.auth.unsecureLoginAllowed is ignored and
authentication is always required.
For more about authentication options, see the Domibus Authentication section in the
Administration.
When authentication is required, the returned messages will always be filtered having
authenticated user overwriting finalRecipient value (if finalRecipient is provided as below).
The listPendingMessagesRequest accepts 8 optional parameters in order to filter the returned list
of messages in status RECEIVED.

381

Date time optional parameters like “receivedFrom” and “receivedTo” can be provided in ISO-
8601 format, with or without an offset. When the offset is provided, the user MUST NOT provide
any additional timezone IDs so a value of “2021-07-21T14:27:00+02:00[Europe/Brussels]” is
invalid. When the offset is missing, these parameter values are considered to be provided in UTC,
having an offset of “+00:00”. For example, the following two values are valid and point to the
same instant of 21st of July 2021, 12:27:00 in UTC:

1. “2021-07-21T14:27:00+02:00” will be interpreted to have an offset of 02:00;

2. “2021-07-21T12:27:00” will be interpreted to be in the UTC timezone with a +00:00 offset.

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:_1="
 http://eu.domibus.wsplugin/">
 <soap:Header/>
 <soap:Body>
 <_1:listPendingMessagesRequest>
 <messageId>4078cfea-74e9-4058-9d14-1dceee597abd@domibus.eu</messageId>
 <conversationId>52f1c57d-bd35-4ab2-a0a5-
da9a15101dba@domibus.eu</conversationId>
 <refToMessageId>d05051c6-951c-4f40-90b5-
459eca9d8302@domibus.eu</refToMessageId>
 <fromPartyId>domibus-blue</fromPartyId>
 <finalRecipient>urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</finalRecipient>
 <originalSender>urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</originalSender>
 <receivedFrom>2021-01-15T09:00:00</receivedFrom>
 <receivedTo>2021-01-29T09:00:00</receivedTo>
 </_1:listPendingMessagesRequest>
 </soap:Body>
</soap:Envelope>

Response Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Body>
 <ns6:listPendingMessagesResponse
 xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:eb="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/"
 xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime" xmlns:ns6="
 http://eu.domibus.wsplugin/">
 <messageID>4078cfea-74e9-4058-9d14-1dceee597abd@domibus.eu</messageID>
 </ns6:listPendingMessagesResponse>
 </soap:Body>

382

</soap:Envelope>

Behavioural Specification

WS Plugin configuration

The WS plugin configuration is done in the ws-plugin.properties file. Following properties are
configurable in this file:

Configuration Property Description and Usage Default

wsplugin.mtom.enabled When TRUE enables the support for
MTOM.

FALSE

wsplugin.schema.validation.enabled Enable the schema validation. By default,
the schema validation has been disabled
due to performance reasons. For large
files, it is recommended to keep the
schema validation as disabled.

FALSE

wsplugin.messages.pending.list.max The maximum number of pending
messages to be listed from the pending
messages table. Setting this property is
expected to avoid timeouts due to huge
_resultsets being served. Setting this
property to zero returns all pending
messages._

500

wsplugin.messages.notifications The notifications sent by Domibus to the
plugin. The following values are
possible:

• MESSAGE_RECEIVED

• MESSAGE_FRAGMENT_RECEIVED

• MESSAGE_SEND_FAILURE

• MESSAGE_FRAGMENT_SEND_FAILURE

• MESSAGE_RECEIVED_FAILURE

• MESSAGE_FRAGMENT_RECEIVED_FAILURE

• MESSAGE_SEND_SUCCESS

• MESSAGE_FRAGMENT_SEND_SUCCESS

• MESSAGE_STATUS_CHANGE

• MESSAGE_FRAGMENT_STATUS_CHANGE

MESSAGE_RECEIVE
D,
MESSAGE_SEND_FA
ILURE,
MESSAGE_RECEIVE
D_FAILURE,
MESSAGE_SEND_SU
CCESS,
MESSAGE_STATUS_
CHANGE

383

Configuration Property Description and Usage Default

wsplugin.dispatcher.connectionTimeou
t

Timeout values for communication
between the ws plugin and the backend
service
ConnectionTimeOut - Specifies the
amount of time, in milliseconds, that the
consumer will attempt to establish a
connection before it times out. 0 is
infinite.

240000

wsplugin.dispatcher.receiveTimeout ReceiveTimeout - Specifies the amount of
time, in milliseconds, that the consumer
will wait for a response before it times
out. 0 is infinite.

240000

wsplugin.dispatcher.allowChunking Allows chunking when sending messages
to the backend service

FALSE

wsplugin.dispatcher.chunkingThreshol
d

If domibus.dispatcher.allowChunking is
TRUE, this property sets the threshold at
which messages start getting chunked(in
bytes). Messages under this limit do not
get chunked. Defaults to 100 MB.

104857600

wsplugin.dispatcher.connection.keepA
live

Specifies if the connection will be kept
alive between C2-C1 and C3-C4.

TRUE

wsplugin.dispatcher.worker.cronExpre
ssion

Specify concurrency limits via a "lower-
upper" String, e.g. "5-10", or a simple
upper limit String, e.g. "10" (the lower
limit will be 1 in this case)
when sending files,

0 0/1 * * * ?

wsplugin.push.enabled Enables push notifications to the
Backend.
Properties wsplugin.push.rules.X,
wsplugin.push.rules.X.recipient,
wsplugin.push.rules.X.endpoint,
wsplugin.push.rules.X.retry and
wsplugin.push.rules.X.type needed
with X finalRecipient.

FALSE

wsplugin.push.rules.X Description of the rule X -

wsplugin.push.rules.X.recipient Recipient that will trigger the rule (ex:
urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1). If empty, the rule is
triggered for any recipient.

-

wsplugin.push.rules.X.endpoint End point used to submit a message to
the backend (ex: http://localhost:8080/
backend)

-

384

http://localhost:8080/backend
http://localhost:8080/backend

Configuration Property Description and Usage Default

wsplugin.push.rules.X.retry Cron expression for the retry mechanism
to push to backend

-

wsplugin.push.rules.X.type Type of notifications to be sent to the
Backend:

• RECEIVE_SUCCESS

• RECEIVE_FAIL

• SEND_SUCCESS

• SEND_FAILURE

• MESSAGE_STATUS_CHANGE

• SUBMIT_MESSAGE

• DELETED

• DELETED_BATCH

See Notifications to the Backend.

-

wsplugin.push.auth.username Basic authentication username that will
be added to the http header of push
notification requests to C4. If not
specified, no authorization header will be
added.

-

wsplugin.push.auth.password Basic authentication password that will
be added to the http header of push
notification requests to C4. If not
specified, no authorization header will be
added.

-

wsplugin.push.markAsDownloaded If TRUE, the SUBMIT_MESSAGE notification
also pushes the message. If FALSE, the
backend will be able to retrieve the same
message multiple times and explicitly set
the message status to DOWNLOADED.

TRUE

WSDL Model

The WSDL schema for Domibus 5.x.y

385

The WSDL schema defines the envelope that consists of one AP Header and one AP Body.
The service sends a message and receives a response. There are ten operations:

• submitMessage

• getStatus this method is marked as deprecated, but it is maintained for backwards
compatibility. For self-sending message, this method will throw duplicate messages found as
exceptions. Instead of this method, use the newly added method getStatusWithAccessPointRole
where you can specify the access point role.

• getStatusWithAccessPointRole this newly added method is to get the status based on the
messageId and the role of the access point. For empty messageId or invalid AP role, it throws
exception.

• listPendingMessages

• getMessageErrors it can be used if you get a SEND_FAILURE status as response from the getStatus
service, in which case this operation can be used to get the details of the encountered errors.
There can be multiple errors as each retry might produce one. For self-sending message, this
method will throw duplicate messages found as exceptions. Instead of this method, use the
newly added method getMessageErrorsWithAccessPointRole where we can specify the access
point role.

• getMessageErrorsWithAccessPointRole this newly added method is used to get the details of the
encountered errors of the failed messages with messageId and accesspoint role. There can be
multiple errors as each retry might produce one. For empty messageId or invalid AP role, it
throws exception.

• retrieveMessage this operation retrieves and downloads the message based on a query
parameter markAsDownloaded. This parameter’s value is TRUE by default, in which case the method
1) marks the message as downloaded and 2) downloads the message from the plugin table
(WS_PLUGIN_TB_MESSAGE_LOG) containing pending messages.
When markAsDownloaded is FALSE, the WS Plugin does not mark the message as downloaded.

• listPushFailedMessages this operation returns the list of messagesId’s which are pushed to C4

386

but still in the failed status.
We can also check if messages are pushed but still in failed status by its messageId,
originalSender, finalRecipient, receivedFrom or receivedTo date.

• rePushFailedMessages this operation allows to re push the list of failed messages by the message
ids.

• markMessageAsDownloaded this operation 1) marks the message as downloaded and 2) deletes this
message from the WS plugin table(WS_PLUGIN_TB_MESSAGE_LOG).

To encapsulate errors, the following fault elements are specified for their respective services:

• <wsdl:fault name="SubmitMessageFault"/>

• <wsdl:fault name="RetrieveMessageFault"/>

• <wsdl:fault name="StatusFault"/>

• <wsdl:fault name="MarkMessageAsDownloadedFault"/>

• <wsdl:fault name="getMessageErrorsFault"/>

• <wsdl:fault name="listPendingMessagesFault"/>

• <wsdl:fault name="listPushFailedMessagesFault"/>

• <wsdl:fault name="rePushFailedMessagesFault"/>

It must be generated and processed according to the SOAP1.2 specification.
In this case, the SOAP protocol is used and the binding is <soap:binding>.
The transport is SOAP messages on top of HTTP protocol:

transport="http://schemas.xmlsoap.org/soap/http"/>

C1-C2 SubmitMessage Data Model

In this section we explain the data model applicable to SubmitMessage from C1 to C2 (domibus-
submission.xsd).

▼ Messaging/UserMessage mpc attribute

The Optional attribute occurs once and contains the qualified name of the MPC (Message
Partition Chanel). MPCs allow for partitioning the flow of messages from a Sending MSH to a
Receiving MSH into several flows that can be controlled separately and consumed differently.

387

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints & Valid example

mpc [local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name=U
serMessag
e]/[local-
name()='at
tribute'
and
@name='
mpc']

N Max 1 • It is a non-empty string,

• Max length:255 characters

• Configuration in PMode: PMode.mpcs.mpc

Valid Example

Default value:
http://docs.oasis-open.org/ebxml-msg/ebms/
v3.0/ns/core/200704/defaultMPC

In this section, the data model is explained.

▼ Messaging/UserMessage/MessageInfo

This Optional element occurs once and contains the identifier of the current message, and (may)
relate to other messages' identifiers.

MessageInfo type

• Timestamp element has a value representing the date at which the message header was
created.

• MessageId has a value representing – for each message - a globally unique identifier.

• RefToMessageId contains the MessageId value of an ebMS Message to which this message
relates, in a way that conforms to the MEP in use.

388

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints & Valid example

Timestamp [local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
MessageIn
fo'] /[local-
name()='al
l']/[local-
name()='el
ement'
and
@name='T
imestamp'
]

N Max 1 Constraints

• It MUST be expressed as YYYY-MM-
DDTHH:MM:SS.msmsmsZ

Valid Example

2016-03-31T09:00:44.418Z

MessageId [local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
MessageIn
fo']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='
MessageId
']

N Max 1 Constraints

• A globally unique identifier

• In the Message-Id and Content-Id MIME
headers, values are always surrounded by
angle brackets, but references in mid: or
cid: schema URIs and the MessageId and
RefToMessageId elements must not include
these delimiters.

• It is a non-empty string.

• Max length: value should not be more than
255 characters.

Valid Example

346ea37f-7583-40b0-9ffc-
3f4cfa88bf8b@domibus.eu

389

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints & Valid example

RefToMessag
eId

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
MessageIn
fo']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='R
efToMessa
geId']

N Max 1 Constraints

• A globally unique identifier.

• In the Message-Id and Content-Id MIME
headers, values are always surrounded by
angle brackets. But references in mid: or
cid: scheme URI’s and the MessageId and
RefToMessageId elements must not include
these delimiters.

• It is a non-empty string.

• Max length: value should not be more than
255 characters.

Valid Example

346ea37f-7583-40b0-9ffc-
3f4cfa88bf8b@domibus.eu

▼ Messaging/UserMessage/PartyInfo

This REQUIRED element occurs once, and contains data about originating and destination
parties. This element has the following children elements:

• From: This REQUIRED element occurs once, and contains information describing the
originating party. It can be either endpoint C1 or endpoint C2.

• To: This REQUIRED element occurs once, and contains information describing the destination
party and it can be either endpoint C3 or endpoint C4.

The From - To PartyInfo

If the From and To are C1, and C1' and C4, C4' respectively,

• the private keys of the certificates of C1 and C1' are stored in C2

• the public keys of the certificates of C4 and C4' are stored in C3.

But if the From and To are C2 and C3,

390

• the private key of the certificate of C2 is stored in C2

• the public key of C3 is stored in C3.

From To Private key
of

Private key stored in Public key
of

Public Key stored
in

C1, C1' C4, C4' C1, C1' C2 C4,C4' C3

C2 C3 C2 C2 C3 C3

• Role: This required element identifies the authorized role of the Party sending or receiving
the message.

• Type: indicates the domain of names to which the string in the content of the PartyId element
belongs.

PartyInfo type

391

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints & Valid example

From/PartyId /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='F
rom']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
x@name='
PartyId']

Y Max 1 Constraints

• The content of the PartyId element MUST
be a URI if Type is not used.

• The PartyID should be the same that is used
in the PMode configuration:

• It is a non-empty string.

• Max length:255 characters

• Configuration in PMode:
PMode.Initiator.Party

Valid Example

C2

From/Role /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='F
rom']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='R
ole']

Y Max 1 Constraints

• It is a non-empty string,

• Max length:255 characters

• Configuration in PMode:
PMode.Initiator.Role

Valid Example

http://docs.oasis-open.org/ebxml-msg/ebms/
v3.0/ns/core/200704/initiator

392

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints & Valid example

From/PartyT
ype

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
artyId']//*[
local-
name()='at
tribute'
and
@name='t
ype']

N Max 1 Constraints

• It is a non-empty string,

• Max length:255 characters

Valid Example

urn:oasis:names:tc:ebcore:partyid-
type:unregistered

To/PartyId /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='T
o'] /[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='P
artyId']

N Max 1 Constraints

• The content of the PartyId element MUST
be a URI if PartyType is not used.

• The PartyID should be the same that is used
in the PMode configuration.

• Max length:255 characters

• Configuration in PMode:
PMode.Responder.Party

• If the AccessPoint at C2 is configured for
Dynamic Discovery, the To/PartyId need not
be specified by the backend; Domibus will
identify the To/PartyId. In all other
scenarios the backend C1 must specify the
To/PartyId.

Valid Example

C3

393

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints & Valid example

To/Role /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='T
o'] /[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='R
ole']

N Max 1 Constraints

• It is a non-empty string,

• Max length:255 characters

• Configuration in PMode:
PMode.Responder.Role

• If the AccessPoint at C2 is configured for
Dynamic Discovery, the To/Role need not be
specified by the backend; Domibus will
identify the To/Role. In all other scenarios
the backend C1 must specify the To/Role.

Valid Example

http://docs.oasis-open.org/ebxml-msg/ebms/
v3.0/ns/core/200704/responder

To/PartyType /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
artyId']//*[
local-
name()='at
tribute'
and
@name='t
ype']

N Max 1 Constraints

• It is a non-empty string,

• Max length:255 characters

Valid Example

urn:oasis:names:tc:ebcore:partyid-
type:unregistered

▼ Messaging/UserMessage/CollaborationInfo

This required element occurs once, and contains elements that facilitate collaboration between
parties.

• The AgreementRef element is a string that identifies the entity or artifact governing the
exchange of messages between the parties.

• Service must identify a set of related business transactions or other message exchanges in
the context of a business process or use case.

• Action must identify the different types of business transactions or other message exchanges
in the context of an identified Service.

• ConversationId element is a string identifying the set of related messages that make up a
conversation between Parties.

394

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder

So, as defined in the eDelivery Specifications Library, it provides a more general way to
associate a message with an ongoing conversation, without requiring a message to be a
response to a single specific previous message, but allowing update messages to existing
conversations from both Sender and Receiver of the original message.

CollaborationInfo type

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

AgreementR
ef

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='C
ollaborati
onInfo']/[l
ocal-
name()='a
ll']/[local-
name()='el
ement'
and
@name='
Agreemen
tRef']

N Max 1 Constraints

• It is a non-empty string.

• The value of an AgreementRef element MUST
be unique within a namespace mutually
agreed by the two parties. This could be a
concatenation of the From and To PartyId
values, a URI containing the Internet domain
name of one of the parties, or a namespace
offered and managed by some other naming
or registry service. It is RECOMMENDED that
the AgreementRef be a URI.

• AgreementRef is a string value that identifies
the agreement that governs the exchange. The
P-Mode under which the MSH operates for
this message should be aligned with this
agreement.

• Max length:255 characters

Valid Example

https://joinup.ec.europa.eu

395

https://joinup.ec.europa.eu

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

agreementR
ef@type

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
Agreemen
tRef']/[loc
al-
name()='s
impleCon
tent']/[loc
al-
name()='e
xtension']/
*[local-
name()='at
tribute'
and
@name='t
ype']

N Max 1 Constraints

• It is a non-empty string.

• Max length:255 characters

• Indicates how the parties sending and
receiving the message will interpret the value
of the reference.
There is no restriction on the value of the type
attribute.

• If the type attribute is not present, the content
of the AgreementRef element must be a URI.

Valid Example

MyServiceTypes

396

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

agreementR
ef@pmode

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
Agreemen
tRef']/[loc
al-
name()='s
impleCon
tent']/[loc
al-
name()='e
xtension']/
*[local-
name()='at
tribute'
and
@name='t
ype']

N Max 1 Constraints

• It is a non-empty string.

• Max length:255 characters

• Allows for explicit association of a message
with a P-Mode.
When used, its value contains the PMode.ID
parameter, i.e. the identifier for the P-Mode.
This identifier is user-defined and optional,
for the convenience of P-Mode management. It
must uniquely identify the P-Mode among all
P-Modes deployed on the same AP, and may be
absent if the P-Mode is identified by other
means, e.g. embedded in a larger structure
that is itself identified, or has parameter
values distinct from other P-Modes used on
the same AP. If the ID is specified, the
AgreementRef/@pmode attribute value is also
expected to be set in associated messages).

Valid Example

PurchaseOrderFromACME

Service /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='C
ollaborati
onInfo']/[l
ocal-
name()='a
ll']/[local-
name()='el
ement'
and
@name='S
ervice']

Y Max 1 Constraints

• It is a non-empty string,

• Max length:255 characters

• Configuration in PMode:
PMode[1].BusinessInfo.Service

Valid Example

SupplierOrderProcessing

397

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

Service@Ty
pe

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='S
ervice']
/[local-
name()='s
impleCon
tent']//[loc
al-
name()='e
xtension']/
*[local-
name()='at
tribute']

N Constraints

• Indicates how the parties sending and
receiving the message will interpret the value
of the element.

• It is a non-empty string,

• Max length:255 characters

• Only optional if the service is untyped

Action /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='C
ollaborati
onInfo']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='
Action']

Y Max 1 Constraints

• It is a non-empty string.

• Action must be unique within the Service in
which it is defined.

• Max length:255 characters

• Configuration in PMode:
PMode[1].BusinessInfo.Action

Valid Example

NewOrder

398

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

Conversatio
nId

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='C
ollaborati
onInfo']/[l
ocal-
name()='a
ll']/[local-
name()='el
ement'
and
@name='C
onversatio
nId']

N Max 1 Constraints

• It is a non-empty string. Represents an
immutable universally unique identifier
(UUID).

• Created randomly in the Receiving Access
Point C2

• Max length:255 characters

Valid Example

06689621-428e-48a4-86e6-4a86539363f5

▼ MessageProperties

This element is required in the 4-corner model. It occurs at most once, and contains message
properties that are implementation specific. As parts of the header such properties allow for
more efficient monitoring, correlating, dispatching and validating functions (even if these are
out of scope of ebMS specification) which would otherwise require payload access.

These elements hold a set of name-value properties that will hold for instance the identifiers for
the originalSender and finalRecipient, as in the example below:

<ns:MessageProperties>
 <ns:Property name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns:Property>
 <ns:Property name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns:Property>
</ns:MessageProperties>

The property value (e.g. urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1) is limited to
1024 characters length. If this value is overpassed and the schema validation is enabled, an error
message will appear and the message will not be submitted.

If the schema validation is not enabled and the value overpassed, an EbMS3Exception will be
raised by the AP (Domibus) and the message will also not be submitted.

MessageProperties type

399

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

Property
name

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
roperty']//
*[local-
name()='at
tribute'
and
@name='n
ame']

Y Max 1 Constraints

• It is a non-empty string.

• Max length:255 characters

• Configuration in PMode:
PMode[1].BusinessInfo.Properties

Valid Example

originalSender

Property
type

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
roperty']//
*[local-
name()='at
tribute'
and
@name='t
ype']

N Max 1 Constraints

• It is a non-empty string

• Max length: 255 characters

Valid Example

String

▼ PayloadInfo

This required element identifies payload data associated with the message. The payload
themselves are carried in separate MIME parts, PartInfo elements reference the corresponding
MIME parts by using the Content-ID value of those parts in their href attribute.

When a message with multiple payloads is submitted, the order of the corresponding PartInfo

400

elements is preserved.

In any exchange involving a message that has a structured document payload (e.g XML, JSON)
and any number of associated payloads, the structured document must be referenced by the first
PartInfo element and it represents the leading payload part for business processing.

• href: this attribute has a value that is the Content-ID URI of the payload object referenced.
The absence of the attribute href in the element PartInfo indicates that the payload part
being referenced is the SOAP Body element itself.

• Payloads are expected to be exchanged in separate MIME parts and not in the SOAP Body.

• Due to requirements from different domains, Domibus allows the sending of one structured
payload in the SOAP Body. This payload is sent along by the Access Point, via the AS4 protocol,
in the SOAP Body as well. This practice is nonconforming to the eDelivery AS4 profile, and so
it is discouraged.
It is recommended to leave the SOAP Body always empty.

• PartProperties: This element contains a list of properties describing the payload.
Every property has a required @name attribute.
A @name attribute with value MimeType is required to identify the MIME type of the payload
before compression is applied.

PayloadInfo type

401

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

href /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
artInfo']
/*[local-
name()='at
tribute'
and
@name='h
ref']

N Max 1 Constraints

• Max length:255 characters

Valid Example

cid:message

PartProperti
es/ Property/
MimeType

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
artPropert
ies']/[local
-name()='
sequence'
]/[local-
name()='el
ement'
and
@name='P
roperty']

N Max 1 Constraints

• Max length:255 characters

• If the PMode compression is enabled this field
is mandatory

Valid Example

application/xml

402

Description Field
(xpath)

Mandat
ory

Occurre
nces

Constraints & Valid example

PartProperti
es/ Property/
Description

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
artPropert
ies']/[local
-name()='
sequence'
]/[local-
name()='el
ement'
and
@name='P
roperty']

N Max 1 Constraints

• Max length:255 characters

Valid Example

Message Payload

Deprecated fields

Besides webserviceplugin.wsdl, the WS Plugin provides also five other XSDs:

• envelope.xsd

• webservicePlugin-body.xsd

• webservicePlugin-header.xsd

• xml.xsd

• xmlmime.xsd

Deprecations in Domibus 5.1.4

Starting with 5.1.4 the attribute mustUnderstand from webservicePlugin-header.xsd is marked as
deprecated.
This attribute will be removed in Domibus 6.0 release.

Referencing Payloads

Files can be either:

• Sent as attachment in the SOAP request,

• Sent as part of the value of a payload element embedded in the SOAP body,

• Referenced in the SOAP header. This is achieved by:

◦ Adding a PartInfo element within PayloadInfo properties.
This is similar to sending a normal message except for the addition of the extra PartInfo

403

special property.

◦ The payload value must be left empty and will be ignored if provided.

◦ Identify the PartInfo with href=”cid:message” and provide a mimeType for the referenced
file as well as the filepath reference pointing to where the file is stored.

◦ In the SOAP body, we need to provide a payload with payloadId=”cid:message” and the
appropriate contentType attribute.

Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:ns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:eu="http://eu.domibus.wsplugin/">
 <soap:Header>
 <ns:Messaging>
 <ns:UserMessage mpc="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/defaultMPC">
 <ns:PartyInfo>
 <ns:From>
 <ns:PartyId type="urn:oasis:names:tc:ebcore:partyid-
type:unregistered">domibus-blue</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns:Role>
 </ns:From>
 <ns:To>
 <ns:PartyId type="urn:oasis:names:tc:ebcore:partyid-
type:unregistered">domibus-red</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder</ns:Role>
 </ns:To>
 </ns:PartyInfo>
 <ns:CollaborationInfo>
 <ns:Service type="tc1">bdx:noprocess</ns:Service>
 <ns:Action>TC1Leg1</ns:Action>
 </ns:CollaborationInfo>
 <ns:MessageProperties>
 <ns:Property
name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns:Property>
 <ns:Property
name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns:Property>
 </ns:MessageProperties>
 <ns:PayloadInfo>
 <ns:PartInfo href="cid:message">
 <ns:PartProperties>
 <ns:Property name="MimeType">text/xml</ns:Property>
 <ns:Property
name="filepath">file:/some_filepath/some_file</ns:Property>
 </ns:PartProperties>

404

 </ns:PartInfo>
 </ns:PayloadInfo>
 </ns:UserMessage>
 </ns:Messaging>
 </soap:Header>
 <soap:Body>
 <eu:submitRequest>
 <payload payloadId="cid:message" contentType="text/xml">
 <value></value>
 </payload>
 </eu:submitRequest>
 </soap:Body>
</soap:Envelope>

IMPORTANT
To use a payload file reference, Domibus must be configured to store the
payloads in the file system.

SEE ALSO
For more information how to use a payload file reference, See the
Administration Guide.

11.2. Security

11.2.1. Authentication

The default WS Plugin implements authentication and authorization. By default, the plugin’s
security is disabled and all the methods of the plugin can be called with no authentication
credentials.

The WS Plugin supports three authentication methods:

• Basic Authentications

• X509 Certificates Authentication

• Blue Coat Authentication

NOTE
Blue Coat is the name of the reverse proxy at the Commission. It forwards the
request in HTTP with the certificate details inside the request (Client-Cert header
key).

Basic authentication is the most common used method used for the WS Plugin. An existing user
defined in the Plugin User UI page can authenticate with basic authentication and call any
operation of the WS Plugin.
More details on how to create plugin users used for basic authentication see Plugin Users.

The WS Plugin uses a custom interceptor
eu.domibus.plugin.webService.impl.CustomAuthenticationInterceptor to intercept the incoming
requests and perform authentication. Once the request is intercepted the
CustomAuthenticationInterceptor delegates the authentication to the service

405

eu.domibus.ext.services.AuthenticationExtService provided by the Plugin API.

11.2.2. Authorization

The WS Plugin uses the authorization mechanism described in Authorization.

Default users

There are two default users already inserted in the database.

NOTE Make sure you already ran the migration scripts.

These pre-defined users are:

• admin, with the role ROLE_ADMIN

• user, with the role ROLE_USER

About the users roles

ROLE_ADMIN has the permission to call:

• submitMessage, with any value for the originalSender property.

• retrieveMessage, any message among messages notified to this plugin.

• listPendingMessages lists all pending messages for this plugin

• getStatus and getStatusWithAccessPointRole

• getMessageErrors and getMessageErrorsWithAccessPointRole

• markMessageAsDownloaded

• listPushFailedMessages, with any value for the originalSender property

• rePushFailedMessages

ROLE_USER has the permission to call:

• submitMessage with originalSender equal to the originalUser

• retrieveMessage, only if finalRecipient equals the originalUser

• listPendingMessages, only messages with finalRecipient equal to the originalUser.

• getStatus, getStatusWithAccessPointRole and getErrors for its own messages

• markMessageAsDownloaded

• listPushFailedMessages, only if finalRecipient equals the originalUser

• rePushFailedMessages

11.3. Plugin Notifications
Domibus core notifies the WS Plugin on the following events:

• MESSAGE_RECEIVED

406

• MESSAGE_SEND_FAILURE

• MESSAGE_RECEIVED_FAILURE

• MESSAGE_SEND_SUCCESS

• MESSAGE_STATUS_CHANGE

The type of events received can be configured using the WS Plugin property
wsplugin.messages.notifications. You will find that property in the file ws-plugin.properties under
\domibus\plugins\ in the Domibus configuration folder. For more information see the Plugin
Cookbook.

11.4. Push to Backend
Push to backend functionality produces SOAP calls towards a pre-defined URL triggered by
Domibus events depending on the final recipient of the user message it concerns. For example,
after successfully sending a message from C2 to C3, WS plugin might be notified by domibus with a
notification type MESSAGE_SEND_SUCCESS.

The following chapters will describe

• Triggers (notifications to WS plugin)

• Configuration per final recipients (rules)

• TypeS of SOAP calls available (notifications)

The final recipient of a user message is the party to which the message is being sent to.

11.4.1. Notifications to plugin

• MESSAGE_RECEIVED: Domibus notifies the plugin when it receives successfully a UserMessage from
C2. Domibus notifies the plugin using the java method receiveSuccess for each final recipient.
The SOAP method submitMessage will be used to send the message to the backend. If the property
wsplugin.push.markAsDownloaded=false, the backend will be able to retrieve the same message
multiple times and explicitly set the message status to DOWNLOADED.

• MESSAGE_SEND_FAILURE: Domibus notifies the plugin when it fails to send a UserMessage to C3.
Domibus notifies the plugin using the java method messageSendFailed for each final recipient.

• MESSAGE_RECEIVED_FAILURE: Domibus notifies the plugin when it fails to receive a UserMessage
from C2.
Domibus notifies the plugin using the java method messageReceiveFailed for each final
recipient.

• MESSAGE_SEND_SUCCESS: Domibus notifies the plugin when it sends successfully a UserMessage to
C3.
Domibus notifies the plugin using the java method deliverMessage for each final recipient.

• DELETE: (not configurable) Domibus notifies the plugin when a user message changes status.
Domibus notifies the plugin using the java method messageStatusChanged for each final
recipient.

• DELETE_BATCH: (not configurable) Domibus notifies the plugin when a user message changes

407

status.
Domibus notifies the plugin using the java method messageStatusChanged for each final recipient.

11.4.2. Rules configuration

In order to enable the push of notifications to a backend url, the property wsplugin.push.enabled
should be set to TRUE (default is FALSE).
The notification push requests can optionally have basic authentication configured in the HTTP
Authorization header, if the properties wsplugin.push.auth.username and
wsplugin.push.auth.password are defined.

Then, for each recipient, a set of properties should be set to properly configure a rule to follow.
For example, red1 is an arbitrary rule name:

wsplugin.push.rules.red1=first rule description domibus-red
wsplugin.push.rules.red1.recipient=urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4
wsplugin.push.rules.red1.endpoint=http://localhost:8080/backend
wsplugin.push.rules.red1.retry=1;5;CONSTANT
wsplugin.push.rules.red1.type=RECEIVE_SUCCESS,RECEIVE_FAIL

SEE ALSO
For more about the properties used in the above sample,see WS Plugin
Configuration.

11.4.3. Notifications to the Backend

Below are the existing notifications and the SOAP methods called to notify the Backend.

• MESSAGE_RECEIVED

◦ Notifies C3 received successfully the message from C2 for a given final recipient.

◦ receiveSuccess is called to notify the Backend.

• MESSAGE_RECEIVED_FAILURE

◦ Notifies C3 failed to receive from C2 for a given final recipient.

◦ receiveFailure is called to notify the Backend.

• SEND_SUCCESS

◦ Notifies C2 sent the message successfully to C3 for a given final recipient.

◦ sendSuccess is called to notify the Backend.

• MESSAGE_SEND_FAILURE

◦ Notifies C2 failed to send the message to C3, for a given final recipient.

◦ sendFailure is called to notify the Backend.

• MESSAGE_STATUS_CHANGE

◦ Notifies of a status change, for a given final recipient.

408

◦ messageStatusChange is called to notify the Backend.

• MESSAGE_RECEIVED

◦ Notifies message sent by C2 was successfully received by C3, for a given final recipient.
**submitMessage is called to notify the Backend.

• DELETED

◦ Notifies of a message deletion in Domibus (retention worker), for a given final recipient.

◦ delete is called to notify the Backend.

• DELETED_BATCH

◦ Notifies of a batch message deletion in Domibus (retention worker), for a given final
recipient.

◦ deleteBatch is called to notify the Backend.

11.5. Backward compatibility
Domibus 5.x: new Web Service

Starting with Domibus 5.0, the default WS plugin is using the endpoint /wsplugin and not /backend
anymore. The previous endpoint is still available, but it has been deprecated. Users still using the
deprecated version will notice in the logs log statements indicating the usage of a deprecated
version.

For more information about the endpoint /backend, please refer to Domibus documentation on the
Digital page.

The table below is describing the differences between the two web-services implementations:

Domibus 4.x and prior Domibus 5.x and later

End point name /backend /wsplugin

wsdl BackendService_1_1.wsdl WebServicePlugin.wsdl

namespace http://org.ecodex.backend/1_1/ http://eu.domibus.wsplugin/

11.6. Message Standards
AS4 does not define a maximum message size, though implementations will have practical limits
based on available memory, disk, or database storage, etc.

11.6.1. Error Codes

EBMS error codes contained in the backend.wsdl.

Sample error message

<eb:Error origin="ebMS" category="Unpackaging"
 shortDescription="InvalidHeader"
 errorCode="EBMS:0009" severity="fatal">

409

https://ec.europa.eu/cefdigital/wiki/display/DIGITAL/Domibus
http://org.ecodex.backend/1_1/
http://eu.domibus.wsplugin/

 <eb:Description xml:lang="en"> … </eb:Description>
</eb:Error>

▼ List of EBMS Error Codes

Error
Code

Short
Description

Reco
mmen
ded
Severi
ty

Category
Value

Description or
Semantics

EBMS_0001 ValueNotRecognized Failur
e

Content Although the message document
is well formed and schema valid,
some element/attribute contains
a value that could not be
recognized and therefore could
not be used by the MSH.

EBMS_0002 FeatureNotSupported Warni
ng

Content Although the message document
is well formed and schema valid,
some element/attribute value
cannot be processed as expected
because the related feature is not
supported by the MSH.

EBMS_0003 ValueInconsistent Failur
e

Content Although the message document
is well formed and schema valid,
some element/attribute value is
inconsistent either with the
content of other
element/attribute, or with the
processing mode of the MSH, or
with the normative requirements
of the ebMS specification.

EBMS_0004 Other Failur
e

Content -

EBMS_0005 ConnectionFailure Failur
e

Communicatio
n

The MSH is experiencing
temporary or permanent failure
in trying to open a transport
connection with a remote MSH.

EBMS_0006 EmptyMessagePartitionCha
nnel

Warni
ng

Communicatio
n

There is no message available for
pulling from this MPC at this
moment.

EBMS_0007 MimeInconsistency Failur
e

Unpackaging The use of MIME is not consistent
with the required usage in this
specification.

410

Error
Code

Short
Description

Reco
mmen
ded
Severi
ty

Category
Value

Description or
Semantics

EBMS_0008 FeatureNotSupported Failur
e

Unpackaging Although the message document
is well formed and schema valid,
the presence or absence of some
element/ attribute is not
consistent with the capability of
the MSH, with respect to
supported features.

EBMS_0009 InvalidHeader Failur
e

Unpackaging The ebMS header is either not
well formed as an XML
document, or does not conform
to the ebMS packaging rules.

EBMS_0010 ProcessingModeMismatch Failur
e

Processing The ebMS header or another
header (e.g. reliability, security)
expected by the MSH is not
compatible with the expected
content, based on the associated
P-Mode.

EBMS_0011 ExternalPayloadError Failur
e

Content The MSH is unable to resolve an
external payload reference (i.e. a
Part that is not contained within
the ebMS Message, as identified
by a PartInfo/href URI).

EBMS_0101 FailedAuthentication Failur
e

Processing The signature in the Security
header intended for the "ebms"
SOAP actor, could not be
validated by the Security module.

EBMS_0102 FailedDecryption Failur
e

Processing The encrypted data reference the
Security header intended for the
"ebms" SOAP actor could not be
decrypted by the Security
Module.

EBMS_0103 PolicyNoncompliance Failur
e

Processing The processor determined that
the message’s security methods,
parameters, scope or other
security policy-level
requirements or agreements
were not satisfied.

411

Error
Code

Short
Description

Reco
mmen
ded
Severi
ty

Category
Value

Description or
Semantics

EBMS_0201 DysfunctionalReliability Failur
e

Processing Some reliability function as
implemented by the Reliability
module, is not operational, or the
reliability state associated with
this message sequence is not
valid.

EBMS_0202 DeliveryFailure Failur
e

Communicatio
n

Although the message was sent
under Guaranteed delivery
requirement, the Reliability
module could not get assurance
that the message was properly
delivered, despite resending
efforts.

EBMS_0301 MissingReceipt Failur
e

Communicatio
n

A Receipt has not been received
for a message that was
previously sent by the MSH
generating this error.

EBMS_0302 InvalidReceipt Failur
e

Communicatio
n

A Receipt has been received for a
message that was previously sent
by the MSH generating this error,
but the content does not match
the message content (e.g. some
part has not been acknowledged,
or the digest associated does not
match the signature digest, for
NRR).

EBMS_0303 DecompressionFailure Failur
e

Communicatio
n

An error occurred during the
decompression.

EBMS_0020 RoutingFailure Failur
e

Processing An Intermediary MSH was
unable to route an ebMS message
and stopped processing the
message.

EBMS_0021 MPCCapacityExceeded Failur
e

Processing An entry in the routing function
is matched that assigns the
message to an MPC for pulling,
but the intermediary MSH is
unable to store the message with
this MPC.

412

Error
Code

Short
Description

Reco
mmen
ded
Severi
ty

Category
Value

Description or
Semantics

EBMS_0022 MessagePersistenceTimeou
t

Failur
e

Processing An intermediary MSH has
assigned the message to an MPC
for pulling and has successfully
stored it. However, the
intermediary set a limit on the
time it was prepared to wait for
the message to be pulled, and
that limit has been reached.

EBMS_0023 MessageExpired Warni
ng

Processing An MSH has determined that the
message is expired and will not
attempt to forward or deliver it.

EBMS_0030 BundlingError Failur
e

Content The structure of a received
bundle is not in accordance with
the bundling rules.

EBMS_0031 RelatedMessageFailed Failur
e

Processing A message unit in a bundle was
not processed because a related
message unit in the bundle
caused an error.

EBMS_0040 BadFragmentGroup Failur
e

Content A fragment is received that
relates to a group that was
previously rejected.

EBMS_0041 DuplicateMessageSize Failur
e

Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS_0042 DuplicateFragmentCount Failur
e

Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS_0043 DuplicateMessageHeader Failur
e

Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

EBMS_0044 DuplicateAction Failur
e

Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for this element.

413

Error
Code

Short
Description

Reco
mmen
ded
Severi
ty

Category
Value

Description or
Semantics

EBMS_0045 DuplicateCompressionInfo Failur
e

Content A fragment is received but more
than one fragment message in a
group of fragments specifies a
value for a compression element.

EBMS_0046 DuplicateFragment Failur
e

Content A fragment is received but a
previously received fragment
message had the same values for
GroupId and `FragmentNum`.

EBMS_0047 BadFragmentStructure Failur
e

Unpackaging The href attribute does not
reference a valid MIME data
part, MIME parts other than the
fragment header and a data part
are in the message, or the SOAP
Body is not empty.

EBMS_0048 BadFragmentNum Failur
e

Content An incoming message fragment
has a a value greater than the
known FragmentCount.

EBMS_0049 BadFragmentCount Failur
e

Content A value is set for FragmentCount,
but a previously received
fragment had a greater value.

EBMS_0050 FragmentSizeExceeded Warni
ng

Unpackaging The size of the data part in a
fragment message is greater than
Pmode[].Splitting.FragmentSize.

EBMS_0051 ReceiveIntervalExceeded Failur
e

Unpackaging More time than
Pmode[].Splitting.JoinInterval
has passed since the first
fragment was received but not all
other fragments are received.

EBMS_0052 BadProperties Warni
ng

Unpackaging Message properties were present
in the fragment SOAP header that
were not specified in
Pmode[].Splitting.RoutingProper
ties.

EBMS_0053 HeaderMismatch Failur
e

Unpackaging The eb3:Message header copied
to the fragment header does not
match the eb3:Message header in
the reassembled source message.

414

Error
Code

Short
Description

Reco
mmen
ded
Severi
ty

Category
Value

Description or
Semantics

EBMS_0054 OutOfStorageSpace Failur
e

Unpackaging Not enough disk space available
to store all (expected) fragments
of the group.

EBMS_0055 DecompressionError Failur
e

Processing An error occurred while
decompressing the reassembled
message.

EBMS_0060 ResponseUsingAlternateME
P

Warni
ng

Processing A responding MSH indicates that
it applies the alternate MEP
binding to the response message.

EBMS_0065 InvalidXML Failur
e

Content The XML could not be validated
against the corresponding XSD.

▼ Web Service WSDL

<?xml version='1.0' encoding='UTF-8'?>
<wsdl:definitions
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://eu.domibus.wsplugin/"
 xmlns:ns1="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
name="WebServicePlugin" targetNamespace="http://eu.domibus.wsplugin/">
 <wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="xml.xsd"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.w3.org/2005/05/xmlmime"
schemaLocation="xmlmime.xsd"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.w3.org/2003/05/soap-envelope"
schemaLocation="envelope.xsd"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://eu.domibus.wsplugin/"
schemaLocation="webservicePlugin-body.xsd"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/" schemaLocation="webservicePlugin-header.xsd"/>
 </schema>
 </wsdl:types>

415

 <wsdl:message name="getMessageErrors">
 <wsdl:part element="tns:getErrorsRequest"
name="getErrorsRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getMessageErrorsWithAccessPointRole">
 <wsdl:part element="tns:getErrorsRequestWithAccessPointRole"
name="getErrorsRequestWithAccessPointRole"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="retrieveMessage">
 <wsdl:part element="tns:retrieveMessageRequest"
name="retrieveMessageRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="RetrieveMessageFault">
 <wsdl:part element="tns:FaultDetail"
name="RetrieveMessageFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="markMessageAsDownloaded">
 <wsdl:part element="tns:markMessageAsDownloadedRequest"
name="markMessageAsDownloadedRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="MarkMessageAsDownloadedFault">
 <wsdl:part element="tns:FaultDetail"
 name="MarkMessageAsDownloadedFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="markMessageAsDownloadedResponse">
 <wsdl:part element="tns:markMessageAsDownloadedResponse"
name="markMessageAsDownloadedResponse"></wsdl:part>
 <wsdl:part element="ns1:Messaging" name="ebMSHeaderInfo"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPendingMessagesFault">
 <wsdl:part element="tns:FaultDetail"
name="listPendingMessagesFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPushFailedMessagesFault">
 <wsdl:part element="tns:FaultDetail"
name="listPushFailedMessagesFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="rePushFailedMessagesFault">
 <wsdl:part element="tns:FaultDetail"
name="rePushFailedMessagesFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getMessageErrorsFault">
 <wsdl:part element="tns:FaultDetail"
name="getMessageErrorsFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="retrieveMessageResponse">
 <wsdl:part element="tns:retrieveMessageResponse"
name="retrieveMessageResponse"></wsdl:part>
 <wsdl:part element="ns1:Messaging" name="ebMSHeaderInfo"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPendingMessagesResponse">

416

 <wsdl:part element="tns:listPendingMessagesResponse"
name="listPendingMessagesResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPushFailedMessagesResponse">
 <wsdl:part element="tns:listPushFailedMessagesResponse"
name="listPushFailedMessagesResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="rePushFailedMessagesResponse"></wsdl:message>
 <wsdl:message name="getStatusResponse">
 <wsdl:part element="tns:getStatusResponse"
name="getStatusResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPendingMessages">
 <wsdl:part element="tns:listPendingMessagesRequest"
name="listPendingMessagesRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPushFailedMessages">
 <wsdl:part element="tns:listPushFailedMessagesRequest"
name="listPushFailedMessagesRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="rePushFailedMessages">
 <wsdl:part element="tns:rePushFailedMessagesRequest"
name="rePushFailedMessagesRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getStatus">
 <wsdl:part element="tns:statusRequest" name="statusRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getStatusWithAccessPointRole">
 <wsdl:part element="tns:statusRequestWithAccessPointRole"
name="statusRequestWithAccessPointRole"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="StatusFault">
 <wsdl:part element="tns:FaultDetail" name="StatusFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="submitMessage">
 <wsdl:part element="tns:submitRequest" name="submitRequest"></wsdl:part>
 <wsdl:part element="ns1:Messaging" name="ebMSHeaderInfo"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="submitMessageResponse">
 <wsdl:part element="tns:submitResponse" name="submitResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="SubmitMessageFault">
 <wsdl:part element="tns:FaultDetail" name="SubmitMessageFault"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getMessageErrorsResponse">
 <wsdl:part element="tns:getMessageErrorsResponse"
name="getMessageErrorsResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:portType name="WebServicePluginInterface">
 <wsdl:operation name="submitMessage">
 <wsdl:input message="tns:submitMessage"

417

name="submitMessage"></wsdl:input>
 <wsdl:output message="tns:submitMessageResponse"
name="submitMessageResponse"></wsdl:output>
 <wsdl:fault message="tns:SubmitMessageFault"
name="SubmitMessageFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getStatus">
 <wsdl:input message="tns:getStatus" name="getStatus"></wsdl:input>
 <wsdl:output message="tns:getStatusResponse"
name="getStatusResponse"></wsdl:output>
 <wsdl:fault message="tns:StatusFault" name="StatusFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getStatusWithAccessPointRole">
 <wsdl:input message="tns:getStatusWithAccessPointRole"
name="getStatusWithAccessPointRole"></wsdl:input>
 <wsdl:output message="tns:getStatusResponse"
name="getStatusResponse"></wsdl:output>
 <wsdl:fault message="tns:StatusFault" name="StatusFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="listPendingMessages">
 <wsdl:input message="tns:listPendingMessages"
name="listPendingMessages"></wsdl:input>
 <wsdl:output message="tns:listPendingMessagesResponse"
name="listPendingMessagesResponse"></wsdl:output>
 <wsdl:fault message="tns:listPendingMessagesFault"
name="listPendingMessagesFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="listPushFailedMessages">
 <wsdl:input message="tns:listPushFailedMessages"
name="listPushFailedMessages"></wsdl:input>
 <wsdl:output message="tns:listPushFailedMessagesResponse"
name="listPushFailedMessagesResponse"></wsdl:output>
 <wsdl:fault message="tns:listPushFailedMessagesFault"
name="listPushFailedMessagesFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="rePushFailedMessages">
 <wsdl:input message="tns:rePushFailedMessages"
name="rePushFailedMessages"></wsdl:input>
 <wsdl:output message="tns:rePushFailedMessagesResponse"
name="rePushFailedMessagesResponse"></wsdl:output>
 <wsdl:fault message="tns:rePushFailedMessagesFault"
name="rePushFailedMessagesFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMessageErrors">
 <wsdl:input message="tns:getMessageErrors"
name="getMessageErrors"></wsdl:input>
 <wsdl:output message="tns:getMessageErrorsResponse"
name="getMessageErrorsResponse"></wsdl:output>
 <wsdl:fault message="tns:getMessageErrorsFault"
name="getMessageErrorsFault"></wsdl:fault>
 </wsdl:operation>

418

 <wsdl:operation name="getMessageErrorsWithAccessPointRole">
 <wsdl:input message="tns:getMessageErrorsWithAccessPointRole"
name="getMessageErrorsWithAccessPointRole"></wsdl:input>
 <wsdl:output message="tns:getMessageErrorsResponse"
name="getMessageErrorsResponse"></wsdl:output>
 <wsdl:fault message="tns:getMessageErrorsFault"
name="getMessageErrorsFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="retrieveMessage">
 <wsdl:input message="tns:retrieveMessage"
name="retrieveMessage"></wsdl:input>
 <wsdl:output message="tns:retrieveMessageResponse"
name="retrieveMessageResponse"></wsdl:output>
 <wsdl:fault message="tns:RetrieveMessageFault"
name="RetrieveMessageFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="markMessageAsDownloaded">
 <wsdl:input message="tns:markMessageAsDownloaded"
name="markMessageAsDownloaded"></wsdl:input>
 <wsdl:output message="tns:markMessageAsDownloadedResponse"
name="markMessageAsDownloadedResponse"></wsdl:output>
 <wsdl:fault message="tns:MarkMessageAsDownloadedFault"
name="MarkMessageAsDownloadedFault"></wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="WebServicePlugin_SoapBinding"
type="tns:WebServicePluginInterface">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="submitMessage">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="submitMessage">
 <soap12:header message="tns:submitMessage" part="ebMSHeaderInfo"
use="literal"/>
 <soap12:body parts="submitRequest" use="literal"/>
 </wsdl:input>
 <wsdl:output name="submitMessageResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SubmitMessageFault">
 <soap12:fault name="SubmitMessageFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getStatus">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getStatus">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getStatusResponse">
 <soap12:body use="literal"/>
 </wsdl:output>

419

 <wsdl:fault name="StatusFault">
 <soap12:fault name="StatusFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getStatusWithAccessPointRole">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getStatusWithAccessPointRole">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getStatusResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="StatusFault">
 <soap12:fault name="StatusFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMessageErrors">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getMessageErrors">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMessageErrorsResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="getMessageErrorsFault">
 <soap12:fault name="getMessageErrorsFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMessageErrorsWithAccessPointRole">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getMessageErrorsWithAccessPointRole">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMessageErrorsResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="getMessageErrorsFault">
 <soap12:fault name="getMessageErrorsFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="listPendingMessages">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="listPendingMessages">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="listPendingMessagesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="listPendingMessagesFault">
 <soap12:fault name="listPendingMessagesFault" use="literal"/>
 </wsdl:fault>

420

 </wsdl:operation>
 <wsdl:operation name="listPushFailedMessages">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="listPushFailedMessages">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="listPushFailedMessagesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="listPushFailedMessagesFault">
 <soap12:fault name="listPushFailedMessagesFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="rePushFailedMessages">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="rePushFailedMessages">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="rePushFailedMessagesResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="rePushFailedMessagesFault">
 <soap12:fault name="rePushFailedMessagesFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="retrieveMessage">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="retrieveMessage">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="retrieveMessageResponse">
 <soap12:header message="tns:retrieveMessageResponse"
part="ebMSHeaderInfo" use="literal"/>
 <soap12:body parts="retrieveMessageResponse" use="literal"/>
 </wsdl:output>
 <wsdl:fault name="RetrieveMessageFault">
 <soap12:fault name="RetrieveMessageFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="markMessageAsDownloaded">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="markMessageAsDownloaded">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="markMessageAsDownloadedResponse">
 <soap12:header message="tns:markMessageAsDownloadedResponse"
part="ebMSHeaderInfo" use="literal"/>
 <soap12:body parts="markMessageAsDownloadedResponse" use="literal"/>
 </wsdl:output>
 <wsdl:fault name="MarkMessageAsDownloadedFault">
 <soap12:fault name="MarkMessageAsDownloadedFault" use="literal"/>

421

 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="WebServicePlugin">
 <wsdl:port binding="tns:WebServicePlugin_SoapBinding"
name="WEBSERVICEPLUGIN_PORT">
 <soap12:address
location="http://localhost:8080/domibus/services/wsplugin"/>
 </wsdl:port>
 </wsdl:service>undefined
</wsdl:definitions>

Web Service Schemas

▼ xmlmime.xsd

<?xml version="1.0"?>
<!--
W3C XML Schema defined in the Describing Media Content of Binary Data in XML
specification.
http://www.w3.org/TR/xml-media-types
Copyright © 2005 World Wide Web Consortium,

(Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University).
All Rights Reserved.

This work is distributed under the W3C® Software License [1] in the
hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

$Id: xmlmime.xsd,v 1.1 2005/04/25 17:08:35 hugo Exp $
-->
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
 targetNamespace="http://www.w3.org/2005/05/xmlmime">
 <xs:attribute name="contentType">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="3"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="expectedContentTypes" type="xs:string"/>
 <xs:complexType name="base64Binary">
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary">

422

 <xs:attribute ref="xmime:contentType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="hexBinary">
 <xs:simpleContent>
 <xs:extension base="xs:hexBinary">
 <xs:attribute ref="xmime:contentType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

▼ envelope.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:env="http://www.w3.org/2003/05/soap-envelope"
targetNamespace="http://www.w3.org/2003/05/soap-envelope"
elementFormDefault="qualified" version="1.0">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/>
 <xs:element name="Body" type="env:Body"/>
 <xs:element name="Envelope" type="env:Envelope"/>
 <xs:element name="Fault" type="env:Fault"/>
 <xs:element name="Header" type="env:Header"/>
 <xs:element name="NotUnderstood" type="env:NotUnderstoodType"/>
 <xs:element name="Upgrade" type="env:UpgradeType"/>
 <xs:complexType name="Fault">
 <xs:sequence>
 <xs:element name="Code" type="env:faultcode"/>
 <xs:element name="Reason" type="env:faultreason"/>
 <xs:element name="Node" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="Role" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="Detail" type="env:detail" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="faultcode">
 <xs:sequence>
 <xs:element name="Value" type="xs:QName"/>
 <xs:element name="Subcode" type="env:subcode" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="subcode">
 <xs:sequence>
 <xs:element name="Value" type="xs:QName"/>
 <xs:element name="Subcode" type="env:subcode" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="faultreason">

423

 <xs:sequence>
 <xs:element name="Text" type="env:reasontext"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="reasontext">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="detail">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="Envelope">
 <xs:sequence>
 <xs:element name="Header" type="env:Header" minOccurs="0"/>
 <xs:element name="Body" type="env:Body"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="Header">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="Body">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="NotUnderstoodType">
 <xs:sequence/>
 <xs:attribute name="qname" type="xs:QName" use="required"/>
 </xs:complexType>
 <xs:complexType name="UpgradeType">
 <xs:sequence>
 <xs:element name="SupportedEnvelope"
type="env:SupportedEnvType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SupportedEnvType">

424

 <xs:sequence/>
 <xs:attribute name="qname" type="xs:QName" use="required"/>
 </xs:complexType>
 <xs:attribute name="mustUnderstand" type="xs:boolean"/>
</xs:schema>

▼ domibus-backend.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://eu.domibus.wsplugin/"
 xmlns:ns1="http://www.w3.org/2005/05/xmlmime"

attributeFormDefault="unqualified"
elementFormDefault="unqualified"

targetNamespace="http://eu.domibus.wsplugin/">
 <xsd:import namespace="http://www.w3.org/2005/05/xmlmime"/>
 <xsd:simpleType name="max255-non-empty-string">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="255"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="FaultDetail">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="message" nillable="true"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="retrieveMessageRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID" type="tns:max255-non-empty-string"
nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="retrieveMessageResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="bodyload"
type="tns:LargePayloadType"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="payload" type="tns:LargePayloadType"/>
 </xsd:sequence>

425

 </xsd:complexType>
 </xsd:element>
 <xsd:element name="listPendingMessagesRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageId" type="tns:max255-non-empty-string"
minOccurs="0"/>
 <xsd:element name="conversationId"
type="tns:max255-non-empty-string" minOccurs="0"/>
 <xsd:element name="refToMessageId"
type="tns:max255-non-empty-string" minOccurs="0"/>
 <xsd:element name="fromPartyId"
type="tns:max255-non-empty-string" minOccurs="0"/>
 <xsd:element name="finalRecipient"
type="tns:max255-non-empty-string" minOccurs="0"/>
 <xsd:element name="originalSender"
type="tns:max255-non-empty-string" minOccurs="0"/>
 <xsd:element name="receivedFrom" type="xsd:dateTime"
minOccurs="0"/>
 <xsd:element name="receivedTo" type="xsd:dateTime"
minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="listPendingMessagesResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="messageID" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="messageErrorsRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="messageStatusRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitRequest">
 <xsd:complexType>
 <xsd:sequence>

426

 <xsd:element minOccurs="0" name="bodyload"
type="tns:LargePayloadType"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="payload" nillable="true" type="tns:LargePayloadType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="messageID" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="PayloadType">
 <xsd:simpleContent>
 <xsd:extension base="ns1:base64Binary">
 <xsd:attribute name="payloadId" type="xsd:token"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="LargePayloadType">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:base64Binary"
ns1:expectedContentTypes="application/octet-stream"></xsd:element>
 </xsd:sequence>
 <xsd:attribute name="payloadId" type="xsd:token"/>
 <xsd:attribute name="contentType" type="xsd:string"/>
 </xsd:complexType>
 <xsd:complexType name="errorResultImpl">
 <xsd:sequence>
 <xsd:element minOccurs="0" name="errorCode"
type="tns:errorCode"/>
 <xsd:element minOccurs="0" name="errorDetail"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="messageInErrorId"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="mshRole"
type="tns:mshRole"/>
 <xsd:element minOccurs="0" name="notified"
type="xsd:dateTime"/>
 <xsd:element minOccurs="0" name="timestamp"
type="xsd:dateTime"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="PayloadURLType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="payloadId" type="xsd:token"

427

use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:simpleType name="messageStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="READY_TO_PULL"/>
 <xsd:enumeration value="SEND_ENQUEUED"/>
 <xsd:enumeration value="WAITING_FOR_RECEIPT"/>
 <xsd:enumeration value="ACKNOWLEDGED"/>
 <xsd:enumeration value="SEND_FAILURE"/>
 <xsd:enumeration value="NOT_FOUND"/>
 <xsd:enumeration value="WAITING_FOR_RETRY"/>
 <xsd:enumeration value="RECEIVED"/>
 <xsd:enumeration value="DELETED"/>
 <xsd:enumeration value="DOWNLOADED"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="errorCode">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EBMS_0001"/>
 <xsd:enumeration value="EBMS_0002"/>
 <xsd:enumeration value="EBMS_0003"/>
 <xsd:enumeration value="EBMS_0004"/>
 <xsd:enumeration value="EBMS_0005"/>
 <xsd:enumeration value="EBMS_0006"/>
 <xsd:enumeration value="EBMS_0007"/>
 <xsd:enumeration value="EBMS_0008"/>
 <xsd:enumeration value="EBMS_0009"/>
 <xsd:enumeration value="EBMS_0010"/>
 <xsd:enumeration value="EBMS_0011"/>
 <xsd:enumeration value="EBMS_0101"/>
 <xsd:enumeration value="EBMS_0102"/>
 <xsd:enumeration value="EBMS_0103"/>
 <xsd:enumeration value="EBMS_0201"/>
 <xsd:enumeration value="EBMS_0202"/>
 <xsd:enumeration value="EBMS_0301"/>
 <xsd:enumeration value="EBMS_0302"/>
 <xsd:enumeration value="EBMS_0303"/>
 <xsd:enumeration value="EBMS_0020"/>
 <xsd:enumeration value="EBMS_0021"/>
 <xsd:enumeration value="EBMS_0022"/>
 <xsd:enumeration value="EBMS_0023"/>
 <xsd:enumeration value="EBMS_0030"/>
 <xsd:enumeration value="EBMS_0031"/>
 <xsd:enumeration value="EBMS_0040"/>
 <xsd:enumeration value="EBMS_0041"/>
 <xsd:enumeration value="EBMS_0042"/>
 <xsd:enumeration value="EBMS_0043"/>
 <xsd:enumeration value="EBMS_0044"/>
 <xsd:enumeration value="EBMS_0045"/>

428

 <xsd:enumeration value="EBMS_0046"/>
 <xsd:enumeration value="EBMS_0047"/>
 <xsd:enumeration value="EBMS_0048"/>
 <xsd:enumeration value="EBMS_0049"/>
 <xsd:enumeration value="EBMS_0050"/>
 <xsd:enumeration value="EBMS_0051"/>
 <xsd:enumeration value="EBMS_0052"/>
 <xsd:enumeration value="EBMS_0053"/>
 <xsd:enumeration value="EBMS_0054"/>
 <xsd:enumeration value="EBMS_0055"/>
 <xsd:enumeration value="EBMS_0060"/>
 <xsd:enumeration value="EBMS_0065"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="mshRole">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SENDING"/>
 <xsd:enumeration value="RECEIVING"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType final="#all" name="errorResultImplArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="item"
nillable="true" type="tns:errorResultImpl"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="getStatusRequest" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="statusRequest" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getStatusResponse" nillable="true"
type="tns:messageStatus"/>
 <xsd:element name="getErrorsRequest" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>

429

 </xsd:element>
 <xsd:element name="getMessageErrorsResponse" nillable="true"
type="tns:errorResultImplArray"/>
</xsd:schema>

▼ domibus-header.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"#
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"#
 xmlns:tns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"#
 xmlns:xml="http://www.w3.org/XML/1998/namespace"#

targetNamespace="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"#

elementFormDefault="qualified"
attributeFormDefault="unqualified">
 <xsd:import
namespace="http://www.w3.org/XML/1998/namespace"/>
 <xsd:annotation>
 <xsd:appinfo>Schema for Domibus messages' headers
submission</xsd:appinfo>
 <xsd:documentation xml:lang="en">

*This schema defines an XML subset of ebMS-3 headers which is
used to validate messages submitted to Domibus*#

through WS plugin.#

</xsd:documentation>
 </xsd:annotation>
 <xsd:element name="Messaging" type="Messaging"/>
 <xsd:complexType name="Messaging">
 <xsd:sequence>
 <xsd:element name="UserMessage" type="UserMessage"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="mustUnderstand" type="xsd:boolean"
use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="UserMessage">
 <xsd:all>
 <xsd:element name="MessageInfo" type="MessageInfo"
minOccurs="0"/>
 <xsd:element name="PartyInfo" type="PartyInfo"/>
 <xsd:element name="CollaborationInfo"
type="CollaborationInfo"/>
 <xsd:element name="MessageProperties"
type="tns:MessageProperties" minOccurs="0"/>

430

 <xsd:element name="PayloadInfo" type="tns:PayloadInfo"
minOccurs="0"/>
 </xsd:all>
 <xsd:attribute name="mpc" type="xsd:anyURI"
use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="MessageInfo">
 <xsd:all>
 <xsd:element name="Timestamp" type="xsd:dateTime"
minOccurs="0"/>
 <xsd:element name="MessageId"
type="tns:max255-non-empty-string" minOccurs="0"/>
 <xsd:element name="RefToMessageId"
type="tns:max255-non-empty-string" minOccurs="0"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="PartyInfo">
 <xsd:all>
 <xsd:element name="From" type="tns:From"/>
 <xsd:element name="To" type="tns:To"
minOccurs="0"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="PartyId">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute name="type"
type="tns:max255-non-empty-string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="From">
 <xsd:all>
 <xsd:element name="PartyId" type="tns:PartyId"/>
 <xsd:element name="Role"
type="tns:max255-non-empty-string"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="To">
 <xsd:all>
 <xsd:element name="PartyId" type="tns:PartyId"/>
 <xsd:element name="Role"
type="tns:max255-non-empty-string"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="CollaborationInfo">
 <xsd:all>
 <xsd:element name="AgreementRef" type="tns:AgreementRef"
minOccurs="0"/>
 <xsd:element name="Service" type="tns:Service"/>
 <xsd:element name="Action" type="xsd:token"/>

431

 <xsd:element name="ConversationId" type="xsd:token"
minOccurs="0"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="Service">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute name="type"
type="tns:max255-non-empty-string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="AgreementRef">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute name="type"
type="tns:max255-non-empty-string" use="optional"/>
 <xsd:attribute name="pmode"
type="tns:max255-non-empty-string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="PayloadInfo">
 <xsd:sequence>
 <xsd:element name="PartInfo" type="tns:PartInfo"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="PartInfo">
 <xsd:all>
 <xsd:element name="PartProperties"
type="tns:PartProperties" minOccurs="0"/>
 </xsd:all>
 <xsd:attribute name="href" type="xsd:token"/>
 </xsd:complexType>
 <xsd:complexType name="Property">
 <xsd:simpleContent>
 <xsd:extension base="tns:max1024-non-empty-string">
 <xsd:attribute name="name"
type="tns:max255-non-empty-string" use="required"/>
 <xsd:attribute name="type"
type="tns:max255-non-empty-string" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="PartProperties">
 <xsd:sequence>
 <xsd:element name="Property" type="tns:Property"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

432

 <xsd:complexType name="MessageProperties">
 <xsd:sequence>
 <xsd:element name="Property" type="Property"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:simpleType name="max255-non-empty-string">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="255"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="max1024-non-empty-string">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="1024"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

11.6.2. Backend Messages Standards

▼ Backend WSDL

<?xml version='1.0' encoding='UTF-8'?>
<wsdl:definitions
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="eu.domibus"

name="backendService"

targetNamespace="eu.domibus">
 <wsdl:types>
 <schema
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="eu.domibus"
schemaLocation="BackendService.xsd"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="submitMessage">
 <wsdl:part element="tns:submitMessage" name="submitMessage"/>
 </wsdl:message>
 <wsdl:message name="submitMessageResponse"/>
 <wsdl:message name="submitMessageFault">
 <wsdl:part element="tns:BackendFaultDetail"
name="submitMessageFault"/>
 </wsdl:message>
 <wsdl:message name="sendSuccess">
 <wsdl:part element="tns:sendSuccess" name="sendSuccess"/>

433

 </wsdl:message>
 <wsdl:message name="sendSuccessResponse"/>
 <wsdl:message name="sendSuccessFault">
 <wsdl:part element="tns:BackendFaultDetail"
name="sendSuccessFault"/>
 </wsdl:message>
 <wsdl:message name="sendFailure">
 <wsdl:part element="tns:sendFailure" name="sendFailure"/>
 </wsdl:message>
 <wsdl:message name="sendFailureResponse"/>
 <wsdl:message name="sendFailureFault">
 <wsdl:part element="tns:BackendFaultDetail"
name="sendFailureFault"/>
 </wsdl:message>
 <wsdl:message name="receiveSuccess">
 <wsdl:part element="tns:receiveSuccess" name="receiveSuccess"/>
 </wsdl:message>
 <wsdl:message name="receiveSuccessResponse"/>
 <wsdl:message name="receiveSuccessFault">
 <wsdl:part element="tns:BackendFaultDetail"
name="receiveSuccessFault"/>
 </wsdl:message>
 <wsdl:message name="receiveFailure">
 <wsdl:part element="tns:receiveFailure" name="receiveFailure"/>
 </wsdl:message>
 <wsdl:message name="receiveFailureResponse"/>
 <wsdl:message name="receiveFailureFault">
 <wsdl:part element="tns:BackendFaultDetail"
name="receiveFailureFault"/>
 </wsdl:message>
 <wsdl:message name="delete">
 <wsdl:part element="tns:delete" name="delete"/>
 </wsdl:message>
 <wsdl:message name="deleteResponse"/>
 <wsdl:message name="deleteFault">
 <wsdl:part element="tns:BackendFaultDetail" name="deleteFault"/>
 </wsdl:message>
 <wsdl:message name="deleteBatch">
 <wsdl:part element="tns:deleteBatch" name="deleteBatch"/>
 </wsdl:message>
 <wsdl:message name="deleteBatchResponse"/>
 <wsdl:message name="deleteBatchFault">
 <wsdl:part element="tns:BackendFaultDetail"
name="deleteBatchFault"/>
 </wsdl:message>
 <wsdl:message name="messageStatusChange">
 <wsdl:part element="tns:messageStatusChange"
name="messageStatusChange"/>
 </wsdl:message>
 <wsdl:message name="messageStatusChangeResponse"/>
 <wsdl:message name="messageStatusChangeFault">

434

 <wsdl:part element="tns:BackendFaultDetail"
name="messageStatusChangeFault"/>
 </wsdl:message>
 <wsdl:portType name="BackendInterface">
 <wsdl:operation name="submitMessage">
 <wsdl:input message="tns:submitMessage"
name="submitMessage"></wsdl:input>
 <wsdl:output message="tns:submitMessageResponse"
name="submitMessageResponse"></wsdl:output>
 <wsdl:fault message="tns:submitMessageFault"
name="submitMessageFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="sendSuccess">
 <wsdl:input message="tns:sendSuccess" name="sendSuccess"></wsdl:input>
 <wsdl:output message="tns:sendSuccessResponse"
name="sendSuccessResponse"></wsdl:output>
 <wsdl:fault message="tns:sendSuccessFault"
name="sendSuccessFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="sendFailure">
 <wsdl:input message="tns:sendFailure" name="sendFailure"></wsdl:input>
 <wsdl:output message="tns:sendFailureResponse"
name="sendFailureResponse"></wsdl:output>
 <wsdl:fault message="tns:sendFailureFault"
name="sendFailureFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="receiveSuccess">
 <wsdl:input message="tns:receiveSuccess"
name="receiveSuccess"></wsdl:input>
 <wsdl:output message="tns:receiveSuccessResponse"
name="receiveSuccessResponse"></wsdl:output>
 <wsdl:fault message="tns:receiveSuccessFault"
name="receiveSuccessFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="receiveFailure">
 <wsdl:input message="tns:receiveFailure"
name="receiveFailure"></wsdl:input>
 <wsdl:output message="tns:receiveFailureResponse"
name="receiveFailureResponse"></wsdl:output>
 <wsdl:fault message="tns:receiveFailureFault"
name="receiveFailureFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="delete">
 <wsdl:input message="tns:delete" name="delete"></wsdl:input>
 <wsdl:output message="tns:deleteResponse"
name="deleteResponse"></wsdl:output>
 <wsdl:fault message="tns:deleteFault" name="deleteFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteBatch">
 <wsdl:input message="tns:deleteBatch" name="deleteBatch"></wsdl:input>
 <wsdl:output message="tns:deleteBatchResponse"

435

name="deleteBatchResponse"></wsdl:output>
 <wsdl:fault message="tns:deleteBatchFault"
name="deleteBatchFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="messageStatusChange">
 <wsdl:input message="tns:messageStatusChange"
name="messageStatusChange"></wsdl:input>
 <wsdl:output message="tns:messageStatusChangeResponse"
name="messageStatusChangeResponse"></wsdl:output>
 <wsdl:fault message="tns:messageStatusChangeFault"
name="messageStatusChangeFault"></wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="BackendServiceSoapBinding"
type="tns:BackendInterface">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="submitMessage">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="submitMessage">
 <soap12:body parts="submitMessage" use="literal"/>
 </wsdl:input>
 <wsdl:output name="submitMessageResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="submitMessageFault">
 <soap12:fault name="submitMessageFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="sendSuccess">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="sendSuccess">
 <soap12:body parts="sendSuccess" use="literal"/>
 </wsdl:input>
 <wsdl:output name="sendSuccessResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="sendSuccessFault">
 <soap12:fault name="sendSuccessFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="sendFailure">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="sendFailure">
 <soap12:body parts="sendFailure" use="literal"/>
 </wsdl:input>
 <wsdl:output name="sendFailureResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="sendFailureFault">
 <soap12:fault name="sendFailureFault" use="literal"/>

436

 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="receiveSuccess">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="receiveSuccess">
 <soap12:body parts="receiveSuccess" use="literal"/>
 </wsdl:input>
 <wsdl:output name="receiveSuccessResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="receiveSuccessFault">
 <soap12:fault name="receiveSuccessFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="receiveFailure">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="receiveFailure">
 <soap12:body parts="receiveFailure" use="literal"/>
 </wsdl:input>
 <wsdl:output name="receiveFailureResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="receiveFailureFault">
 <soap12:fault name="receiveFailureFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="delete">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="delete">
 <soap12:body parts="delete" use="literal"/>
 </wsdl:input>
 <wsdl:output name="deleteResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="deleteFault">
 <soap12:fault name="deleteFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="deleteBatch">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="deleteBatch">
 <soap12:body parts="deleteBatch" use="literal"/>
 </wsdl:input>
 <wsdl:output name="deleteBatchResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="deleteBatchFault">
 <soap12:fault name="deleteBatchFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="messageStatusChange">

437

 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="messageStatusChange">
 <soap12:body parts="messageStatusChange" use="literal"/>
 </wsdl:input>
 <wsdl:output name="messageStatusChangeResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="messageStatusChangeFault">
 <soap12:fault name="messageStatusChangeFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="BackendService">
 <wsdl:port binding="tns:BackendServiceSoapBinding"
name="BACKEND_PORT">
 <soap12:address location="http://localhost:8080/backend"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

▼ backend.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
 xmlns:tns="eu.domibus"

targetNamespace="eu.domibus">
 <xsd:simpleType name="max255-non-empty-string">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="255"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="messageStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="READY_TO_PULL"/>
 <xsd:enumeration value="SEND_ENQUEUED"/>
 <xsd:enumeration value="WAITING_FOR_RECEIPT"/>
 <xsd:enumeration value="ACKNOWLEDGED"/>
 <xsd:enumeration value="SEND_FAILURE"/>
 <xsd:enumeration value="NOT_FOUND"/>
 <xsd:enumeration value="WAITING_FOR_RETRY"/>
 <xsd:enumeration value="RECEIVED"/>
 <xsd:enumeration value="DELETED"/>
 <xsd:enumeration value="DOWNLOADED"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType name="LargePayloadType">

438

 <xsd:sequence>
 <xsd:element name="value" type="xsd:base64Binary"
xmime:expectedContentTypes="application/octet-stream"/>
 </xsd:sequence>
 <xsd:attribute name="payloadId" type="xsd:token"/>
 <xsd:attribute name="contentType" type="xsd:string"/>
 <xsd:attribute name="mimeType" type="xsd:string"/>
 <xsd:attribute name="payloadName" type="xsd:string"/>
 </xsd:complexType>
 <xsd:element name="submitMessage">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 <xsd:element name="finalRecipient"
type="tns:max255-non-empty-string"/>
 <xsd:element name="originalSender"
type="tns:max255-non-empty-string"/>
 <xsd:element minOccurs="0" name="bodyload"
type="tns:LargePayloadType"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="payload" type="tns:LargePayloadType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="BackendFaultDetail">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="message" nillable="true"
type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="sendSuccess">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="sendFailure">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="receiveSuccess">

439

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="receiveFailure">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="delete">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="deleteBatch">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="messageIds" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="messageStatusChange">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 <xsd:element name="messageStatus" type="tns:messageStatus"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

440

Chapter 12. (Old) WS Plugin Interface
▼ About this content

IMPORTANT This interface is to be deprecated in the next release.

This guide defines the participant’s interface to the Access Point (Corner Two and Corner Three
in the four-corner topology that will be explained later in this document) component of the
eDelivery building block.

This guide describes the WSDL and the observable behaviour of the interface provided by
Domibus 4.x.y and included in the default-ws-plugin.

Here you can find information to understand the the Access Point (Corner Two and Corner Three
in the four-corner model) services provided by Domibus 4.x.y delivered by eDelivery.

There is 1 interface described in this document:

Actors

Interface Description Version

BackendService_1_1.wsdl The backend webservices for Domibus 4.x.y

▼ Scope

This document covers the service interface of the Access Point. It includes information regarding
the description of the services available, the list of use cases, the information model and the
sequence of message exchanges for the services provided. This specification is limited to the
service interface of the Access Point. All other aspects of its implementation are not covered by
this document. The ICD specification provides both the provider (i.e. the implementer) of the
services and their consumers with a complete specification of the following aspects:

• Interface Functional Specification, this specifies the set of services and the operations
provided by each service and this is represented by the flows explained in the use cases.

• Interface Behavioural Specification, this specifies the expected sequence of steps to be
respected by the participants in the implementation when calling a service or a set of services
and this is represented by the sequence diagrams presented in the use cases.

• Interface Message standards, this specifies the syntax and semantics of the data and this is

▼ Audience

This document is aimed at Directorate Generals and Services of the European Commission,
Member States (MS) and also companies of the private sector wanting to set up a connection
between their backend system and the Access Point. In particular:

• Architects will find it useful for determining how to best use the File System Plugin to create
a fully-fledged solution and as a starting point for connecting a Back-Office system to the
Access Point.

• Analysts will find it useful to understand the File System Plugin that will enable them to have
a holistic and detailed view of the operations and data involved in the use cases.

441

• Developers will find it essential as a basis of their development concerning the File System
Plugin interface.

• Testers can use this document in order to test the interface by following the use cases
described.

▼ Useful Resources

Below you can find useful information sources:

• Access Point Offering

• HTTP Methods for RESTful Services

Short descriptions and using HTTP Methods for RESTful Services

• Business Document Metadata Service Location

BDMSL Software Architecture Document

This document is the Software Architecture document of the CIPA eDelivery Business
Document Metadata Service Location application (BDMSL) sample implementation.
It intends to provide detailed information about the project:

1. An overview of the solution

2. The different layers

3. The principles governing its software architecture

• ebXML

About the Electronic Business using eXtensible Markup Language(ebXML)

• Web Services Description Language (WSDL) 1.1

WS-I Basic Profile Version 1.1

• XML Schema 1.1

• Extensible Markup Language (XML) 1.1

• Hypertext Transfer Protocol 1.1

• SOAP Messages with Attachments

• AS4 Profile of ebMS 3.0 Version 1.0

• e-SENS AS4 Profile 1.11

• eDelivery AS4 profile

• eDelivery Pmode Configuration

• XSDs for ebms3

• ebXML

Electronic Business using eXtensible Markup Language (ebXML)

442

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Access+Point+software
http://www.restapitutorial.com/lessons/httpmethods.html
https://www.oasis-open.org/committees/download.php/40926/PEPPOL%20D8_2%20-%20Attachment%20I%20%20BusDox%20Common%20Definitions.pdf
http://www.ebxml.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/Schema
https://www.w3.org/TR/xml11/
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/SOAP-attachments
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/profiles/AS4-profile/v1.0/AS4-profile-v1.0.html
http://wiki.ds.unipi.gr/display/ESENS/PR+-+AS4
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+AS4
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/ebms-header-3_0-200704.xsd
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/cs02/ebms_core-3.0-spec-cs-02.pdf

12.1. Functional Specification
In order to understand the Use Cases that will be described below it is important to explain the
topology; i.e. the four – corner model.

The four corner model

In this model we have the following elements:

• Corner One (C1): Backend C1 is the system that will send messages to the sending AP (Access
Point)

• Corner Two (C2): Sending Access Point C2

• Corner Three (C3): Receiving Access Point C3

• Corner Four (C4): Backend C4 is the system that received messages from the receiving AP
(Access Point)

There are two backend adapters (i.e. corner one and corner four). They send messages to and
download messages from the AS4 APs configured in the PMode configuration files.

Purpose of the Access Point component

The Access Point provides the functionality supporting Corner Two and Corner Three components.

12.1.1. Use case overview

Actors

Actor Definition

Backend C1 Any participant submitting messages to any other Backend C4 and using the
Sending AP C2 for that purpose.

Backend C4 Any participant retrieving messages from any other Backend C1 and using
the Receiving AP C3 for that purpose.

NOTE
Greyed use cases in this paragraph show deprecated operations in the WSDL (in
these diagrams, the use cases below these replace them). Since deprecated and

443

replacing operations have the same functionality (only technical changes), in each
case only one use case is presented for both.

Use cases diagram

Backend C1 Use cases

ID UC Short description Oper. System

UC01 Submit
Message

Submit any type of document from a
Backend C1 to a Backend C4

submitMessage Domibus
5.x.y

UC03 Get Status of
the Message

Get the status of the Message getStatus Domibus
5.x.y

Backend C1 Use cases diagram

Backend C4 Use cases

ID UC Description Operation System

UC02 Download
Message

Retrieve the message from the
Receiving AP C3

retrieveMessage Domibus 5.x.y

UC03 Get Status of
the Message

Get the status of the Message getStatus Domibus 5.x.y

UC04 ListPending
Messages

Check the pending messages to be
retrieved by the Backend C4 from
C3

listPendingMessage
s

Domibus 5.x.y

Backend C4 Use cases diagram

444

12.1.2. Detailed uses cases

The following paragraphs define the use cases listed above with more detail.

The WS Plugin Interface Functional Specification is described in the detailed uses cases using
Request and Response examples.
It is important to note that the Inputs and Responses provided as examples for the uses cases are
based on a specific PMode configuration.

As defined in the eDelivery Specification Library, a PMode is the contextual information that
governs the processing of a particular message (thus is basically a set of configuration parameters).
The PMode associated with a message determines, among other things, which security and/or
which reliability protocol and parameters, as well as which MEP (Message Exchange Pattern) is
being used when sending a message. The technical representation of the PMode configuration is
implementation-dependent. C1 and C4 may be one or more participants.

The state machine diagrams presented below depict the various states in which a message may be
during its lifecycle when submitting or downloading the message. These are presented in order to
have a more comprehensive vision of the process that the messages go through. Note also the
sequence diagram of the basic flow is presented in the use cases.

On C2, the state machine diagram for submitting the message:

State machine of C2

445

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eDelivery+AS4

On C3, the state machine diagram for downloading the message:

State machine of C3

UC01 – Submit Message

▼ Click to Open

UC01 – Submit Message

Brief description

Submit any message with attachments from Backend C1 to the Backend C4. The response from
C2 to C1 is synchronous and contains a messageId.

MTOM feature is required when sending large files so that the attachments are send outside
the XML envelope, as parts. Otherwise, the attachments will be encoded base64 and sent
inside the envelope and the maximum limit would be 128Mb.

The state machine of the outgoing messages is the following:

Sequence Diagram C1 to C2 – SubmitMessage

Actors

Actors

C1 Backend C1

C2 Access Point C2

C3 Access Point C3

446

Preconditions

Preconditions

C1 Backend C1 has a message to submit.

C1 The message is valid. A message is valid if it respects the message standard format (see
Annex 5.1 - Interface Message standards)

C2, C3 The Sending AP (C2) and the Receiving AP (C3) are up and running and properly
configured.

Basic Flow

Actor Step Description C2
Messag
e State

C3
Messag
e state

C1 1 Backend C1 submits the message. N/A -

C2 2 C2 sends an ACK to C1 containing the ID of the
message.

SEND_
ENQUE
UED

-

C2 3 The message directly passes through to
SEND_ENQUEUED, meaning that it is available for
processing. All messages go through this step
regardless of load

SEND_
ENQUE
UED

-

C2 4 Once the sending process finishes the status
changes to WAITING_FOR_RECEIPT.

WAITI
NG_FO
R_RECE
IPT

-

C3 5 Once the reception is finished by C3, the status
changes to RECEIVED

WAITI
NG_FO
R_RECE
IPT

RECEIV
ED

C3 6 The Receiving AP (C3) responds ACK to C2 WAITI
NG_FO
R_RECE
IPT

RECEIV
ED

C2 7 The status of the message changes to
ACKNOWLEDGED.
If configured in the PMode for non-repudiation, the
receipt SHOULD contain a single
ebbpsig:NonRepudiationInformation child
element. The value of
eb:MessageInfo/eb:RefToMessageId MUST refer to
the message for which this signal is a receipt.

ACKNO
WLED
GED

RECEIV
ED

8 Use case ends in successful condition.

Exception Flow

447

Actor Step Description C2
Messag
e State

C3
Messag
e state

C2 E2.1 The ID provided by C1 already exists - -

C2 E2.1.1
.2

The
parameterPMode[1].ReceptionAwareness.DuplicateDet
ection must be set to TRUE

- -

C2 E2.1.2 The
parameterPMode[1].ReceptionAwareness.DuplicateDet
ection must be set to TRUE.
The status of the message changes to SEND_FAILURE.

SEND_
FAILUR
E

-

C2 E11.1 Wrong receipt received or any other failure (e.g
connection lost)

- -

C2 E11.1.1 The status changes to WAITING_FOR_RETRY WAITI
NG_FO
R_RETR
Y

-

C2 E11.1.2 Continue to step 3 - -

C2 E11.1.3
.1

The maximum number or retries (Configurable
via PMode on a by-usecase basis) has been
reached

- -

C2 E11.1.3.
1.1

The status of the message changes to SEND_FAILURE. SEND_
FAILUR
E

-

C2 E11.1.3.
1.2

A notification can be sent to the Backend C1 that
initially submitted the message.

SEND_
FAILUR
E

-

C2 E11.1.3.
1.3

Use case ends in failure condition. - -

Post conditions

Success
ful
conditi
ons

The operation is a success if getStatus in C2 is ACKNOWLEDGED and this means that
the Receiving AP (C3) has received the message submitted by the Backend C1 and the
status in C3 is RECEIVED. The method getStatus must be called with the identifier of
the message received in the response or specified in the request.

Failure
Conditi
ons

Errors may be sent as SOAP Fault or as http:5XX .

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:ns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"

448

 xmlns:_1="http://org.ecodex.backend/1_1/">
 <soap:Header>
 <ns:Messaging>
 <ns:UserMessage
 mpc=”http://docs.oasis-open.org/ebxml-msg/ebms/v.0/ns/core/200704/defaultMPC”>
 <ns:PartyInfo>
 <ns:From>
 <ns:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-
type:unregistered">domibus-blue
 </ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns:Role>
 </ns:From>
 <ns:To>
 <ns:PartyId
type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-red</ns:PartyId>
 <ns:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder</ns:Role>
 </ns:To>
 </ns:PartyInfo>
 <ns:CollaborationInfo>
 <ns:Service type="tc1">bdx:noprocess</ns:Service>
 <ns:Action>TC1Leg1</ns:Action>
 </ns:CollaborationInfo>
 <ns:MessageProperties>
 <ns:Property
name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns:Property>
 <ns:Property
name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C4</ns:Property>
 </ns:MessageProperties>
 <ns:PayloadInfo>
 <ns:PartInfo href="cid:message">
 <ns:PartProperties>
 <ns:Property name="MimeType">text/xml</ns:Property>
 </ns:PartProperties>
 </ns:PartInfo>
 </ns:PayloadInfo>
 </ns:UserMessage>
 </ns:Messaging>
 </soap:Header>
 <soap:Body>
 <_1:submitRequest>
 <|--Optional-->
 <bodyload>
 <value>cid:bodyload</value>
 </bodyload>
 <payload payloadId="cid:message" contentType="text/xml">
 <value>

449

PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsbz4=
 </value>
 </payload>
 </_1:submitRequest>
 </soap:Body>
</soap:Envelope>
<soap:Body>
 <_1:submitRequest>
 <payload payloadId="cid:message"contentType="text/xml">
 <value>
PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsbz4=
 </value>
 </payload>
 <payload payloadId="cid:attachment"contentType="application/octet-stream">
 <value>
PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsbz4=
 </value>
 </payload>
 </_1:submitRequest>
</soap:Body>undefined</soap:Envelope>

Response Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Body>
 <ns5:submitResponse
 xmlns:ns6="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5="http://org.ecodex.backend/1_1/"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <messageID>23dce7d9-2781-4623-beeb-6b43ab9e7d37@domibus.eu</messageID>
 </ns5:submitResponse>
 </soap:Body>
</soap:Envelope>

Special requirements

• N/A

UC02 - Retrieve Message

▼ Click to Open

UC02 - Retrieve Message

Brief description

Retrieve any type of message sent from Backend C1 to Backend C4. The retrieval of the
message is based on a PULL mechanism. C4 downloads the message from C3.

Please note that retrieveMessage method replaces the deprecated method downloadMessage
to support the retrieval of large files. MTOM feature is required when retrieving large files.

450

Sequence Diagram C4 to C3 – retrieveMessage

Actors

Actors

C3 Access Point C3

C4 Backend C4

Preconditions

Preconditions

C3 There is at least one message sent by AP C2 and successfully received in the
Receiving AP C3.

C3 The Receiving AP (C3) is up and running and properly configured.

C4 C4 Has previously requested information about pending messages from C3.
C3 has returned a response containing the messageID('s) of the message(s)
received (cf. UC04).

Basic Flow

Actor Step Description C3 Message
State

C4 1 Requests, to the Receiving AP C3, the service
retrieveMessage by providing the messageID

RECEIVED

C3 2 Receiving AP C3 retrieves and sends the
information retrieveMessageResponse to C4 as
response to his request. This is the payload
(message content and attachments) and metadata,
analogous to the message sent from C1 to C2 in
UC01. The status of the message changes to
DOWNLOADED when the message is retrieved by
the backend C4.

DOWNLOADED

C4 3 Receives the message as sent by C1 DOWNLOADED

451

Actor Step Description C3 Message
State

C3 4 Deletes the payload of the message from the
database if retention timeout for downloaded
messages = 0.
NB: While the message metadata is still
recoverable by a Domibus administrator all
payload data is purged. This is necessary to be able
to prove message exchanges in case of disputes. It
is possible to produce the signature of a payload
but not the payload itself.

DELETED

C3 5 The status of the message changes to DELETED
when the message is deleted by C3 after the
configured retention timeout for downloaded
messages (retention_downloaded) expired. Note: If
retention_downloaded has a negative value, the
message will never be deleted from C3. If the
message was not downloaded, the
retention_undownloaded value will be used as
timeout for deletion.

DELETED

- 6 Use case ends DELETED

Alternative Flow

Actor Step Description C3 Message
State

C3 A1.1 Configured retention time has passed RECEIVED

C3 A1.1.1 Go directly to step 4 RECEIVED

Exception Flow

Actor Step Description C3 Message
State

C3 E2.1 Wrong messageID (malformed or missing), this is a
condition of failure.

(NOT FOUND)

C3 E2.1.1 The NOT FOUND status is a pseudo state for
messages that are not available for download
(were never received or were rejected).

(NOT FOUND)

C3 E2.1.2 Use case ends in failure condition (NOT FOUND)

Post Conditions

Successful
Conditions

It is a success if the Message Status is ACKNOWLEDGED on C2 and
DOWNLOADED or DELETED on C3.
Payload of the message may be deleted from C3’s database.

452

Failure
Conditions

No message payload is returned to C4. The response contains a
description of the encountered error. The operation is not a success
if GetStatus is SEND_FAILURE on C2 and NOT FOUND on C3 and this
means that the Backend C4 has not been able to download the
message submitted by the Backend C1. If the retrieveMessage method
is called with a wrong messageID (malformed or missing), this is a
condition of failure.
The NOT FOUND status is a pseudo state for messages that are not
available for download (were never received or were rejected).

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:_1="http://org.ecodex.backend/1_1/">
 <soap:Header/>
 <soap:Body>
 <_1:retrieveMessageRequest>
 <messageID>$\{ResponseParameters#messageID}</messageID>
 </_1:retrieveMessageRequest>
 </soap:Body>
</soap:Envelope>

Response Example

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Header>
 <ns6:Messaging mustUnderstand="false"
 xmlns:ns6="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5="http://org.ecodex.backend/1_1/"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <ns6:UserMessage> mpc=”http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/defaultMPC”>
 <ns6:MessageInfo>
 <ns6:Timestamp>2017-10-02T17:32:14.956+02:00</ns6:Timestamp>
 <ns6:MessageId>d05051c6-951c-4f40-90b5-
459eca9d8302@domibus.eu</ns6:MessageId>
 </ns6:MessageInfo>
 <ns6:PartyInfo>
 <ns6:From>
 <ns6:PartyId
 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
blue</ns6:PartyId>
 <ns6:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/initiator</ns6:Role>
 </ns6:From>
 <ns6:To>
 <ns6:PartyId

453

 type="urn:oasis:names:tc:ebcore:partyid-type:unregistered">domibus-
red</ns6:PartyId>
 <ns6:Role>http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/responder</ns6:Role>
 </ns6:To>
 </ns6:PartyInfo>
 <ns6:CollaborationInfo>
 <ns6:Service type="tc1">bdx:noprocess</ns6:Service>
 <ns6:Action>TC1Leg1</ns6:Action>
 <ns6:ConversationId>52f1c57d-bd35-4ab2-a0a5-
da9a15101dba@domibus.eu</ns6:ConversationId>
 </ns6:CollaborationInfo>
 <ns6:MessageProperties>
 <ns6:Property
 name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-type:unregistered:C4
 </ns6:Property>
 <ns6:Property
 name="originalSender">urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1</ns6:Property>
 </ns6:MessageProperties>
 <ns6:PayloadInfo>
 <ns6:PartInfo href="cid:message">
 <ns6:Schema/>
 <ns6:PartProperties>
 <ns6:Property name="MimeType">text/xml</ns6:Property>
 </ns6:PartProperties>
 </ns6:PartInfo>
 </ns6:PayloadInfo>
 </ns6:UserMessage>
 </ns6:Messaging>
 </soap:Header>
 <soap:Body>
 <ns5:retrieveMessageResponse
 xmlns:ns6="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5="http://org.ecodex.backend/1_1/"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <payload payloadId="cid:message">
 <value>
PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPGhlbGxvPndvcmxkPC9oZWxsbz4=
 </value>
 </payload>
 </ns5:retrieveMessageResponse>
 </soap:Body>
</soap:Envelope>

Security

In Multitenancy mode, the general property domibus.auth.unsecureLoginAllowed is ignored and
authentication is always required. More about authentication options can be read in the
Administration Guide, in the Domibus Authentication.

454

UC03 - Get the status of the Message

▼ Click to Open

UC03 - Get the status of the Message

Brief description

Get the status of the Message sent from Backend C1 or received by the Backend C4

Sequence Diagram – GetStatus

Actors

Actors

C1 Backend C1

C2 Access Point C2

C3 Access Point C3

C4 Backend C4

Preconditions

Preconditions

- There is at least one message sent by Backend C1 or to be retrieved by
Backend C4.

- The Sending AP C2 and the Receiving AP C3 are up and running and properly
configured.

Basic Flow

Step Description

1 Backend C1 or the Backend C4 launch a statusRequest using the messageId.

2 The Access Point (Sending AP C2 or Receiving AP C3) retrieve the
getStatusResponse.

3 Use case ends.

Exception flow

Step Description

N/A

Post conditions

455

Successful
Conditions

The operation is a success if GetStatusResponse retrieves any status
of the following:

• SEND_ENQUEUED

• WAITING_FOR_RECEIPT

• ACKNOWLEDGED

• SEND_FAILURE

• NOT_FOUND

• WAITING_FOR_RETRY

• RECEIVED

• DELETED

• DOWNLOADED

Failure
Conditions

The message does not exist.

Special requirements

• N/A

Security

In Multitenancy mode, the general property domibus.auth.unsecureLoginAllowed is
ignored and authentication is always required. More about authentication options can be
read in the Administration Guide, in the Domibus Authentication section.

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:_1="http://org.ecodex.backend/1_1/">
 <soap:Header/>
 <soap:Body>
 <_1:statusRequest>
 <messageID>d05051c6-951c-4f40-90b5-459eca9d8302@domibus.eu</messageID>
 </_1:statusRequest>
 </soap:Body>
</soap:Envelope>

Response Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Body>
 <ns5:getStatusResponse
 xmlns:ns6="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/"
 xmlns:ns5="http://org.ecodex.backend/1_1/"

456

xmlns:xmime="http://www.w3.org/2005/05/xmlmime">NOT_FOUND</ns5:getStatusResponse>
 </soap:Body>
</soap:Envelope>

UC04 – List Pending Messages

▼ Click to Open

UC04 – List Pending Messages

Brief description

• List the status Messages pending to be received by the Backend C4.

Sequence Diagram C4 to C3 – ListPendingMessages

Actors and Preconditions

Actors

C4 Backend C4

Preconditions

Precon
ditions

There is at least one message be downloaded by Backend C4.

The Receiving AP C3 is up and running and properly configured.

Basic flow event

Steps:

1. Backend C4 launches the service listPendingMessages.

2. The Access Point (Receiving AP C3) retrieves the list of messageIds for messages with status
RECEIVED.

3. Use case ends.

Exception flow

• N/A

457

Post Conditions

Successful conditions The operation is a success if
listPendingMessagesResponse contains all the
messageIDs of the pending messages to be
retrieved or the list is empty in the case that
there are no pending messages.

Failure Conditions N/A

Special requirements

• N/A

Security

In Multitenancy mode, the general property domibus.auth.unsecureLoginAllowed is ignored
and authentication is always required. More about authentication options can be read in
the Administration Guide, in the Domibus Authentication section.

Request Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 xmlns:_1="http://org.ecodex.backend/1_1/">
 <soap:Header/>
 <soap:Body>
 <_1:listPendingMessagesRequest></_1:listPendingMessagesRequest>
 </soap:Body>
</soap:Envelope>

Response Example

<soap:Envelope
 xmlns:soap="http://www.w3.org/2003/05/soap-envelope">
 <soap:Body>
 <ns6:listPendingMessagesResponse
 xmlns:S11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:eb="http://docs.oasis-open.org/ebxml-
msg/ebms/v3.0/ns/core/200704/"
 xmlns:S12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
 xmlns:ns6="http://org.ecodex.backend/1_1/">
 <messageID>4078cfea-74e9-4058-9d14-1dceee597abd@domibus.eu</messageID>
 </ns6:listPendingMessagesResponse>
 </soap:Body>
</soap:Envelope>

12.2. Behavioural Specification

458

12.2.1. WS plugin configuration

The WS plugin configuration is done in the ws-plugin.properties file. Following properties are
configurable in this file:

Property name Default value Description

wsplugin.mtom.enabled false Enable the support for MTOM.

wsplugin.schema.validatio
n.enabled

false Enable the schema validation. By default, the schema
validation has been disabled due to performance
reasons. For large files, it is recommended to keep the
schema validation as disabled.

wsplugin.messages.pending
.list.max

500 The maximum number of pending messages to be
listed from the pending messages table. Setting this
property is expected to avoid timeouts due to huge
resultsets being served. Setting this property to zero
returns all pending messages.

12.2.2. WSDL model for Domibus 5.x.y

The WSDL schema

WSDL model for Domibus 5.x.y

The WSDL defines the envelope that consists of one AP Header and one AP Body.

The service sends a message and receives a response. There are five operations:

• submitMessage

• getStatus

• listPendingMessages

459

• getMessageErrors It can be used if you get a SEND_FAILURE status as response from the
getStatus service in which case this operation can be used to get the details of the encountered
errors. There can be multiple errors as each retry might produce one.

• retrieveMessage

To encapsulate errors, the fault element is specified for only two services (submitMessage and
retrieveMessage):

• <wsdl:fault name="SubmitMessageFault"/>

• <wsdl:fault name="RetrieveMessageFault"/>

It must be generated and processed according to the [SOAP1.2] specification. In this case SOAP
protocol is used and the binding is <soap:binding>. The transport is SOAP messages on top of HTTP
protocol:

transport="http://schemas.xmlsoap.org/soap/http"/>

The data model applicable to SubmitMessage from C1 to C2 (domibus-submission.xsd)

In this section the data model is explained.

Messaging/UserMessage mpc attribute:

The Optional attribute occurs once and contains the qualified name of the MPC (Message Partition
Chanel). MPCs allow for partitioning the flow of messages from a Sending MSH to a Receiving MSH
into several flows that can be controlled separately and consumed differently.

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

mpc /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name=U
serMessag
e]//*[local-
name()='at
tribute'
and
@name='
mpc']#

N Max 1 • It is a non-empty string,

• Max length:255 characters

• Configuration in PMode:
PMode.mpcs.mpc

Default value:
http://docs.o
asis-
open.org/
ebxml-msg/
ebms/v3.0/
ns/core/
200704/
defaultMPC

In this section, the data model is explained.

460

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultMPC

Messaging/UserMessage/MessageInfo:

This Optional element occurs once and contains the identifier of the current message, and (may)
relate to other messages' identifiers.

Figure 10 – MessageInfo type

• Timestamp element has a value representing the date at which the message header was
created.

• MessageId has a value representing – for each message - a globally unique identifier.

• RefToMessageId contains the MessageId value of an ebMS Message to which this message
relates, in a way that conforms to the MEP in use.

Description *
Field
(xpath)*

Mandato
ry

Occurre
nces

Constraints Valid
example

Timestamp [local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
MessageIn
fo']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='T
imestamp'
]#

N Max 1 • It MUST be expressed as YYYY-
MM-DDTHH:MM:SS.msmsmsZ

2016-03-
31T09:00:44.41
8Z

461

Description *
Field
(xpath)*

Mandato
ry

Occurre
nces

Constraints Valid
example

MessageId [local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
MessageIn
fo']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='
MessageId'
]#

N Max 1 • A globally unique identifier

• In the Message-Id and Content-
Id MIME headers, values are
always surrounded by angle
brackets. However references
in mid: or cid: scheme URI’s
and the MessageId and
RefToMessageId elements
MUST NOT include these
delimiters.

• It is a non-empty string.

• Max length: value should not
be more than 255 characters.

346ea37f-7583-
40b0-9ffc-
3f4cfa88bf8b@
domibus.eu

RefToMessag
eId

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='
MessageIn
fo']
/[local-
name()='a
ll']/[local-
name()='el
ement'
and
@name='R
efToMessa
geId']#

N Max 1 • A globally unique identifier.

• In the Message-Id and Content-
Id MIME headers, values are
always surrounded by angle
brackets. However references
in mid: or cid: scheme URI’s
and the MessageId and
RefToMessageId elements
MUST NOT include these
delimiters.

• It is a non-empty string.

• Max length: value should not
be more than 255 characters.

346ea37f-7583-
40b0-9ffc-
3f4cfa88bf8b@
domibus.eu

Messaging/UserMessage/PartyInfo

This REQUIRED element occurs once, and contains data about originating and destination parties.
This element has the following children elements:

462

• From: This REQUIRED element occurs once, and contains information describing the
originating party. It can be either endpoint C1 or endpoint C2.

• To: This REQUIRED element occurs once, and contains information describing the destination
party and it can be either endpoint C3 or endpoint C4.

The From - To PartyInfo

If the From and To are C1, C1' and C4, C4' respectively, the private keys of the certificates of C1 and
C1' are stored in C2 and the public keys of the certificates of C4 and C4' are stored in C3. But if the
From and To are C2 and C3, the private key of the certificate of C2 is stored in C2 and the public key
of C3 is stored in C3.

From To Private key of Private key stored in Public key of Public Key stored in

C1, C1' C4, C4' C1, C1' C2 C4,C4' C3

C2 C3 C2 C2 C3 C3

• Role: This REQUIRED element identifies the authorized role of the Party sending or receiving
the message.

• Type: This element indicates the domain of names to which the string in the content of the
PartyId element belongs.

PartyInfo type

463

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

From/PartyId /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'From']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'PartyId'
]#

Y Max 1 • The content of the PartyId
element MUST be a URI if
Type is not used.

• The PartyID should be the
same that is used in the
PMode configuration:

• It is a non-empty string.

• Max length:255 characters

• Configuration in PMode:
PMode.Initiator.Party

C2

464

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

From/Role /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'From']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'Role']#

Y Max 1 • It is a non-empty string,

• Max length:255 characters

• Configuration in PMode:
PMode.Initiator.Role

http://docs.oa
sis-open.org/
ebxml-msg/
ebms/v3.0/ns/
core/200704/
initiator

From/PartyTyp
e

/[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'PartyId'
]//*[local
-name()=
'attribut
e' and
@name=
'type']#

N Max 1 • It is a non-empty string,

• Max length:255 characters

urn:oasis:na
mes:tc:ebcore:
partyid-
type:unregiste
red

465

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

To/PartyId /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'To']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'PartyId'
]#

N Max 1 • The content of the PartyId
element MUST be a URI if
PartyType is not used.

• The PartyID should be the
same that is used in the
PMode configuration.

• Max length:255 characters

• Configuration in PMode:
PMode.Responder.Party

• If the AccessPoint at C2 is
configured for Dynamic
Discovery, the To/PartyId
need not be specified by the
backend; Domibus will
identify the To/PartyId. In all
other scenarios the backend
C1 must specify the
To/PartyId.

C3

To/Role /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'To']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'Role']#

N Max 1 • It is a non-empty string,

• Max length:255 characters

• Configuration in PMode:
PMode.Responder.Role

• If the AccessPoint at C2 is
configured for Dynamic
Discovery, the To/Role need
not be specified by the
backend; Domibus will
identify the To/Role. In all
other scenarios the backend
C1 must specify the To/Role.

http://docs.oa
sis-open.org/
ebxml-msg/
ebms/v3.0/ns/
core/200704/
responder

466

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

To/PartyType /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'PartyId'
]//*[local
-name()=
'attribut
e' and
@name=
'type']#

N Max 1 • It is a non-empty string,

• Max length:255 characters

urn:oasis:na
mes:tc:ebcore:
partyid-
type:unregiste
red

Messaging/UserMessage/CollaborationInfo

This REQUIRED element occurs once, and contains elements that facilitate collaboration between
parties.

• The AgreementRef element is a string that identifies the entity or artifact governing the
exchange of messages between the parties.

• Service SHOULD identify a set of related business transactions or other message exchanges in
the context of a business process or use case.

• Action SHOULD identify the different types of business transactions or other message
exchanges in the context of an identified Service.

• ConversationId element is a string identifying the set of related messages that make up a
conversation between Parties. So, as defined in the eDelivery Specifications Library, it provides
a more general way to associate a message with an ongoing conversation, without requiring a
message to be a response to a single specific previous message, but allowing update messages to
existing conversations from both Sender and Receiver of the original message.

CollaborationInfo type

467

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid
example

AgreementRef /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'Collabor
ationInf
o']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'Agreem
entRef']#

N Max 1 • It is a non-empty string.

• The value of an AgreementRef
element MUST be unique
within a namespace mutually
agreed by the two parties.
This could be a concatenation
of the From and To PartyId
values, a URI containing the
Internet domain name of one
of the parties, or a namespace
offered and managed by
some other naming or
registry service. It is
RECOMMENDED that the
AgreementRef be a URI.

• AgreementRef is a string value
that identifies the agreement
that governs the exchange.
The P-Mode under which the
MSH operates for this
message should be aligned
with this agreement.

• Max length:255 characters

https://joinup.
ec.europa.eu/

468

https://joinup.ec.europa.eu/
https://joinup.ec.europa.eu/

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid
example

agreementRef
@type

/[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'Agreem
entRef']/
[local-
name()=
'simple
Content
']/[local-
name()='
extensio
n']/*[loc
al-
name()='
attribute
' and
@name=
'type']#

N Max 1 • It is a non-empty string.

• Max length:255 characters

• Indicates how the parties
sending and receiving the
message will interpret the
value of the reference. There
is no restriction on the value
of the type attribute.

• If the type attribute is not
present, the content of the
AgreementRef element MUST
be a URI.

MyServiceTyp
es

469

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid
example

agreementRef
@pmode

/[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'Agreem
entRef']/
[local-
name()=
'simple
Content
']/[local-
name()='
extensio
n']/*[loc
al-
name()='
attribute
' and
@name=
'type']#

N Max 1 • It is a non-empty string.

• Max length:255 characters

• Allows for explicit association
of a message with a P-Mode.
When used, its value contains
the PMode.ID parameter (i.e.
the identifier for the P-Mode.
This identifier is user-defined
and optional, for the
convenience of P-Mode
management. It must
uniquely identify the P-Mode
among all P-Modes deployed
on the same AP, and may be
absent if the P-Mode is
identified by other means,
e.g. embedded in a larger
structure that is itself
identified, or has parameter
values distinct from other P-
Modes used on the same AP. If
the ID is specified, the
AgreementRef/@pmode
attribute value is also
expected to be set in
associated messages.).

PurchaseOrde
rFromACME

470

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid
example

Service /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'Collabor
ationInf
o']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'Service']
#

Y Max 1 • It is a non-empty string,

• Max length:255 characters

• Configuration in PMode:
PMode[1].BusinessInfo.Servic
e

SupplierOrder
Processing

Service@Type /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'Service']
/[local-
name()=
'simple
Content
']//[local-
name()='
extensio
n']/*[loc
al-
name()='
attribute
']#

N • Indicates how the parties
sending and receiving the
message will interpret the
value of the element.

• It is a non-empty string,

• Max length:255 characters

• Only optional if the service is
untyped

471

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid
example

Action /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'Collabor
ationInf
o']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'Action']
#

Y Max 1 • It is a non-empty string.

• Action SHALL be unique
within the Service in which it
is defined.

• Max length:255 characters

• Configuration in PMode:
PMode[1].BusinessInfo.Action

NewOrder

472

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid
example

ConversationI
d

/[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'Collabor
ationInf
o']
/[local-
name()=
'all']/[lo
cal-
name()='
element'
and
@name=
'Convers
ationId']
#

N Max 1 • It is a non-empty string.
Represents an immutable
universally unique identifier
(UUID).

• Created randomly in the
Receiving Access Point C2

• Max length:255 characters

06689621-
428e-48a4-
86e6-
4a86539363f5

MessageProperties

IMPORTANT This element is required in the 4-corner model.

It occurs at most once, and contains message properties that are implementation specific. As parts
of the header such properties allow for more efficient monitoring, correlating, dispatching and
validating functions (even if these are out of scope of ebMS specification) which would otherwise
require payload access.

These elements hold a set of name-value properties that will hold for instance the identifiers for the
'originalSender' and 'finalRecipient', as in the example below:

Original Sender/Receiver Identifiers

<ns:MessageProperties>
 <ns:Property
 name="originalSender">urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1
 </ns:Property>
 <ns:Property
 name="finalRecipient">urn:oasis:names:tc:ebcore:partyid-type:unregistered:C4
 </ns:Property>

473

</ns:MessageProperties>

The property value (e.g. urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1) is limited to 1024
characters length. If this value is overpassed and the schema validation is enabled, an error
message will appear and the message will not be submitted.

If the schema validation is not enabled and the value overpassed, an EbMS3Exception will be raised
by the AP (Domibus) and the message will also not be submitted.

MessageProperties type

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid Example

Property
name

/[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
roperty']//
*[local-
name()='at
tribute'
and
@name='n
ame']

Y Max 1 • It is a non-empty string.

• Max length:255 characters

• Configuration in PMode:
PMode[1].BusinessInfo.Pro
perties

originalSender

474

Description Field
(xpath)

Mandato
ry

Occurren
ces

Constraints Valid Example

Property type /[local-
name()='s
chema']/[l
ocal-
name()='c
omplexTy
pe' and
@name='P
roperty']//
*[local-
name()='at
tribute'
and
@name='t
ype']#

N Max 1 • It is a non-empty string

• Max length: 255 characters

String

PayloadInfo

This required element identifies payload data associated with the message. The payload themselves
are carried in separate MIME parts, PartInfo elements reference the corresponding MIME parts by
using the Content-ID value of those parts in their href attribute.

When a message with multiple payloads is submitted, the order of the corresponding PartInfo
elements is preserved.

In any exchange involving a message that has a structured document payload (e.g XML, JSON) and
any number of associated payloads, the structured document must be referenced by the first
PartInfo element and it represents the leading payload part for business processing.

• href: This attribute has a value that is the Content-ID URI of the payload object referenced. The
absence of the attribute href in the element PartInfo indicates that the payload part being
referenced is the SOAP Body element itself.

IMPORTANT

Payloads are expected to be exchanged in separate MIME parts and not
in the SOAP Body. Due to requirements from different domains, Domibus
allows the sending of one structured payload in the SOAP Body. This payload
is sent along by the Access Point, via the AS4 protocol, in the SOAP Body as
well. This practice is not conformant with the eDelivery AS4 profile and
therefore it is discouraged.
It is recommended to leave the SOAP Body always empty.

• PartProperties: This element contains a list of properties describing the payload. Every
Property has a REQUIRED @name attribute. *@name*attribute with valueMimeTypeis
REQUIRED to identify the MIME type of the payload before compression was applied.

PayloadInfo type

475

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

href /[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'PartInfo
']
/*[local-
name()='
attribute
' and
@name=
'href']

N Max 1 • Max length:255 characters cid:message

476

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

PartProperties/

Property/

MimeType

/[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'PartPro
perties']
/[local-
name()=
'sequen
ce']/[loc
al-
name()='
element'
and
@name=
'Propert
y']

N Max 1 • Max length:255 characters

• If the PMode compression is
enabled this field is
mandatory

application/x
ml

477

Description *
Field
(xpath)*

Mandato
ry

Occurren
ces

Constraints Valid
example

PartProperties/

Property/

Description

/[local-
name()=
'schema
']/[local-
name()='
complex
Type'
and
@name=
'PartPro
perties']
/[local-
name()=
'sequen
ce']/[loc
al-
name()='
element'
and
@name=
'Propert
y']

N Max 1 • Max length:255 characters Message
Payload

12.3. Security

12.3.1. Authentication

The Default WS Plugin implements authentication and authorization. By default, the plugins
security is disabled and all the methods of the Default WS Plugin can be called with no
authentication credentials.

The Defaul WS Plugin supports 3 authentication methods:

• Basic Authentication

• X509 Certificates Authentication

• Blue Coat Authentication

NOTE
Blue Coat is the name of the reverse proxy at the Commission. It forwards the
request in HTTP with the certificate details inside the request (“Client-Cert” header
key).

Basic authentication is the most common used method used for the Default WS Plugin. An existing
user defined in the Plugin User UI page can authenticate with basic authentication and call any

478

operation of the Default WS Plugin. More details on how to create plugin users used for basic
authentication can be found in the Domibus Administration Guide, section Plugin Users.

The Default WS Plugin uses a custom interceptor
eu.domibus.plugin.webService.impl.CustomAuthenticationInterceptor to intercept the
incoming requests and perform authentication. Once the request is intercepted the
CustomAuthenticationInterceptor delegates the authentication to the service
eu.domibus.ext.services.AuthenticationExtService provided in the Plugin API.

12.3.2. Authorization

The Default WS Plugin uses the authorization mechanism described in the Plugin Cookbook
(cf.Error| Reference source not found.), section Plugin Authorization.

There are two default users already inserted in the database (make sure you already ran the
migration scripts):

• admin and user both with 123456 as password.

• admin has the role ROLE_ADMIN and user has the role ROLE_USER.

Roles:

ROLE_ADMIN has the permission to call:

• submitMessage with any value for originalSender property

• retrieveMessage (any message among messages notified to this plugin)

• listPendingMessages will list all pending messages for this plugin

• getStatus and getMessageErrors

ROLE_USER has the permission to call:

• submitMessage with originalSender equal to the originalUser

• retrieveMessage, only if finalRecipient equals the originalUser

• listPendingMessages, only messages with finalRecipient equal to the origi-nalUser

• getStatus and getErrors for its own messages

12.4. Plugin Notifications
Domibus core notifies the WS Plugin on the following events: MESSAGE_RECEIVED,
MESSAGE_SEND_FAILURE,MESSAGE_RECEIVED_FAILURE, MESSAGE_SEND_SUCCESS,
MESSAGE_STATUS_CHANGE.

The type of events received can be configured using the WS Plugin property
wsplugin.messages.notifications. You will find that property in the file ‘ws-plugin.properties’ under
\domibus\plugins\ in the Domibus configuration folder. More details can be found in the Plugin
Cookbok.

479

12.5. Multitenancy
The Default WS Plugin can be used when Domibus is configured in Multitenancy mode.

In Multitenancy mode the plugins security is activated by default, regardless of the value
configured in domibus.properties for the domibus.auth.unsecureLoginAllowed property.

As a result, every request sent to Domibus via the Default WS Plugin needs to be authenticated and
it will affect only the domain associated to the authenticated user. More information about the
Default WS Plugin authentication can be found in section 4.1 Authentication.

More details on how to create plugin users used for basic authentication can be found in the
Domibus Administration Guide, section Plugin Users.

12.6. Annexes

12.6.1. Interface Message standards

AS4 does not define a maximum message size, though implementations will have practical limits
based on available memory, disk or database storage etc.

Errors codes table

EBMS error codes contained in the backenxd.wsdl:

Example:

<eb:Error origin="ebMS" category="Unpackaging"
 shortDescription="InvalidHeader"
 errorCode="EBMS:0009" severity="fatal">
 <eb:Description xml:lang="en"> … </eb:Description>
</eb:Error>

EBMS Error Codes

Error Code Short Description Recommend
ed Severity

Category
Value

Description or Semantics

EBMS_0001 ValueNotRecognized failure Content Although the message
document is well formed and
schema valid, some
element/attribute contains a
value that could not be
recognized and therefore
could not be used by the
MSH.

480

Error Code Short Description Recommend
ed Severity

Category
Value

Description or Semantics

EBMS_0002 FeatureNotSupported warning Content Although the message
document is well formed and
schema valid, some
element/attribute value
cannot be processed as
expected because the related
feature is not supported by
the MSH.

EBMS_0003 ValueInconsistent failure Content Although the message
document is well formed and
schema valid, some
element/attribute value is
inconsistent either with the
content of other
element/attribute, or with the
processing mode of the MSH,
or with the normative
requirements of the ebMS
specification.

EBMS_0004 Other failure Content

EBMS_0005 ConnectionFailure failure Communicat
ion

The MSH is experiencing
temporary or permanent
failure in trying to open a
transport connection with a
remote MSH.

EBMS_0006 EmptyMessagePartition
Channel

warning Communicat
ion

There is no message available
for pulling from this MPC at
this moment.

EBMS_0007 MimeInconsistency failure Unpackagin
g

The use of MIME is not
consistent with the required
usage in this specification.

EBMS_0008 FeatureNotSupported failure Unpackagin
g

Although the message
document is well formed and
schema valid, the presence or
absence of some element/
attribute is not consistent
with the capability of the
MSH, with respect to
supported features.

481

Error Code Short Description Recommend
ed Severity

Category
Value

Description or Semantics

EBMS_0009 InvalidHeader failure Unpackagin
g

The ebMS header is either not
well formed as an XML
document, or does not
conform to the ebMS
packaging rules.

EBMS_0010 ProcessingModeMismat
ch

failure Processing The ebMS header or another
header (e.g. reliability,
security) expected by the
MSH is not compatible with
the expected content, based
on the associated P-Mode.

EBMS_0011 ExternalPayloadError failure Content The MSH is unable to resolve
an external payload
reference (i.e. a Part that is
not contained within the
ebMS Message, as identified
by a PartInfo/href URI).

EBMS_0101 FailedAuthentication failure Processing The signature in the Security
header intended for the
"ebms" SOAP actor, could not
be validated by the Security
module.

EBMS_0102 FailedDecryption failure Processing The encrypted data reference
the Security header intended
for the "ebms" SOAP actor
could not be decrypted by the
Security Module.

EBMS_0103 PolicyNoncompliance failure Processing The processor determined
that the message’s security
methods, parameters, scope
or other security policy-level
requirements or agreements
were not satisfied.

EBMS_0201 DysfunctionalReliabilit
y

failure Processing Some reliability function as
implemented by the
Reliability module, is not
operational, or the reliability
state associated with this
message sequence is not
valid.

482

Error Code Short Description Recommend
ed Severity

Category
Value

Description or Semantics

EBMS_0202 DeliveryFailure failure Communicat
ion

Although the message was
sent under Guaranteed
delivery requirement, the
Reliability module could not
get assurance that the
message was properly
delivered, in spite of
resending efforts.

EBMS_0301 MissingReceipt failure Communicat
ion

A Receipt has not been
received for a message that
was previously sent by the
MSH generating this error

EBMS_0302 InvalidReceipt failure Communicat
ion

A Receipt has been received
for a message that was
previously sent by the MSH
generating this error, but the
content does not match the
message content (e.g. some
part has not been
acknowledged, or the digest
associated does not match the
signature digest, for NRR).

EBMS_0303 DecompressionFailure failure Communicat
ion

An error occurred during the
decompression

EBMS_0020 RoutingFailure failure Processing An Intermediary MSH was
unable to route an ebMS
message and stopped
processing the message.

EBMS_0021 MPCCapacityExceeded failure Processing An entry in the routing
function is matched that
assigns the message to an
MPC for pulling, but the
intermediary MSH is unable
to store the message with this
MPC

483

Error Code Short Description Recommend
ed Severity

Category
Value

Description or Semantics

EBMS_0022 MessagePersistenceTim
eout

failure Processing An intermediary MSH has
assigned the message to an
MPC for pulling and has
successfully stored it.
However, the intermediary
set a limit on the time it was
prepared to wait for the
message to be pulled, and
that limit has been reached.

EBMS_0023 MessageExpired warning Processing An MSH has determined that
the message is expired and
will not attempt to forward
or deliver it.

EBMS_0030 BundlingError failure Content The structure of a received
bundle is not in accordance
with the bundling rules.

EBMS_0031 RelatedMessageFailed failure Processing A message unit in a bundle
was not processed because a
related message unit in the
bundle caused an error.

EBMS_0040 BadFragmentGroup failure Content A fragment is received that
relates to a group that was
previously rejected.

EBMS_0041 DuplicateMessageSize failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

EBMS_0042 DuplicateFragmentCou
nt

failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

EBMS_0043 DuplicateMessageHead
er

failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

484

Error Code Short Description Recommend
ed Severity

Category
Value

Description or Semantics

EBMS_0044 DuplicateAction failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

EBMS_0045 DuplicateCompressionI
nfo

failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for a compression element.

EBMS_0046 DuplicateFragment failure Content A fragment is received but a
previously received fragment
message had the same values
for GroupId and
FragmentNum

EBMS_0047 BadFragmentStructure failure Unpackagin
g

The href attribute does not
reference a valid MIME data
part, MIME parts other than
the fragment header and a
data part are in the message,
or the SOAP Body is not
empty.

EBMS_0048 BadFragmentNum failure Content An incoming message
fragment has a a value
greater than the known
FragmentCount.

EBMS_0049 BadFragmentCount failure Content A value is set for
FragmentCount, but a
previously received fragment
had a greature value.

EBMS_0050 FragmentSizeExceeded warning Unpackagin
g

The size of the data part in a
fragment message is greater
than
Pmode[].Splitting.Fragment
Size

EBMS_0051 ReceiveIntervalExceede
d

failure Unpackagin
g

More time than
Pmode[].Splitting.JoinInter
val has passed since the first
fragment was received but
not all other fragments are
received.

485

Error Code Short Description Recommend
ed Severity

Category
Value

Description or Semantics

EBMS_0052 BadProperties warning Unpackagin
g

Message properties were
present in the fragment SOAP
header that were not
specified in
Pmode[].Splitting.RoutingP
roperties

EBMS_0053 HeaderMismatch failure Unpackagin
g

The eb3:Message header
copied to the fragment
header does not match the
eb3:Message header in the
reassembled source message.

EBMS_0054 OutOfStorageSpace failure Unpackagin
g

Not enough disk space
available to store all
(expected) fragments of the
group.

EBMS_0055 DecompressionError failure Processing An error occurred while
decompressing the
reassembled message.

EBMS_0060 ResponseUsingAlternat
eMEP

Warning Processing A responding MSH indicates
that it applies the alternate
MEP binding to the response
message.

EBMS_0065 InvalidXML failure Content The XML could not be
validated agains the
corresponding xsd.

Web service WSDL

▼ Details

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://org.ecodex.backend/1_1/"
 xmlns:ns1="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
name="BackendService_1_1"
targetNamespace="http://org.ecodex.backend/1_1/">
 <wsdl:types>
 <schema
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.w3.org/XML/1998/namespace"
schemaLocation="xml.xsd"/>
 </schema>

486

 <schema
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.w3.org/2005/05/xmlmime"
schemaLocation="xmlmime.xsd"/>
 </schema>
 <schema
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.w3.org/2003/05/soap-envelope"
schemaLocation="envelope.xsd"/>
 </schema>
 <schema
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://org.ecodex.backend/1_1/"
schemaLocation="domibus-backend.xsd"/>
 </schema>
 <schema
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import
namespace="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
schemaLocation="domibus-header.xsd"/>
 </schema>
 </wsdl:types>
 <wsdl:message name="getMessageErrors">
 <wsdl:part name="getErrorsRequest"
element="tns:getErrorsRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="retrieveMessage">
 <wsdl:part name="retrieveMessageRequest"
element="tns:retrieveMessageRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="RetrieveMessageFault">
 <wsdl:part name="RetrieveMessageFault"
element="tns:FaultDetail"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="retrieveMessageResponse">
 <wsdl:part name="retrieveMessageResponse"
element="tns:retrieveMessageResponse"></wsdl:part>
 <wsdl:part name="ebMSHeaderInfo" element="ns1:Messaging"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPendingMessagesResponse">
 <wsdl:part name="listPendingMessagesResponse"
element="tns:listPendingMessagesResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getStatusResponse">
 <wsdl:part name="getStatusResponse"
element="tns:getStatusResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="listPendingMessages">
 <wsdl:part name="listPendingMessagesRequest"
element="tns:listPendingMessagesRequest"></wsdl:part>
 </wsdl:message>

487

 <wsdl:message name="getStatus">
 <wsdl:part name="statusRequest" element="tns:statusRequest"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="StatusFault">
 <wsdl:part name="StatusFault" element="tns:FaultDetail"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="submitMessage">
 <wsdl:part name="submitRequest" element="tns:submitRequest"></wsdl:part>
 <wsdl:part name="ebMSHeaderInfo" element="ns1:Messaging"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="submitMessageResponse">
 <wsdl:part name="submitResponse" element="tns:submitResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="SubmitMessageFault">
 <wsdl:part name="SubmitMessageFault"
element="tns:FaultDetail"></wsdl:part>
 </wsdl:message>
 <wsdl:message name="getMessageErrorsResponse">
 <wsdl:part name="getMessageErrorsResponse"
element="tns:getMessageErrorsResponse"></wsdl:part>
 </wsdl:message>
 <wsdl:portType name="BackendInterface">
 <wsdl:operation name="submitMessage">
 <wsdl:input name="submitMessage"
message="tns:submitMessage"></wsdl:input>
 <wsdl:output name="submitMessageResponse"
message="tns:submitMessageResponse"></wsdl:output>
 <wsdl:fault name="SubmitMessageFault"
message="tns:SubmitMessageFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getStatus">
 <wsdl:input name="getStatus" message="tns:getStatus"></wsdl:input>
 <wsdl:output name="getStatusResponse"
message="tns:getStatusResponse"></wsdl:output>
 <wsdl:fault name="StatusFault" message="tns:StatusFault"></wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="listPendingMessages">
 <wsdl:input name="listPendingMessages"
message="tns:listPendingMessages"></wsdl:input>
 <wsdl:output name="listPendingMessagesResponse"
message="tns:listPendingMessagesResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="getMessageErrors">
 <wsdl:input name="getMessageErrors"
message="tns:getMessageErrors"></wsdl:input>
 <wsdl:output name="getMessageErrorsResponse"
message="tns:getMessageErrorsResponse"></wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="retrieveMessage">
 <wsdl:input name="retrieveMessage"
message="tns:retrieveMessage"></wsdl:input>

488

 <wsdl:output name="retrieveMessageResponse"
message="tns:retrieveMessageResponse"></wsdl:output>
 <wsdl:fault name="RetrieveMessageFault"
message="tns:RetrieveMessageFault"></wsdl:fault>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="BackendService_1_1SoapBinding"
type="tns:BackendInterface">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="submitMessage">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="submitMessage">
 <soap12:header message="tns:submitMessage"
part="ebMSHeaderInfo" use="literal"/>
 <soap12:body parts="submitRequest" use="literal"/>
 </wsdl:input>
 <wsdl:output name="submitMessageResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="SubmitMessageFault">
 <soap12:fault name="SubmitMessageFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getStatus">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getStatus">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getStatusResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="StatusFault">
 <soap12:fault name="StatusFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getMessageErrors">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="getMessageErrors">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="getMessageErrorsResponse">
 <soap12:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="listPendingMessages">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="listPendingMessages">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="listPendingMessagesResponse">

489

 <soap12:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="retrieveMessage">
 <soap12:operation soapAction="" style="document"/>
 <wsdl:input name="retrieveMessage">
 <soap12:body use="literal"/>
 </wsdl:input>
 <wsdl:output name="retrieveMessageResponse">
 <soap12:header message="tns:retrieveMessageResponse"
part="ebMSHeaderInfo" use="literal"/>
 <soap12:body parts="retrieveMessageResponse" use="literal"/>
 </wsdl:output>
 <wsdl:fault name="RetrieveMessageFault">
 <soap12:fault name="RetrieveMessageFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="BackendService_1_1">
 <wsdl:port name="BACKEND_PORT"
binding="tns:BackendService_1_1SoapBinding">
 <soap12:address
location="http://localhost:8080/domibus/services/backend"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Web service Schema’s

xmlmime.xsd

<?xml version="1.0"?>

<!--
W3C XML Schema defined in the Describing Media Content of Binary
Data in XML specification

http://www.w3.org/TR/xml-media-types

Copyright © 2005 World Wide Web Consortium,

(Massachusetts Institute of Technology, European Research
Consortium for#

Informatics and Mathematics, Keio University). All Rights
Reserved. This#

work is distributed under the W3C® Software License [1] in the
hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or

490

FITNESS FOR A PARTICULAR PURPOSE.

[1]
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231
$Id: xmlmime.xsd,v 1.1 2005/04/25 17:08:35 hugo Exp $
-->
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime"
targetNamespace="http://www.w3.org/2005/05/xmlmime">
 <xs:attribute name="contentType">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:minLength value="3"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="expectedContentTypes" type="xs:string"/>
 <xs:complexType name="base64Binary">
 <xs:simpleContent>
 <xs:extension base="xs:base64Binary">
 <xs:attribute ref="xmime:contentType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="hexBinary">
 <xs:simpleContent>
 <xs:extension base="xs:hexBinary">
 <xs:attribute ref="xmime:contentType"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

envelope.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:env="http://www.w3.org/2003/05/soap-envelope"
targetNamespace="http://www.w3.org/2003/05/soap-envelope"
elementFormDefault="qualified" version="1.0">
 <xs:import namespace="http://www.w3.org/XML/1998/namespace"/>
 <xs:element name="Body" type="env:Body"/>
 <xs:element name="Envelope" type="env:Envelope"/>
 <xs:element name="Fault" type="env:Fault"/>
 <xs:element name="Header" type="env:Header"/>
 <xs:element name="NotUnderstood" type="env:NotUnderstoodType"/>
 <xs:element name="Upgrade" type="env:UpgradeType"/>
 <xs:complexType name="Fault">

491

 <xs:sequence>
 <xs:element name="Code" type="env:faultcode"/>
 <xs:element name="Reason" type="env:faultreason"/>
 <xs:element name="Node" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="Role" type="xs:anyURI" minOccurs="0"/>
 <xs:element name="Detail" type="env:detail" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="faultcode">
 <xs:sequence>
 <xs:element name="Value" type="xs:QName"/>
 <xs:element name="Subcode" type="env:subcode" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="subcode">
 <xs:sequence>
 <xs:element name="Value" type="xs:QName"/>
 <xs:element name="Subcode" type="env:subcode" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="faultreason">
 <xs:sequence>
 <xs:element name="Text" type="env:reasontext"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="reasontext">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute ref="xml:lang" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:complexType name="detail">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="Envelope">
 <xs:sequence>
 <xs:element name="Header" type="env:Header" minOccurs="0"/>
 <xs:element name="Body" type="env:Body"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="Header">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

492

 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="Body">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##other" processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="NotUnderstoodType">
 <xs:sequence/>
 <xs:attribute name="qname" type="xs:QName" use="required"/>
 </xs:complexType>
 <xs:complexType name="UpgradeType">
 <xs:sequence>
 <xs:element name="SupportedEnvelope"
type="env:SupportedEnvType" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SupportedEnvType">
 <xs:sequence/>
 <xs:attribute name="qname" type="xs:QName" use="required"/>
 </xs:complexType>
 <xs:attribute name="mustUnderstand" type="xs:boolean"/>
</xs:schema>

domibus-backend.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://org.ecodex.backend/1_1/"
 xmlns:ns1="http://www.w3.org/2005/05/xmlmime"
 attributeFormDefault="unqualified"
 elementFormDefault="unqualified"
 targetNamespace="http://org.ecodex.backend/1_1/">
 <xsd:import namespace="http://www.w3.org/2005/05/xmlmime"/>
 <xsd:simpleType name="max255-non-empty-string">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="255"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:element name="FaultDetail">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="code" type="xsd:string"/>
 <xsd:element name="message" nillable="true" type="xsd:string"/>
 </xsd:sequence>

493

 </xsd:complexType>
 </xsd:element>
 <xsd:element name="retrieveMessageRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID" type="tns:max255-non-empty-string"
nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="retrieveMessageResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="bodyload"
type="tns:LargePayloadType"/>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="payload"
type="tns:LargePayloadType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="listPendingMessagesRequest"
type="xsd:anyType" nillable="false"/>
 <xsd:element name="listPendingMessagesResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="messageID" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="messageErrorsRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="messageStatusRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitRequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="bodyload"
type="tns:LargePayloadType"/>

494

 <xsd:element maxOccurs="unbounded" minOccurs="0" name="payload"
nillable="true" type="tns:LargePayloadType"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="submitResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0"
name="messageID" nillable="true" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:complexType name="PayloadType">
 <xsd:simpleContent>
 <xsd:extension base="ns1:base64Binary">
 <xsd:attribute name="payloadId" type="xsd:token"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="LargePayloadType">
 <xsd:sequence>
 <xsd:element name="value" type="xsd:base64Binary"
ns1:expectedContentTypes="application/octet-stream"></xsd:element>
 </xsd:sequence>
 <xsd:attribute name="payloadId" type="xsd:token"
use="required"/>
 <xsd:attribute name="contentType" type="xsd:string"/>
 </xsd:complexType>
 <xsd:complexType name="errorResultImpl">
 <xsd:sequence>
 <xsd:element minOccurs="0" name="errorCode"
type="tns:errorCode"/>
 <xsd:element minOccurs="0" name="errorDetail"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="messageInErrorId"
type="xsd:string"/>
 <xsd:element minOccurs="0" name="mshRole" type="tns:mshRole"/>
 <xsd:element minOccurs="0" name="notified"
type="xsd:dateTime"/>
 <xsd:element minOccurs="0" name="timestamp"
type="xsd:dateTime"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="PayloadURLType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="payloadId" type="xsd:token"
use="required"/>
 </xsd:extension>

495

 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:simpleType name="messageStatus">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="READY_TO_PULL"/>
 <xsd:enumeration value="SEND_ENQUEUED"/>
 <xsd:enumeration value="WAITING_FOR_RECEIPT"/>
 <xsd:enumeration value="ACKNOWLEDGED"/>
 <xsd:enumeration value="SEND_FAILURE"/>
 <xsd:enumeration value="NOT_FOUND"/>
 <xsd:enumeration value="WAITING_FOR_RETRY"/>
 <xsd:enumeration value="RECEIVED"/>
 <xsd:enumeration value="DELETED"/>
 <xsd:enumeration value="DOWNLOADED"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="errorCode">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="EBMS_0001"/>
 <xsd:enumeration value="EBMS_0002"/>
 <xsd:enumeration value="EBMS_0003"/>
 <xsd:enumeration value="EBMS_0004"/>
 <xsd:enumeration value="EBMS_0005"/>
 <xsd:enumeration value="EBMS_0006"/>
 <xsd:enumeration value="EBMS_0007"/>
 <xsd:enumeration value="EBMS_0008"/>
 <xsd:enumeration value="EBMS_0009"/>
 <xsd:enumeration value="EBMS_0010"/>
 <xsd:enumeration value="EBMS_0011"/>
 <xsd:enumeration value="EBMS_0101"/>
 <xsd:enumeration value="EBMS_0102"/>
 <xsd:enumeration value="EBMS_0103"/>
 <xsd:enumeration value="EBMS_0201"/>
 <xsd:enumeration value="EBMS_0202"/>
 <xsd:enumeration value="EBMS_0301"/>
 <xsd:enumeration value="EBMS_0302"/>
 <xsd:enumeration value="EBMS_0303"/>
 <xsd:enumeration value="EBMS_0020"/>
 <xsd:enumeration value="EBMS_0021"/>
 <xsd:enumeration value="EBMS_0022"/>
 <xsd:enumeration value="EBMS_0023"/>
 <xsd:enumeration value="EBMS_0030"/>
 <xsd:enumeration value="EBMS_0031"/>
 <xsd:enumeration value="EBMS_0040"/>
 <xsd:enumeration value="EBMS_0041"/>
 <xsd:enumeration value="EBMS_0042"/>
 <xsd:enumeration value="EBMS_0043"/>
 <xsd:enumeration value="EBMS_0044"/>
 <xsd:enumeration value="EBMS_0045"/>
 <xsd:enumeration value="EBMS_0046"/>
 <xsd:enumeration value="EBMS_0047"/>

496

 <xsd:enumeration value="EBMS_0048"/>
 <xsd:enumeration value="EBMS_0049"/>
 <xsd:enumeration value="EBMS_0050"/>
 <xsd:enumeration value="EBMS_0051"/>
 <xsd:enumeration value="EBMS_0052"/>
 <xsd:enumeration value="EBMS_0053"/>
 <xsd:enumeration value="EBMS_0054"/>
 <xsd:enumeration value="EBMS_0055"/>
 <xsd:enumeration value="EBMS_0060"/>
 <xsd:enumeration value="EBMS_0065"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:simpleType name="mshRole">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="SENDING"/>
 <xsd:enumeration value="RECEIVING"/>
 </xsd:restriction>
 </xsd:simpleType>
 <xsd:complexType final="#all" name="errorResultImplArray">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="item"
nillable="true" type="tns:errorResultImpl"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="getStatusRequest" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="statusRequest" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getStatusResponse" nillable="true"
type="tns:messageStatus"/>
 <xsd:element name="getErrorsRequest" nillable="true">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="messageID"
type="tns:max255-non-empty-string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="getMessageErrorsResponse" nillable="true"

497

type="tns:errorResultImplArray"/>
</xsd:schema>

domibus-header.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
targetNamespace="http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace"/>
 <xsd:annotation>
 <xsd:appinfo>Schema for Domibus messages' headers
submission</xsd:appinfo>
 <xsd:documentation xml:lang="en">

This schema defines an XML subset of ebMS-3 headers which is
used to validate messages submitted to Domibus#

through WS plugin.#

</xsd:documentation>
 </xsd:annotation>
 <xsd:element name="Messaging" type="Messaging"/>
 <xsd:complexType name="Messaging">
 <xsd:sequence>
 <xsd:element name="UserMessage" type="UserMessage"
minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="mustUnderstand" type="xsd:boolean"
use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="UserMessage">
 <xsd:all>
 <xsd:element name="MessageInfo" type="MessageInfo"
minOccurs="0"/>
 <xsd:element name="PartyInfo" type="PartyInfo"/>
 <xsd:element name="CollaborationInfo"
type="CollaborationInfo"/>
 <xsd:element name="MessageProperties"
type="tns:MessageProperties"/>
 <xsd:element name="PayloadInfo" type="tns:PayloadInfo"/>
 </xsd:all>
 <xsd:attribute name="mpc" type="xsd:anyURI" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="MessageInfo">
 <xsd:all>
 <xsd:element name="Timestamp" type="xsd:dateTime"

498

minOccurs="0"/>
 <xsd:element name="MessageId"
type="tns:max255-non-empty-string" minOccurs="0"/>
 <xsd:element name="RefToMessageId"
type="tns:max255-non-empty-string" minOccurs="0"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="PartyInfo">
 <xsd:all>
 <xsd:element name="From" type="tns:From"/>
 <xsd:element name="To" type="tns:To" minOccurs="0"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="PartyId">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute name="type" type="tns:max255-non-empty-string"
/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="From">
 <xsd:all>
 <xsd:element name="PartyId" type="tns:PartyId"/>
 <xsd:element name="Role" type="tns:max255-non-empty-string"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="To">
 <xsd:all>
 <xsd:element name="PartyId" type="tns:PartyId"/>
 <xsd:element name="Role" type="tns:max255-non-empty-string"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="CollaborationInfo">
 <xsd:all>
 <xsd:element name="AgreementRef" type="tns:AgreementRef"
minOccurs="0"/>
 <xsd:element name="Service" type="tns:Service"/>
 <xsd:element name="Action" type="xsd:token"/>
 <xsd:element name="ConversationId" type="xsd:token"
minOccurs="0"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="Service">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute name="type" type="tns:max255-non-empty-string"
use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

499

 <xsd:complexType name="AgreementRef">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute name="type" type="tns:max255-non-empty-string"
use="optional"/>
 <xsd:attribute name="pmode" type="tns:max255-non-empty-string"
use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="PayloadInfo">
 <xsd:sequence>
 <xsd:element name="PartInfo" type="tns:PartInfo"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="PartInfo">
 <xsd:all>
 <xsd:element name="Schema" type="Schema" minOccurs="0"/>
 <xsd:element name="Description" type="tns:Description"
minOccurs="0"/>
 <xsd:element name="PartProperties" type="tns:PartProperties"
minOccurs="0"/>
 </xsd:all>
 <xsd:attribute name="href" type="xsd:token" use="required"/>
 </xsd:complexType>
 <xsd:complexType name="Property">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute name="name" type="tns:max255-non-empty-string"
use="required"/>
 <xsd:attribute name="type" type="tns:max255-non-empty-string"
use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:complexType name="PartProperties">
 <xsd:sequence>
 <xsd:element name="Property" type="tns:Property"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="MessageProperties">
 <xsd:sequence>
 <xsd:element name="Property" type="Property"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="Schema">
 <xsd:attribute name="location" type="xsd:anyURI"
use="optional"/>

500

 <xsd:attribute name="version"
type="tns:max255-non-empty-string" use="optional"/>
 <xsd:attribute name="namespace"
type="tns:max255-non-empty-string" use="optional"/>
 </xsd:complexType>
 <xsd:complexType name="Description">
 <xsd:simpleContent>
 <xsd:extension base="tns:max255-non-empty-string">
 <xsd:attribute ref="xml:lang" use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 <xsd:simpleType name="max255-non-empty-string">
 <xsd:restriction base="xsd:string">
 <xsd:minLength value="1"/>
 <xsd:maxLength value="255"/>
 </xsd:restriction>
 </xsd:simpleType>
</xsd:schema>

501

Chapter 13. JMS Plugin

13.1. JMS Plugin Interface
The purpose of this content is to outline the JMS Data Format Exchange to be used as part of the
default JMS backend integration solution for the Domibus Access Point.

SEE ALSO
• About Domibus

• Domibus Architecture

According to eDelivery, an Access Point is an implementation of the OpenPEPPOL AS2 Profile or the
eDelivery AS4 Profile. The data exchange protocols of eDelivery are profiles, meaning that several
options of the original technical specifications were narrowed down in order to increase
consistency, interoperability and to simplify deployment. The profile of AS2 was developed by
OpenPEPPOL, and the profile of AS4 was developed by e-SENS in collaboration with several service
providers while being implemented in the e-Justice domain by e-CODEX.

An Access Point exposes two interfaces:

• An interface to connect the Backend system with the Access Point. Typically, this interface is
customisable as communication between Access Points and Backend systems may use any
messaging or transport protocol.

• A standard messaging interface between Access Points, this interface is configurable according
to the options of the profiles supported by eDelivery. It is important to note that eDelivery
standardises the communication only between the Access Points.

This document will univocally define the JMS plugin that acts as an interface to the Access Point
(Corner Two and Corner Three in the four corner topology that will be explained later in this
document) component of the eDelivery building block.

There is 1 interface described in this document:

Interface described

Interface Description Version

JMS backend integration The JMS plugin 4.x.y

Scope

This document covers the service interface of the Access Point from the perspective of the JMS
backend integration. It includes information regarding the description of the JMS-Queues,
information model and the types of messages for the services provided. This specification addresses
no more than the service interface of the Access Point. All other aspects of its implementation are
not covered by this document (i.e. the service consumer). The ICD specification provides both the
provider (i.e. the implementer) of the services and their consumers with a complete specification of
the following aspects:

• Interface Functional Specification, this specifies the set of services and the operations provided

502

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
http://www.peppol.eu/
http://www.esens.eu/

by each service;

• Interface Behavioural Specification, this specifies the expected sequence of steps to be respected
when calling a service or a set of services;

• Interface Message standards, this specifies the syntax and semantics of the data and metadata;

• Interface Policy Specification, this specifies constraints and policies regarding the operation of
the service.

Audience

This document is intended to the Directorate Generals and Services of the European Commission,
Member States (MS) and also companies of the private sector wanting to set up a connection
between their backend systems and the Access Point.

In particular:

• Architects will find it useful for determining how to best exploit the Access Point to create a
fully-fledged solution and as a starting point for connecting a Back-Office system to the Access
Point.

• Analysts will find it useful to understand the Access Point that will enable them to have a
holistic and detailed view of the operations and data involved in the use cases.

• Developers will find it essential as a basis of their development concerning the Access Point
plugin services.

• Testers can use this document in order to test the interface by following the use cases described.

Table 3 - domibus.backend.jmsInQueue messagefields

Acronym Definition

ebMS# ebXML Messaging Service Specification

MEP# Message Exchange Pattern

A Message Exchange Pattern describes the pattern of messages required by a
communications protocol to establish or use a communication channel.

ebXML# Electronic Business XML

Project to use XML to standardise the secure exchange of business data.

P-Mode# Processing Mode

MSH Message Service Handler

The MSH is an entity that is able to generate or process messages that conform to
the ebMS specification, and which act in at least one of the two ebMS roles: Sender
and Receiver.

In terms of SOAP processing, an MSH is either a SOAP processor or a chain of SOAP
processors. In either case, an MSH has to be able to understand the eb:Messaging
header (qualified with the ebMS namespace).

503

13.1.1. Functional Specification

The four corner model

In order to understand the Use Cases that will be described below it is important to explain the
topology; i.e. the four – corner model.

Figure 1 - The four corner model

In this model we have the following elements:

• Corner One (C1): Backend C1 is the system that will send messages to the sending AP (Access
Point)

• Corner Two (C2): Sending Access Point C2

• Corner Three (C3): Receiving Access Point C3

• Corner Four (C4): Backend C4 is the system that will receive messages from the receiving AP
(Access Point)

The JMS backend is described in this document. JMS (Java Message Service) is an API that provides
the facility to create, send and read messages. It provides loosely coupled, reliable and
asynchronous communication. JMS is also known as the standard for Java asynchronous messaging
service. Messaging is a technique to enabling inter-application communications.

There are two types of messaging domains in JMS.

• Point-to-Point Messaging Domain

• Publisher/Subscriber Messaging Domain

The present JMS backend integration uses Publisher/Subscriber Messaging pattern where
senders of messages, called publishers, do not plan the messages to be sent directly to specific
receivers (called subscribers) but, instead, characterize published messages into classes without
knowledge of which subscribers will be. Similarly, subscribers express interest in one or more
classes and only receive the messages that are of their interest, without knowledge of which
publishers are sending those messages. The intent of interest is done by means of a subscription.

Introduction to Domibus - AS4

Using as reference DEP DIGITAL, Domibus is the Open Source project of the AS4 Access Point

504

https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
http://www.e-codex.eu/about-the-project/technical-solution/domibus-software.html

maintained by the European Commission. Third-party software vendors offer alternative
implementations of the eDelivery AS4 Profile (commercial or open-source). Each software vendor
also provides different added-value services from integration to the support of day-to-day
operations. For safeguarding interoperability, eDelivery encourages implementers to consult the list
of software products that have passed the conformance tests by the European Commission of the
eDelivery AS4 profile.

The sample software, Domibus, may be used to test other implementations of the AS4 profile or as a
working solution in a production environment. The users of the sample implementation remain
fully responsible for its integration with backend systems, deployment and operation. The support
and maintenance of the sample implementation, as well as any other auxiliary services, are
provided by the European Commission according to the terms defined in the eDelivery Access Point
Component Offering Description.

It is also important to comment on the PMode. A processing mode – or PMode – is a collection of
parameters that determine how user messages are exchanged between a pair of Access Points with
respect to Quality of Service, Transmission Mode and Error Handling. A PMode maps the recipient
Access Point from the partyId, which represents the backend offices associated to this Access Point.

13.1.2. Behavioural Specification

A JMS queue is a staging area that contains messages that have been sent and are waiting to be
read. Contrary to what the name queue suggests, messages do not have to be received in the order
in which they were sent. A JMS queue only guarantees that each message is processed only once.

Domibus queues are classified in 3 types:

Internal queues

are accessed only by the core of the system

Notification queues

are populated by the core of the system to be retrieved by the plugins deployed on the local
access points

Backend queues

are accessed by the backend themselves to either insert into or retrieve message from it.

Role of the plugins

Plugins are the intermediate components that will allow incoming messages from corner 1 to enter
corner 2 and outgoing messages to exit corner 3 to reach corner 4. These plugins must be compliant
to Domibus specifications, and are specific to the backend implementation.

The following will introduce the queues chronologically, i.e. following the flow of message
processed from corner 1 to corner 4.

The processing of a message, in short is processed as follows:

1. Corner 1 sends a message to an (input) plugin of corner 2.

2. The (input) plugin calls a set of API’s exposed by the core to store the message into the database,

505

https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/eDelivery+AS4
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Access+Point+software
https://ec.europa.eu/digital-building-blocks/sites/display/DIGITAL/Access+Point+software

generates a unique message ID and put that ID the internal dispatch queue referring to it.

3. The core of corner 2 discovers the message ID in the internal dispatch queue and the dispatcher
sends it to the appropriate access point (corner 3).

4. The core of corner 3 stores it into the database, and creates a message into the internal
notification queue referring to it

5. The notification listener of corner 3 discovers the message ID in the internal notification queue
and makes it available into the notification dedicated queue of the appropriate (output) plugin
of corner 3.

6. The (output) plug-in discovers the message ID into its dedicated queue and retrieves the
message from the database.

◦ JMS (output) plugins will put it into the outQueue onto which its back-end (corner 4) is
listening to.

◦ Web service (output) plugin (Future implementation) will be sent it directly to its back-end
(retry will be done later in case of temporary unavailability of corner 4).

Messages processing

The following section specifies the data format to be used to enable the following functions via JMS:

• Submit a message to the Access Point

• Push pending messages to a queue for retrieval

It uses the JMS MapMessage type to implement the request and response data formats for each of
the functions mentioned above. The Meta data in each case will be set in the JMS message
properties using name/value pairs and these will be outlined in each case.

506

JMS-Messages

Before going into the detail of the JMS queues it is important to describe the meaning of each tag
included in the message that will be sent. It is Important to note that most values (parties, services,
actions, etc…) are specified by the use case and multilateral agreements and thus not to be chosen
by the caller when the message is submitted. They are underlined in the table below.

domibus.backend.jms.replyQueue message fields

Name Description

mpc Message Partition Channels (MPCs) allow for partitioning the flow of
messages from a Sending MSH to a Receiving MSH into several flows that
can be controlled separately and consumed differently.

action This element is a string identifying an operation or an activity within a
Service. Its actual semantics is beyond the scope of this specification.
Action SHALL be unique within the Service in which it is defined. The
value of the Action element is specified by the designer of the service.

service This element identifies the service that acts on the message. Its actual
semantics is beyond the scope of this specification. The designer of the
service may be a standards organization, or an individual or enterprise.
In other words, service element denotes the service that processes the
message at the destination. As an example of what might exist in the
Service element, consider the text urn:Invoice, denoting a message that
should be processed by the invoice service.

serviceType The Service element MAY contain a single @type attribute, that indicates
how the parties sending and receiving the message will interpret the
value of the element. There is no restriction on the value of the type
attribute. If the type attribute is not present, the content of the Service
element MUST be a URI.

conversationId The Party initiating a conversation determines the value of the
ConversationId element that SHALL be reflected in all messages
pertaining to that conversation. The actual semantics of this value is
beyond the scope of this specification. Implementations SHOULD provide
a facility for mapping between their identification scheme and a
ConversationId generated by another implementation.

messageId This element has a value representing – for each message - a globally
unique identifier. Note: In the Message_Id and Content_Id MIME headers,
values are always surrounded by angle brackets. However, references in
mid: or cid: scheme URI’s and the MessageId and RefToMessageId
elements MUST NOT include these delimiters.

refToMessageId This element occurs at most once. When present, it MUST contain the
MessageId value for which the message is related.

507

Name Description

agreementRef AgreementRef is a string value that identifies the agreement that governs
the exchange. The value of an AgreementRef element MUST be unique
within a namespace mutually agreed by the two parties. This could be a
concatenation of the From and To PartyId’s values, a URI containing the
Internet domain name of one of the parties, or a namespace offered and
managed by some other naming or registry service. It is RECOMMENDED
that the AgreementRef is a URI.

agreementRefType This attribute indicates how the parties sending and receiving the
message will interpret the value of the reference. There is no restriction
on the value of the type attribute. If the type attribute is not present, the
content of the eb:AgreementRef element MUST be a URI.

fromRole This element occurs once and identifies the authorized role
(fromAuthorizedRole) of the Party sending (present as a child of the From
element) the message. The value of the fromRole element is a non- empty
string, with a default value of http://docs.oasis-open.org/ebxml-msg/ebms/
v3.0/ns/core/200704/defaultRole. Other possible values are subject to
partner agreement.

toRole This element occurs once and identifies the authorized role
(toAuthorizedRole) of the Party receiving (present as a child of the To
element) the message. The value of the toRole element is a non- empty
string, with a default value of http://docs.oasis-open.org/ebxml-msg/ebms/
v3.0/ns/core/200704/defaultRole. Other possible values are subject to
partner agreement.

messageType A string representing the type of the message.

JMScorrelationId The JMSCorrelationID header field is used for linking one message with
another. It typically links a reply message with its requesting message.

JMSCorrelationID can hold a provider-specific message ID, an
application-specific String object, or a provider-native byte[] value.

fromPartyId Access Point C2. This element has a string value content that identifies a
party, or that is one of the identifiers of this party who is sending the
message.

fromPartyType A string that identifies the type of the sender partyId. The type attribute
indicates the domain of names to which the string in the content of the
fromPartyId element belongs. It is RECOMMENDED that the value of the
type attribute be a URI. It is further RECOMMENDED that these values be
taken from the EDIRA , EDIFACT or ANSI ASC X12 registries. Technical
specifications for the first two registries can be found at and [ISO6523]
and [ISO9735], respectively.

toPartyId Access Point C3. This element has a string value content that identifies a
partyId, or that is one of the identifiers of this party. The one who is
receiving the message.

508

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/defaultRole

Name Description

toPartyType A string that identifies the type of the receiver partyId. The type attribute
indicates the domain of names to which the string in the content of the
toPartyId element belongs. It is RECOMMENDED that the value of the type
attribute be a URI. It is further RECOMMENDED that these values be
taken from the EDIRA , EDIFACT or ANSI ASC X12 registries. Technical
specifications for the first two registries can be found at and [ISO6523]
and [ISO9735], respectively.

originalSender Backend C1. This element has a string value content that identifies the
message producer (who created the message).

finalRecipient Backend C4. This element has a string value content that identifies the
message consumer (who is the final receiver of the message).

finalRecipientType Backend C4. This element has a string value content that could identify
the message consumer, along with finalRecipient element.
In Dynamic mode, this message property is also required to send JMS
message. This field is mandatory for SMP to find the 'ToParty'.
Default:value is "iso6523-actorid-upis"

protocol The description of the protocol used. For the scenario described in this
document it MUST be AS4.

totalNumberOfPayload
s

Defines the number of payloads available in the message.

P1InBody (true/false) Boolean that indicates if the payload is in the body of the AS4 message or
not. If the payload is not in the body of the AS4 message it will be sent as
attachment in the SOAP message.

putAttachmentInQueue If true, all the payloads from the User Message will be stored as bytes in
the JMS message. If false and Domibus is configured to save the payloads
on the file system (property domibus.attachment.storage.location), the
payloads file locations will be stored in the JMS message This property
should be disabled for large file transfers.

username Mandatory in Multitenancy mode. The user that submits messages to
Domibus. It is used to associate the current user with a specific domain.

password Mandatory in Multitenancy mode. The credentials of the user defined
under the property username.

processingType This attribute specifies if the message should be sent directly or wait to be
pulled from another accespoint.

The only mandatory rule is that only messageType=submitMessage messages may be put on the
domibus.backend.jmsInQueue. All other queues (that go from the plugin to the backend) can be
freely aggregated. I.e. if you only want one replyQueue you are free to send all success and
errorMessages there.

509

Dynamic Discovery with JMS Plugin

The fields in charge to identify the Party (C3) are empty in this scenario (toRole, toPartyId,
toPartyType).

• The finalRecipientType is mandatory together with finalRecipient to enable messaging in
Dynamic Discovery mode.

• The following example shows the relevant section of a function for submitting a message in
Dynamic mode. The complete function is shown in the 6 ANNEXE.

messageMap.setStringProperty("messageType", "submitMessage");

messageMap.setStringProperty("service",
"urn:www.cenbii.eu:profile:bii04:ver1.0");

messageMap.setStringProperty("serviceType", "cenbii-procid-ubl");

messageMap.setStringProperty("action",
"busdox-docid-qns::urn:oasis:names:specification:ubl:schema:xsd:Invoice-
12::Invoiceurn:www.cenbii.eu:transaction:biicoretrdm010:ver1.0:urn:www.peppol.eu:bis:p
eppol4a:ver1.0::2.0");

messageMap.setStringProperty("fromPartyId", "senderalias");

messageMap.setStringProperty("fromPartyType",
"urn:oasis:names:tc:ebcore:partyid-type:unregistered");

messageMap.setStringProperty("fromRole",
"http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/initiator");

messageMap.setStringProperty("originalSender",
"urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1");

messageMap.setStringProperty("finalRecipient", "0777:tt001:oasis");

messageMap.setStringProperty("finalRecipientType",
"iso6523-actorid-upis");

messageMap.setStringProperty("protocol"", "AS4");

JMS-Queues

domibus.backend.jmsInQueue

Description:

Submit a message from a Backend to Domibus. If a property is set in the plugin properties (jms-
plugin.properties) but not in the message itself, the value from the properties file will be used.

Message type: javax.jms.MapMessage

510

domibus.backend.jms.replyQueue message fields

Property name Optional Available in
plugin
properties

Notes

messageType No No Value = submitMessage

messageId Yes No Must be a globally unique Id, max 255
characters long

action No Yes

conversationId Yes No

JMScorrelationId Yes No Used by a backend to correlate between
JMS messages submitted in jms.InQueue
and response sent in jms.ReplyQueue.

fromPartyId No Yes

fromRole No Yes

fromPartyType Yes Yes

toPartyId Yes Yes Empty in DYNAMIC DISCOVERY

toRole Yes Yes Empty in DYNAMIC DISCOVERY

toPartyType Yes Yes

originalSender Yes No

finalRecipient Yes No Mandatory in DYNAMIC DISCOVERY

finalRecipientType Yes No Mandatory in DYNAMIC DISCOVERY

service No Yes

serviceType Yes Yes Only optional if the service is untyped

protocol Yes No Values other than AS4 or empty will
raise an exception

refToMessageId Yes No

agreementRef Yes Yes

totalNumberOfPayloads No No Outlining the total number of payloads,
0 payloads is valid

P1InBody (true/false) Yes No If true, payload_1 will be sent in the
body of the AS4 message. Only XML
payloads may be sent in the AS4
message body.

511

Property name Optional Available in
plugin
properties

Notes

putAttachmentInQueue
(true/false)

Yes Yes If true, all the payloads from the User
Message will be stored as bytes in the
JMS message. If false and Domibus is
configured to save the payloads on the
filesystem (property
domibus.attachment.storage.location)
, the payloads file locations will be
stored in the JMS message This property
should be disabled for large file
transfers.

username Yes No Mandatory in Multitenancy mode

password Yes No Mandatory in Multitenancy mode

mpc Yes No Mandatory starting from Domibus
release 5.0 in case the mpc in the leg
configuration (check in Pmode) is not
the default mpc.

Payload handling:

The following properties should be set for each payload in the message. In the list below, the string
“[NUM]” of each property name should be replaced with a numerical value representing each
payload. The payload with the prefix payload_1 is transported inside the body of the AS4 message if
the property p1InBody is set to true.

Each payload can either be sent in byte format or set in the MapMessage using the setBytes method
of the MapMessage class, or an URL from where the payload can be downloaded by the Domibus
Access Point. Each payload should be identified by the property payload_[NUM].

The following properties can be set for each payload using the setStringProperty method of the
MapMessage class:

• payload_[NUM]_MimeContentID: For example, the MimeContentID for the first payload will be
identified by the property payload_1_MimeContentID. This is the payload contentId. Setting it is
required if the pmode payload profiling is used. If unset Domibus generates an UUID for it.

• payload_[NUM]_MimeType: The mime type of the payload. If not provided the mime type
application/octet-stream is assumed

• payload_[NUM]_FileName: The file location of the payload, if putAttachmentInQueue is set.

Property Handling

Message properties are handled in the following way:

• Properties named property_[NAME] are put into the outgoing message using [NAME] as key
inside the AS4 message.

512

• For each property_[NAME] property there MAY be a corresponding propertyType_[NAME]
property set. The corresponding value MAY be NULL, indicating an untyped property. Older AS4
implementations which do not have implemented the latest errata MIGHT REJECT messages
where a property type is NOT NULL

domibus.backend.jms.replyQueue

Description: The result of the submit operation and contains either the messageId or an error. The
messageId is (usually) generated by Domibus. If the submissionis rejected, no messageId is
generated. Additionally, there is no guarantee that the set MessageId of a rejected message can be
read. This message has to be correlated using the JMSCorrelationID. Corner 2 reports back to corner
1 about the success/Failure of an intended message submission.

Message type: javax.jms.Message

domibus.backend.jms.outQueue

message fields

Property name Optional Notes

messageType No Value=submitResponse

messageId Yes null, if there is an errorDetail

errorDetail Yes null, if there is a messageId

Description: A message has been successfully sent to another AS4 Access Point. The status changes
to messageSent when the message has been sent from C2 to C3. The reason why this is a different
logical queue is to allow better configuration options, i.e. you might want to send those messages to
a monitoring system (or dev/null) and not to the back office application. As this is only a logical
queue, nothing prevents it from using the same physical queue if all of those messages have the
same recipient.

domibus.backend.jms.errorNotifyProducer message fields

Property name Optional Notes

messageType No Value=messageSent

messageId No

Payload handling: N/A

Property Handling: N/A

domibus.backend.jms.outQueue

Description: submit a message from Domibus (corner 3) to a backend (corner4)

Message type: javax.jms.MapMessage

domibus.backend.jms.errorNotifyConsumer message fields

513

Property name Optional Notes

messageType No Value = incomingMessage

messageId No Must be a globally unique Id

mpc Yes

action No

conversationId No

fromPartyId No

fromRole No

fromPartyType Yes

toPartyId No

toRole No

toPartyType Yes

originalSender Yes

finalRecipient Yes

finalRecipienttype Yes ONLY for DYNAMIC DISCOVERY

service No

serviceType Yes Only optional if the service is untyped

protocol No Value = AS4

refToMessageId Yes

agreementRef Yes

totalNumberOfPayloads No outlining the total number of payloads, 0
payloads is valid

Payload handling:

The following properties are set for each payload in the message. In the list below, the string
“[NUM]” of each property name is replaced with a numerical value representing each payload. If a
payload has been transported in the message body of the corresponding AS4 message, this is always
the payload with the prefix payload_1. Each payload is sent in byte format. Each payload is
identified by the property payload_[NUM].

The following properties may be available for each payload:

• payload_[NUM]_MimeContentID: for example, the MimeContentID for the first payload will be
identified by the property payload_1_MimeContentID. This is the payload contentId. Setting it is
required if the pmode payload profiling is used. If unset Domibus generates an UUID for it.

• payload_[NUM]_MimeType: The mime type of the payload

• payload_[NUM]_FileName: The file location of the payload, if putAttachmentInQueue is set.

Property Handling

514

Message properties are handled in the following way:

• Properties named [NAME] are put into the incoming message using property_[NAME] as key
inside the JMS message

• For each property_[NAME] property there is a corresponding propertyType_[NAME] property
set. The corresponding value MAY be NULL, indicating an untyped property. Older AS4
implementations which do not have implemented the latest errata will only ever send untyped
properties

domibus.backend.jms.errorNotifyProducer

Description: A message that was accepted as submission could not be sent to the recipient.

Message type: javax.jms.Message

General properties

Property name Optional Notes

messageType No Value=messageSendFailure

messageId No

errorCode No The ebMS3 error code of the corresponding error

errorDetail No A textual description of the error

Payload handling: N/A

domibus.backend.jms.errorNotifyConsumer

Description: An incoming message was rejected because of an error or agreement violation. To
generate such a message, the Domibus Access Point must, at least, be able to determine the
intended recipient for the original message. If this is not possible, no messageReceptionFailure will
be generated.

Message type: javax.jms.Message

Annex 2 - Errors codes table

Property name Optional Notes

messageType No Value=messageReceptionFailure

messageId No

errorCode No The ebMS3 error code of the corresponding error

errorDetail No A textual description of the error

endPoint Yes The internet address of the access point that tried to send
the message

Payload handling: N/A

Property Handling: N/A

515

Routing messages to specific queues

By default, the JMS Plugin dispatches UserMessages to the default configured queues. It does not
have support to dispatch to different queues depending on the combination service/action.

This means that all UserMessages dispatched to the JMS Plugin will end up in the same queue,
regardles of service/action values. This behaviour applies even if the UserMessage concerns
different backend systems.

The possibility to dispatch UserMessages to specific JMS queues depending on different
service/action value provides flexibility to address different backends.

This way flows belonging to different backend systems remain separated from each other. Flooding
the application by UserMessages having one combination of service/action will only have an impact
on the latency of processing UserMessages for one backend but not the other ones.

For this purpose, the possibility of routing UserMessages depending on service/action combination
has been implemented. This feature is available for the JMS queues configured using the following
properties:

• jmsplugin.queue.out

• jmsplugin.queue.reply

• jmsplugin.queue.consumer.notification.error

• jmsplugin.queue.producer.notification.error

Defining routing rules for a specific queue

In order to define a routing rule for a specific queue the routing rule name must be defined first.

The convention is to define the routing rule name based on default queue property and the
keyword routing. For instance, one can define a routing rule named rule1 for the default JMS out
queue defined under the property jmsplugin.queue.out:

jmsplugin.queue.out.routing.rule1=<Routing rule description>

Once the rule name is defined, other properties, like service, action and routing queue can be also
defined using the rule name. For instance:

jmsplugin.queue.out.routing.rule1.service=ServiceValue

jmsplugin.queue.out.routing.rule1.action=ActionValue

jmsplugin.queue.out.routing.rule1.queue=jms/domibus.backend.jms.outQueue.queue1

Once a UserMessage having a service/action combination is matching a service/action combination
configured for a rule than the UserMessage will be dispatched to the queue configured for the
matching rule.

NOTE service/action combinations configured for routing rules must be unique.

516

13.1.3. Plugin Notifications

Domibus core notifies the JMS Plugin on the following events: MESSAGE_RECEIVED,
MESSAGE_SEND_FAILURE, MESSAGE_RECEIVED_FAILURE, MESSAGE_SEND_SUCCESS,
MESSAGE_STATUS_CHANGE.

The type of events received can be configured using the JMS Plugin property:
jmsplugin.messages.notifications. The property can be found in “jms-plugin.properties” file in the
domibus-distribution-xxx-default-jms-plugin.zip. More details can be found in the Plugin Cookbook.

13.1.4. Multitenancy

The Default JMS Plugin can be used when Domibus is configured in Multitenancy mode.

In Multitenancy mode the plugins security is activated by default, no matter if value configured in
domibus.properties for the domibus.auth.unsecureLoginAllowed property.

As a result, every request sent to the domibus.backend.jmsInQueue queue via the Default JMS Plugin
needs to be authenticated via the user and password JMS properties.
See also Plugin Users.

Please note that the default domain is already configured to use the Default JMS Plugin in
Multitenancy mode and the below steps must be followed only for additional domains.

Each configured domain that is using the Default JMS Plugin to send messages to Domibus has to
create the following JMS queues that will be used exclusively by the domain:

• <domain>.domibus.backend.jms.outQueue

• <domain>.domibus.backend.jms.replyQueue

• <domain>.domibus.backend.jms.errorNotifyConsumer

• <domain>.domibus.backend.jms.errorNotifyProducer

where <domain> is the domain name. For example, if the domain name is test1, then this will prefix
each declared property for that domain such as, test1.domibus.backend.jms.outQueue.

The backend C1 linked to a specific domain must subscribe to the associated JMS domain queues in
order to receive notifications linked to that domain

More details on the above queues and the structure of the sent and received messages via the
Default JMS Plugin can be found in the previous chapter.

The above mentioned queues have to be configured in the JMS broker specific to the chosen server:
activemq.xml for Tomcat and in the application server configuration for WebLogic and WildFly. The
details on how to configure JMS queues specific to a server can be found in JMS Queue
Management.

Once created the domain queues have to be configured in the jms-plugin.properties configuration
file.

517

#Domain configuration

The following queues need to be created per domain. Please replace the
<domain> value with the domain code.

It is recommended to secure the queues so that only users belonging to
<domain> can read.
DOMAIN.jmsplugin.queue.out=<domain>.domibus.backend.jms.outQueue
DOMAIN.jmsplugin.queue.reply=<domain>.domibus.backend.jms.replyQueue
DOMAIN.jmsplugin.queue.consumer.notification.error=<domain>.domibus.backend.jms.errorN
otifyConsumer
DOMAIN.jmsplugin.queue.producer.notification.error=<domain>.domibus.backend.jms.errorN
otifyProducer

Domain specific properties

The JMS Plugin configuration allows configuring specific properties per domain. The entire
properties specific to a domain must be prefixed by the domain name.

Domain configuration Property Description

<domain>.jmsplugin.fromPartyId Sender party ID

<domain>.jmsplugin.fromPartyType Sender party type

<domain>.jmsplugin.fromRole Sender party role

<domain>.jmsplugin.toPartyId Receiver party ID

<domain>.jmsplugin.toPartyType Receiver party type

<domain>.jmsplugin.toRole Receiver party role

<domain>.jmsplugin.agreementRef Agreement reference

<domain>.jmsplugin.service Service value

<domain>.jmsplugin.serviceType Service type

<domain>.jmsplugin.action Action value

518

Domain configuration Property Description

<domain>.jmsplugin.putAttachmentInQueue Default value is TRUE.

If configured to true, all the payloads from the
User Message will be stored as bytes in the JMS
message.

If configured to false and Domibus is configured
to save the payloads on the file system (property
domibus.attachment.storage.location is
configured), the payloads file locations will be
stored in the JMS message.

NOTE
Disable this property for large file
transfers.

13.2. JMS Plugin Configuration
The Default JMS Plugin is configured using the jms-plugin.properties file. In the section below we
describe the available properties from the configuration file.

13.2.1. Message properties

This set of properties contains default values for the business process. When a message is
submitted to the JMS backend with missing business values, those values are defaulting to the
business values configured in the jms-plugin.properties file.

Default values are defined for properties identifying the sending and the receiving parties, the
business agreement and process. The complete list is available in the JMS-Queues table.

13.2.2. General properties

Property name Default value Description Domain
specific

jmsplugin.queue.notifi
cation

jms/domibus.notifi
cation.jms

This queue is used by Domibus to notify the
JMS Plugin about message events.

No

jmsplugin.queue.in jms/domibus.back
end.jms.inQueue

This queue is the entry point for messages
to be sent to Domibus via the JMS plugin

No

jmsplugin.queue.in.con
currency

5-20 Concurrency setting for the in queue
Concurrency limits via a "lower-upper"
String, e.g. 5-10, or a simple upper limit
String, for example 10 (the lower limit will
be 1 in this case)

No

519

Property name Default value Description Domain
specific

jmsplugin.queue.out jms/domibus.back
end.jms.outQueue

This queue contains the received messages,
the backend listens to this queue to
consume the received messages

Yes

jmsplugin.queue.reply jms/domibus.back
end.
jms.replyQueue

This queue is used to inform the backend
about the message status after sending a
message to Domibus

Yes

jmsplugin.queue.consum
er.notification.error

jms/domibus.back
end.jms.errorNotif
yConsumer

This queue is used to inform the backend
that an error occurred during the
processing of receiving a message

Yes

jmsplugin.queue.produc
er.notification.error

jms/domibus.back
end.jms.
errorNotifyProduc
er

This queue is used to inform the backend
that an error occurred during the
processing of sending a message

Yes

jmsplugin.messages.not
ifications

MESSAGE_RECEIV
ED,
MESSAGE_SEND_F
AILURE,
MESSAGE_RECEIV
ED_FAILURE,
MESSAGE_SEND_S
UCCESS,
MESSAGE_STATUS
_CHANGE

The notifications sent by Domibus to the
plugin. The following values are possible:
MESSAGE_RECEIVED,
MESSAGE_FRAGMENT_RECEIVED,
MESSAGE_SEND_FAILURE,
MESSAGE_FRAGMENT_SEND_FAILURE,
MESSAGE_RECEIVED_FAILURE,
MESSAGE_FRAGMENT_RECEIVED_FAILUR
E,
MESSAGE_SEND_SUCCESS,
MESSAGE_FRAGMENT_SEND_SUCCESS,
MESSAGE_STATUS_CHANGE,
MESSAGE_FRAGMENT_STATUS_CHANGE

13.3. Referencing Payloads
When using the JMS plugin exchange messages with Domibus, the payloads are embedded in the
JMS message binary format.

In order to send payloads embedded in the JMS messages, the following property of the JMS Plugin
must be configured as below:

jmsplugin.putAttachmentInQueue = true

This is perfectly fine when sending small payloads, but it might become problematic when sending
large files as JMS brokers are not designed to support large payloads.

When sending messages via the JMS Plugin, you have two options to send the message payloads:

• directly in the JMS message as bytes (in body payload)

• as a String property containing the URL to the payload. The URL can be an HTTP URL or a URL

520

pointing to a file system

No configuration is needed. In case the payload is not sent via URL reference (no String property is
found for the value payload_{int}), the payload will be sent in the JMS message body as bytes.

About the jmsplugin.putAttachmentInQueue property:

• When set to true(default value), all the payloads from the User Message will be stored as bytes
in the JMS message.

• When set to false

◦ and Domibus is configured to save the payloads on the file system (see property
domibus.attachment.storage.location), the payloads file locations will be stored in the JMS
message.

◦ Specifies how the UserMessage payloads are referred.

▪ Possible values: FILE or URL (see below for more details).

• Should be disabled for large file transfers.
When exchanging large files via the JMS plugin, it is preferred to store the payloads outside of
the JMS messages and reference the location of the payloads in the JMS message as string
properties.

There are two ways to reference the payloads in the JMS messages:

1. File reference

2. REST endpoint reference

13.3.1. File reference

In order to use payload file reference, Domibus must be configured to store the payloads on the file
system. Please check the Domibus Administration Guide for more information on how to do this.

Once Domibus has been configured to store the payloads on the file system, the following
properties of the JMS Plugin must be configured as below:

jmsplugin.putAttachmentInQueue = false jmsplugin.attachment.reference.type = FILE

The payload file reference is set as a JMS string property having the following name:

payload[NUM]fileName where NUM is the payload number

13.3.2. REST endpoint reference

In order to use payload REST endpoint reference, the following properties of the JMS Plugin must
be configured as below:

jmsplugin.putAttachmentInQueue = false jmsplugin.attachment.reference.type = URL

Where:

521

• jmsplugin.attachment.reference.type=URL, this property is used to create the payload reference
URL:
jmsplugin.attachment.reference.context= http://localhost:8080/domibus.

• jmsplugin.attachment.reference.type=URL, this property is used to create the payload reference
URL

jmsplugin.attachment.reference.url =
/ext/messages/ids/MESSAGE_ENTITY_ID/payloads/cid:C

Once activated, the payload URL will be included as a string property in the JMS message, e.g.:

http://localhost:8080/domibus/ext/messages/ids/MESSAGE_ENTITY_ID/payloads/PAYLOAD_CID

Where:

• MESSAGE_ENTITY_ID is the internal primary key id of the UserMessage

• PAYLOAD_CID is the cid of the UserMessage payload

All Domibus REST endpoints, included the ones above, are protected using basic authentication.
Please use a plugin user in order to authenticate. For more information, please check the Domibus
Administration Guide. The base context http://localhost:8080 can be configured using the following
property of the JMS Plugin as below:

jmsplugin.attachment.reference.context=http://localhost:8080/domibus

The payload REST endpoint reference is set a as a JMS string property having the following name:

payload_[NUM] _fileURL, where NUM is the payload number

13.4. Interface Policy Specification
The Party initiating a conversation MUST determine the value of the ConversationId element that is
reflected in all messages pertaining to that conversation. The actual semantics of this value is
beyond the scope of this specification. Implementations SHOULD provide a facility for mapping
between their identification scheme and a ConversationId generated by another implementation.

The following details two simple functions, one for Static Discovery mode, the other for Dynamic
Discovery mode, for submitting a message in the correct format to a queue where it will be picked
up by a MessageListener on the Access Point.

Static Discovery Mode

package eu.domibus.plugin.jms;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.junit.Ignore;
import org.junit.Test;
import javax.jms.*;
import javax.naming.NamingException;

public class MessageSender \{

522

http://localhost:8080/domibus
http://localhost:8080/domibus/ext/messages/ids/MESSAGE_ENTITY_ID/payloads/PAYLOAD_CID
http://localhost:8080

@Test
@Ignore //This is just an example the used PMode does not actually exist

public void sendMessage() throws NamingException, JMSException \{
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("tcp://localhost:61616");//default port of activeMQ

Connection connection = null;
MessageProducer producer = null;
connection = connectionFactory.createConnection("domibus", "changeit");
//username and password of the default JMS broker

Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);

Destination destination = session.createQueue("domibus.backend.jms.inQueue");
producer = session.createProducer(destination);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
MapMessage messageMap = session.createMapMessage();

// Declare message as submit
messageMap.setStringProperty("messageType", "submitMessage");

// Set up the Communication properties for the message
messageMap.setStringProperty("service", "demoService");
messageMap.setStringProperty("action", "demoAction");
messageMap.setStringProperty("conversationId", "");
messageMap.setStringProperty("fromPartyId", "GW1");
messageMap.setStringProperty("fromPartyIdType",
 "urn:oasis:names:tc:ebcore:partyid-type:iso3166-1");
messageMap.setStringProperty("fromRole", "buyer");
messageMap.setStringProperty("toPartyId", "GW1");
messageMap.setStringProperty("toPartyIdType",
 "urn:oasis:names:tc:ebcore:partyid-type:iso3166-1");
messageMap.setStringProperty("toRole", "seller");
messageMap.setStringProperty("originalSender", "sending_buyer_id");
messageMap.setStringProperty("finalRecipient", "receiving_seller_id");
messageMap.setStringProperty("serviceType", "");
messageMap.setStringProperty("protocol", "AS4");
messageMap.setStringProperty("refToMessageId", "");
messageMap.setStringProperty("agreementRef", "");
messageMap.setJMSCorrelationID("MESS1");

//Set up the payload properties
messageMap.setStringProperty("totalNumberOfPayloads", "3");
messageMap.setStringProperty("payload_1_mimeContentId",
 "cid:cid_of_payload_1");
messageMap.setStringProperty("payload_2_mimeContentId",
 "cid:cid_of_payload_2");
messageMap.setStringProperty("payload_3_mimeContentId",
 "cid:cid_of_payload_3");

523

messageMap.setStringProperty("payload_1_mimeType", "application/xml");
messageMap.setStringProperty("payload_2_mimeType", "application/xml");
messageMap.setStringProperty("payload_3_mimeType", "application/xml");
messageMap.setStringProperty("payload_1_fileName", "filenameLocation1");
messageMap.setStringProperty("payload_2_fileName", "filenameLocation2");
messageMap.setStringProperty("payload_3_fileName", "filenameLocation3");

String pay1 = "<XML><test></test></XML>";
byte[] payload = pay1.getBytes();

messageMap.setBytes("payload_1", payload);
messageMap.setBytes("payload_2", payload);
messageMap.setBytes("payload_3", payload);

producer.send(messageMap);
connection.close();
}
}

DYNAMIC DISCOVERY MODE:

package eu.domibus.plugin.jms;
import org.apache.activemq.ActiveMQConnectionFactory;
import org.junit.Ignore;
import org.junit.Test;
import javax.jms.*;
import javax.naming.NamingException;

public class MessageSender \{

@Test
@Ignore //This is just an example the used PMode does not actually exist

public void sendMessage() throws NamingException, JMSException \{
ActiveMQConnectionFactory connectionFactory = new
ActiveMQConnectionFactory("tcp://localhost:61616");//default port of activeMQ
Connection connection = null;
MessageProducer producer = null;
connection = connectionFactory.createConnection("domibus", "changeit");

//username and password of the default JMS broker
Session session = connection.createSession(false,
Session.AUTO_ACKNOWLEDGE);
Destination destination =
session.createQueue("domibus.backend.jms.inQueue");
producer = session.createProducer(destination);
producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);
MapMessage messageMap = session.createMapMessage();

// Declare message as submit

524

messageMap.setStringProperty("messageType", "submitMessage");

// Set up the Communication properties for the message
messageMap.setStringProperty("service", "demoService");
messageMap.setStringProperty("action", "demoAction");
messageMap.setStringProperty("conversationId", "");
messageMap.setStringProperty("fromPartyId", "GW1");
messageMap.setStringProperty("fromPartyIdType",
"urn:oasis:names:tc:ebcore:partyid-type:iso3166-1");
messageMap.setStringProperty("fromRole", "buyer");
messageMap.setStringProperty("originalSender", "sending_buyer_id");
messageMap.setStringProperty("finalRecipient", "receiving_seller_id");
messageMap.setStringProperty("finalRecipienttype", "
receiving_seller_id_type");
messageMap.setStringProperty("serviceType", "");
messageMap.setStringProperty("protocol", "AS4");
messageMap.setStringProperty("refToMessageId", "");
messageMap.setStringProperty("agreementRef", "");
messageMap.setJMSCorrelationID("MESS1");

//Set up the payload properties
messageMap.setStringProperty("totalNumberOfPayloads", "3");
messageMap.setStringProperty("payload_1_mimeContentId",
"cid:cid_of_payload_1");
messageMap.setStringProperty("payload_2_mimeContentId",
"cid:cid_of_payload_2");
messageMap.setStringProperty("payload_3_mimeContentId",
"cid:cid_of_payload_3");
messageMap.setStringProperty("payload_1_mimeType", "application/xml");
messageMap.setStringProperty("payload_2_mimeType", "application/xml");
messageMap.setStringProperty("payload_3_mimeType", "application/xml");
messageMap.setStringProperty("payload_1_fileName", "filenameLocation1");
messageMap.setStringProperty("payload_2_fileName", "filenameLocation2");
messageMap.setStringProperty("payload_3_fileName", "filenameLocation3");
String pay1 = "<XML><test></test></XML>";
byte[] payload = pay1.getBytes();
messageMap.setBytes("payload_1", payload);
messageMap.setBytes("payload_2", payload);
messageMap.setBytes("payload_3", payload);
producer.send(messageMap);
connection.close();
}
}

13.5. Error codes table
The following tables summarize all possible errors returned by the Access Point services:

525

Error Code Short Description Recommende
d Severity

Category
Value

Description or Semantics

EBMS_0001 ValueNotRecognized Failure Content Although the message
document is well formed
and schema valid, some
element/attribute contains
a value that could not be
recognized and therefore
could not be used by the
MSH.

EBMS_0002 FeatureNotSupported Warning Content Although the message
document is well formed
and schema valid, some
element/attribute value
cannot be processed as
expected because the
related feature is not
supported by the MSH.

EBMS_0003 ValueInconsistent Failure Content Although the message
document is well formed
and schema valid, some
element/attribute value is
inconsistent either with the
content of other
element/attribute, or with
the processing mode of the
MSH, or with the normative
requirements of the ebMS
specification.

EBMS_0004 Other Failure Content

EBMS_0005 ConnectionFailure Failure Communicat
ion

The MSH is experiencing
temporary or permanent
Failure in trying to open a
transport connection with a
remote MSH.

EBMS_0006 EmptyMessagePartition
Channel

Warning Communicat
ion

There is no message
available for pulling from
this MPC at this moment.

EBMS_0007 MimeInconsistency Failure Unpackagin
g

The use of MIME is not
consistent with the
required usage in this
specification.

526

Error Code Short Description Recommende
d Severity

Category
Value

Description or Semantics

EBMS_0008 FeatureNotSupported Failure Unpackagin
g

Although the message
document is well formed
and schema valid, the
presence or absence of
some element/ attribute is
not consistent with the
capability of the MSH, with
respect to supported
features.

EBMS_0009 InvalidHeader Failure Unpackagin
g

The ebMS header is either
not well formed as an XML
document, or does not
conform to the ebMS
packaging rules.

EBMS_0010 ProcessingModeMismatc
h

Failure Processing The ebMS header or
another header (e.g.
reliability, security)
expected by the MSH is not
compatible with the
expected content, based on
the associated P-Mode.

EBMS_0011 ExternalPayloadError Failure Content The MSH is unable to
resolve an external payload
reference (i.e. a Part that is
not contained within the
ebMS Message, as identified
by a PartInfo/href URI).

EBMS_0101 FailedAuthentication Failure Processing The signature in the
Security header intended
for the "ebms" SOAP actor
could not be validated by
the Security module.

EBMS_0102 FailedDecryption Failure Processing The encrypted data
reference the Security
header intended for the
"ebms" SOAP actor could
not be decrypted by the
Security Module.

527

Error Code Short Description Recommende
d Severity

Category
Value

Description or Semantics

EBMS_0103 PolicyNoncompliance Failure Processing The processor determined
that the message’s security
methods, parameters, scope
or other security policy-
level requirements or
agreements were not
satisfied.

EBMS_0201 DysfunctionalReliability Failure Processing Some reliability function as
implemented by the
Reliability module is not
operational, or the
reliability state associated
with this message sequence
is not valid.

EBMS_0202 DeliveryFailure Failure Communicat
ion

Although the message was
sent under Guaranteed
delivery requirement, the
Reliability module could
not get assurance that the
message was properly
delivered, in spite of
resending efforts.

EBMS_0301 MissingReceipt Failure Communicat
ion

A Receipt has not been
received for a message that
was previously sent by the
MSH generating this error

EBMS_0302 InvalidReceipt Failure Communicat
ion

A Receipt has been received
for a message that was
previously sent by the MSH
generating this error, but
the content does not match
the message content (e.g.
some part has not been
acknowledged, or the digest
associated does not match
the signature digest, for
NRR).

EBMS_0303 DecompressionFailure Failure Communicat
ion

An error occurred during
the decompression

528

Error Code Short Description Recommende
d Severity

Category
Value

Description or Semantics

EBMS_0020 RoutingFailure Failure Processing An Intermediary MSH was
unable to route an ebMS
message and stopped
processing the message.

EBMS_0021 MPCCapacityExceeded Failure Processing An entry in the routing
function is matched that
assigns the message to an
MPC for pulling, but the
intermediary MSH is
unable to store the message
with this MPC

EBMS_0022 MessagePersistenceTimeo
ut

Failure Processing An intermediary MSH has
assigned the message to an
MPC for pulling and has
successfully stored it.
However, the intermediary
set a limit on the time it
was prepared to wait for
the message to be pulled,
and that limit has been
reached.

EBMS_0023 MessageExpired Warning Processing An MSH has determined
that the message is expired
and will not attempt to
forward or deliver it.

EBMS_0030 BundlingError Failure Content The structure of a received
bundle is not in accordance
with the bundling rules.

EBMS_0031 RelatedMessageFailed Failure Processing A message unit in a bundle
was not processed because
a related message unit in
the bundle caused an error.

EBMS_0040 BadFragmentGroup Failure Content A fragment is received that
relates to a group that was
previously rejected.

EBMS_0041 DuplicateMessageSize Failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

529

Error Code Short Description Recommende
d Severity

Category
Value

Description or Semantics

EBMS_0042 DuplicateFragmentCount Failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

EBMS_0043 DuplicateMessageHeader Failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

EBMS_0044 DuplicateAction Failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for this element.

EBMS_0045 DuplicateCompressionInf
o

Failure Content A fragment is received but
more than one fragment
message in a group of
fragments specifies a value
for a compression element.

EBMS_0046 DuplicateFragment Failure Content A fragment is received but
a previously received
fragment message had the
same values for GroupId
and FragmentNum

EBMS_0047 BadFragmentStructure Failure Unpackagin
g

The href attribute does not
reference a valid MIME
data part, MIME parts other
than the fragment header
and a data part are in the
message, or the SOAP Body
is not empty.

EBMS_0048 BadFragmentNum Failure Content An incoming message
fragment has a value
greater than the known
FragmentCount.

EBMS_0049 BadFragmentCount Failure Content A value is set for
FragmentCount, but a
previously received
fragment had a greature
value.

530

Error Code Short Description Recommende
d Severity

Category
Value

Description or Semantics

EBMS_0050 FragmentSizeExceeded Warning Unpackagin
g

The size of the data part in
a fragment message is
greater than
Pmode[].Splitting.Fragment
Size

EBMS_0051 ReceiveIntervalExceeded Failure Unpackagin
g

More time than
Pmode[].Splitting.JoinInter
val has passed since the
first fragment was received
but not all other fragments
are received.

EBMS_0052 BadProperties Warning Unpackagin
g

Message properties were
present in the fragment
SOAP header that were not
specified in
Pmode[].Splitting.RoutingPr
operties

EBMS_0053 HeaderMismatch Failure Unpackagin
g

The eb3:Message header
copied to the fragment
header does not match the
eb3:Message header in the
reassembled source
message.

EBMS_0054 OutOfStorageSpace Failure Unpackagin
g

Not enough disk space
available to store all
(expected) fragments of the
group.

EBMS_0055 DecompressionError Failure Processing An error occurred while
decompressing the
reassembled message.

EBMS_0060 ResponseUsingAlternateM
EP

Warning Processing A responding MSH
indicates that it applies the
alternate MEP binding to
the response message.

531

Chapter 14. Custom Plugins

14.1. Custom Plugin Deployment
Users can develop their own plugins. For information on how to develop a custom plugin, see
Plugin Development.

NOTE

Plugin Deployment or Registration

See section Message Log to know more about the routing of the specific plugin in
question after registering it on your Application Server.

14.1.1. Tomcat

In order to install a custom plugin for Tomcat, please follow the steps below:

1. Stop Tomcat server.

2. Copy the custom plugin .jar file into the plugins folder, CATALINA_HOME/conf/domibus/plugins/lib.

NOTE Where CATALINA_HOME is the folder where Tomcat is installed.

3. Copy the custom plugin XML configuration files under the Tomcat subfolder directly to
CATALINA_HOME/conf/domibus/plugins/config.
There shouldn’t be any Tomcat folder under DOMAIN_HOME/conf/domibus/plugins/config

4. Start Tomcat server.

14.1.2. WebLogic

In order to install a custom plugin for WebLogic please follow the steps below:

1. Stop the WebLogic server

2. Copy the custom plugin jar file into the plugins folder: DOMAIN_HOME/conf/domibus/plugins/lib

NOTE Where DOMAIN_HOME is the folder corresponding to the WebLogic domain.

3. Copy the custom plugin XML configuration files under the WebLogic subfolder directly into
DOMAIN_HOME/conf/domibus/plugins/config folder. There should not be any WebLogic folder
under DOMAIN_HOME/conf/domibus/plugins/config

4. Start the WebLogic server.

14.1.3. WildFly

In order to install a custom plugin please follow the steps below:

1. Stop the WildFly server

2. Copy the custom plugin jar file to the plugins folder

532

cef_edelivery_path/conf/domibus/plugins/lib.

NOTE Where cef_edelivery_path is where you have Domibus installed.

3. Copy the custom plugin XML configuration files under the WildFly subfolder directly into
cef_edelivery_path/conf/domibus/plugins/config.

There shouldn’t be a WildFly folder under DOMAIN_HOME/conf/domibus/plugins/config

4. Start the WildFly server.

14.2. Custom Plugin Configuration

14.2.1. Plugin authentication

By default the authentication is disabled for the Domibus default plugins. In order to enable the
plugin authentication, do as follows:

1. Set the property domibus.auth.unsecureLoginAllowed to FALSE in domibus.properties:

◦ domibus.auth.unsecureLoginAllowed=false

2. Configure the application server to allow HTTP(S) requests and pass the authentication
credentials to Domibus.

14.2.2. Plugin notifications

Domibus' core notifies the plugins of the following different events:

• MESSAGE_RECEIVED

• MESSAGE_FRAGMENT_RECEIVED

• MESSAGE_SEND_FAILURE

• MESSAGE_FRAGMENT_SEND_FAILURE

• MESSAGE_RECEIVED_FAILURE

• MESSAGE_FRAGMENT_RECEIVED_FAILURE

• MESSAGE_SEND_SUCCESS

• MESSAGE_FRAGMENT_SEND_SUCCESS

• MESSAGE_STATUS_CHANGE

• MESSAGE_FRAGMENT_STATUS_CHANGE

NOTE
You can specify the list of events received in the properties configuration file of
each plugin.

SEE ALSO
For more on this, see:

• Plugin Development

533

• the Interface Control Document for the corresponding plugin

◦ FS Plugin Interface

◦ WS Plugin Interface

◦ JMS Plugin Interface

14.2.3. Plugin Ehcache files

(QUESTION +: Are these instructions?) Plugins are able to use their own Ehcache files for defining
caches:

• Default Classpath file (into the .jar of the plugin) – must be of name plugin-default-ehcache.xml
place it in a folder named /ehcache.

• External file which overrides the caches defined in the default file: must have the name plugin-
ehcache.xml and should be situated in the Domibus configuration folder at
location/plugins/config along with the other plugin´s configuration files.

For more see the Plugin Cookbook.

534

Chapter 15. Plugin Development
This document describes the Domibus plugin architecture and plugin API.

After reading this document, the reader should be aware of the capabilities provided by the
Domibus plugin system. Additionally, a developer familiar with the AS4 protocol will be able to
implement a plugin integrating an existing back office application into Domibus.

15.1. Target Audience
This content is intended for the Directorate Generals and Services of the European Commission,
Member States (MS) and companies of the private sector wanting to set up a connection between
their backend system and the Access Point.

In particular:

• Business Architects will find it useful for determining how to best exploit the Access Point to
create a fully-fledged solution.

• Analysts will find it useful to understand the Use-Cases of the Access Point.

• Architects will find it useful as a starting point for connecting a Back-Office system to the Access
Point.

• Developers will find it essential as a basis of their development concerning the Access Point
services.

• Testers can use this document in order to test the use cases described.

15.2. Backend Integration

15.2.1. General Overview

The purpose of Domibus is to facilitate B2B communication. To achieve this goal it provides a very
flexible plugin model which allows the integration with nearly all back office applications.

There are three default plugins available with the Domibus distribution:

• the domibus-default-jms-plugin

• the domibus-default-ws-plugin

• the domibus-default-fs-plugin

SEE ALSO
Further documentation about those plugins can be found at
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus.

IMPORTANT
Developers of custom plugins should ensure that their plugins can be
deployed alongside the standard Domibus Default Plugins, given that they
share a common classloader and Spring context.

535

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

15.2.2. Plugin Structure

A plugin is dependent on the domibus-plugin-api module which is released together with the main
Domibus application. Any changes to previous API versions will be addressed in a migration guide.

In addition to this required module, another module is available (more information about this
module can be found in the Domibus Software Architecture Document.

NOTE

Software Architecture Document

Download the PDF at https://ec.europa.eu/digital-building-blocks/wikis/display/
DIGITAL/Domibus in the documentation section.

• domibus-logging: may be used to maintain a uniform logging style with the Domibus core.

A plugin consists of the implementation of:

• at least two interfaces

◦ eu.domibus.plugin.transformer.MessageSubmissionTransformer

◦ eu.domibus.plugin.transformer.MessageRetrievalTransformer

• and the extension of one abstract class,

◦ eu.domibus.plugin.AbstractBackendConnector

This way multiple plugins can share the same data formats while using different transport
protocols or enforcing different security policies. It is also possible to implement transport handlers
for protocols while keeping the actual data format pluggable as those classes are not necessarily
coupled and can be reused independently from each other.

15.2.3. Message Flow

Message Submission from the backend

Message reception by C3 from C2

536

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus

15.3. Implementing a Plugin
A Domibus plugin receives notifications for outgoing and incoming messages from Domibus via a
specific API which is described in the following sections.

Once it receives a notification, a plugin has two options:

• delivers directly the notification to the backend (C1/C4)

• persists the notification (e.g. in a database), and lets the backend pull the notifications on
demand.

Depending on the business case, one of the two options above will be used.

Obtaining message status

A plugin can get the status of a message on demand by calling the eu.domibus.common.MessageStatus
getStatus(java.lang.String messageId) method.

Obtaining error information

To get more information in case of errors, the plugin can use a dedicated method:
java.util.List<eu.domibus.common.ErrorResult> getErrorsForMessage(java.lang.String messsageId).

15.3.1. Extending AbstractBackendConnector

eu.domibus.plugin.AbstractBackendConnector

provides implementations of most methods defined in eu.domibus.plugin.BackendConnector.

eu.domibus.plugin.AbstractBackendConnector

should be used as basis for every plugin.

The following methods should be implemented by a plugin:

getMessageSubmissionTransformer()

Implementations of this interface transform a message of a specific business type to an object of
type eu.domibus.plugin.Submission when submitting a message to Domibus.

537

getMessageRetrievalTransformer()

Implementations of this interface transform a message of a specific business type to an object of
type eu.domibus.plugin.Submission when received a message from Domibus.

eliverMessage(eu.domibus.common.DeliverMessageEvent)

Delivers the message with the associated messageId to the backend application.

messageReceiveFailed(eu.domibus.common.MessageReceiveFailureEvent)

This method gets called when an incoming message is rejected by the MSH.

messageSendFailed(eu.domibus.common.MessageSendFailedEvent)::his method gets called when an
outgoing message associated with an associated
PMode[1].errorHandling.Report.ProcessErrorNotifyProducer=true has finally failed to be delivered.

messageSendSuccess(eu.domibus.common.MessageSendSuccessEvent)

This method gets called when an outgoing message has been successfully sent to the intended
receiving MSH.

messageStatusChanged(eu.domibus.common.MessageStatusChangeEvent)

This method gets called when the status of a User Message changes.

payloadSubmittedEvent(eu.domibus.common.PayloadSubmittedEvent)

Notifies the plugins for every payload that has been submitted to C2 but not yet saved.

payloadProcessedEvent(eu.domibus.common.PayloadProcessedEvent event)

Notifies the plugins for every payload that has been saved by C2.

messageResponseSent(eu.domibus.common.MessageResponseSentEvent event)

Notifies the plugins on C3 just before a response message is sent back to C2.

15.3.2. Implementing Message transformers

The implementations of the transformer classes are responsible for transformation between the
native backend formats and eu.domibus.plugin.Submission:

• eu.domibus.plugin.transformer.MessageSubmissionTransformer

• eu.domibus.plugin.transformer.MessageRetrievalTransformer

As there are two different interfaces to implement it is possible to use different DTOs for message
submission and reception. This is convenient when those tasks are handled by different backend
applications.

As eu.domibus.plugin.Submission is able to represent all kinds of messages there are many
parameters that must be set, with some of them unknown to the backend application. One
approach is to statically set those values in the transformer classes. Another, more flexible
approach is the usage of overridable default settings as used in the bundled default JMS plugin. For
further details, see the documentation and implementation of the default JMS plugin.

538

15.3.3. Receiving notifications

Domibus sends notifications to the plugins when different message events occur. Domibus notifies
the plugins either synchronously, via callbacks, or asynchronously, via a JMS queue. More
information about which callbacks are available can be found in
eu.domibus.plugin.BackendConnector interface.

For example, the WS Plugin receives notifications on the jms/domibus.notification.webservice
queue.

Notification Types

Existing notification types (eu.domibus.common.NotificationType):

public enum NotificationType \{
MESSAGE_RECEIVED, MESSAGE_FRAGMENT_RECEIVED,
MESSAGE_SEND_FAILURE, MESSAGE_FRAGMENT_SEND_FAILURE,
MESSAGE_RECEIVED_FAILURE, MESSAGE_FRAGMENT_RECEIVED_FAILURE,
MESSAGE_SEND_SUCCESS, MESSAGE_FRAGMENT_SEND_SUCCESS,
MESSAGE_STATUS_CHANGE, MESSAGE_FRAGMENT_STATUS_CHANGE;}

The notification types available are:

• MESSAGE_RECEIVED - C3 receives a UserMessage from C2

• MESSAGE_FRAGMENT_RECEIVED - C3 receives a UserMessage fragment from C2

• MESSAGE_SEND_FAILURE - C2 fails to send a UserMessage to C3

• MESSAGE_FRAGMENT_SEND_FAILURE - C2 fails to send a UserMessage fragment to C3

• MESSAGE_RECEIVED_FAILURE - C3 fails to receive a UserMessage

• MESSAGE_FRAGMENT_RECEIVED_FAILURE - C3 fails to receive a UserMessage

• MESSAGE_SEND_SUCCESS - C2 sends successfully a UserMessage to C3

• MESSAGE_FRAGMENT_SEND_SUCCESS - C2 sends successfully a UserMessage fragment to C3

• MESSAGE_STATUS_CHANGE - UserMessage status changes

• MESSAGE_FRAGMENT_STATUS_CHANGE - UserMessage fragment status changes

Each plugin may configure its own list of notification types for which it expects to be notified. This
list is optional. By default, the plugins that use PULL mode receive notifications for
MESSAGE_RECEIVED, MESSAGE_SEND_FAILURE, MESSAGE_RECEIVED_FAILURE while the PUSH plugins receive
notifications for all notification types.

A plugin can override the default list of notifications for which it wants to be notified. This can be
done by setting the list of notifications via the method
eu.domibus.plugin.AbstractBackendConnector#setRequiredNotifications.

For example, the WS Plugin configure the list of notifications in the plugin property file and
overrides its list of notifications:

539

Synchronous notifications

A plugin receives notifications synchronously if no
eu.domibus.plugin.notification.PluginAsyncNotificationConfiguration is configured for the plugin.
This means that Domibus calls in the same thread the plugin notification method, for instance
when a message is sent successfully it will call
eu.domibus.plugin.BackendConnector#messageSendSuccess(eu.domibus.common.MessageSendSuccessEvent
).

While receiving a message, a plugin can throw an exception,
eu.domibus.plugin.exception.PluginMessageReceiveException, in order to send a specific error
message to the sender.

Asynchronous notifications

A plugin can be configured to receive notifications asynchronously from Domibus. In this mode,
Domibus sends a JMS message to the plugin notification queue. The plugin JMS listener consumes
JMS notification messages from the notification queue and then it will notify the plugin.

In order to receive asynchronous notifications, a plugin must create a
eu.domibus.plugin.notification.AsyncNotificationConfiguration Spring bean.
The class eu.domibus.plugin.notification.PluginAsyncNotificationConfiguration implements the
eu.domibus.plugin.notification.AsyncNotificationConfiguration interface and it can be used to
create the async configuration.

The AsyncNotificationConfiguration must be configured with the plugin BackendConnector instance,

540

the plugin JMS notification queue where Domibus will send JMS messages to notify the plugin and
the JMS queue name.

For instance, please find below how the WS Plugin configures the AsyncNotificationConfiguration
Spring bean instance for Tomcat using Java configuration:

15.3.4. Conditional Spring bean creation

Some Spring beans must be created conditionally depending on the server on which Domibus is
deployed. When using Java configuration, a plugin can take advantage of the server conditions that
are already existing in the Plugin API:

• ApplicationServerCondition - `TRUE when Domibus is deployed on WebLogic or WildFly

• TomcatCondition - TRUE when Domibus is deployed on Tomcat

• WebLogicCondition - TRUE when Domibus is deployed on WebLogic

• WildFlyCondition - TRUE when Domibus is deployed on WildFly

For instance, the following Spring bean will be created when Domibus is deployed on Tomcat:

@Conditional(TomcatCondition.class)
@Configuration
public class FSPluginTomcatConfiguration

15.3.5. Plugin initialization

Plugins can execute initialization logic using a @PostConstruct annotation in a public method in a
Spring bean.

This is linear if the initialization of a Spring bean does not depend on other Spring beans. But, in
most cases, a Spring bean is using other dependencies to perform its initialization logic.

541

Using a @PostConstruct annotation has its disadvantages:

• Can create circular dependencies because the Spring context is not yet fully initialized.

• The order of the initialization logic across multiple Spring beans is not easy to control.

To mitigate these disadvantages, Domibus offers the possibility of plugins performing initialization
logic after the Spring context is fully initialized.
Domibus uses the interface PluginInitializer which has the following methods:

• void initializeNonSynchronized(): Executes without any locking mechanism. In a cluster
environment this method can be executed in parallel in multiple cluster nodes.

• void initializeWithLockIfNeeded():

◦ in a cluster environment - Executes with locking mechanism. Only one node is executing
this method at any given time in this scenario.

◦ in a single node - Executes without locking mechanism.

For a plugin to execute initialization logic, you need to:

• Implement the PluginInitializer in a Spring bean annotated with
@org.springframework.stereotype.Service

• Return the PluginInitializer bean in the
eu.domibus.plugin.BackendConnector#getPluginInitializer method of the BackendConnector
implementation.

15.3.6. Validation of the submission

There are uses cases when it is required that the Submission object is validated before it is being
delivered to the plugin. For instance, the user might want to verify that one of all the payloads is
valid against a custom XSD schema. In this case, it does not make sense to deliver the message to
the plugin for processing if it is not valid.

In order to better understand why the current API is not sufficient for this use case we have to
understand first how the Submission object is delivered to the plugin for processing.

There are two transactions involved in the Submission processing:

1. In the first transaction, the message is stored in the database and a signal is sent internally via
JMS to trigger the Submission processing.

2. A JMS listener is listening to Submission processing events and triggers the processing.

If the Submission is validated in the second step it would be too late because the Submission has
been already saved and accepted for processing in the first step. This is the reason why we need to
perform the Submission validation in the first step. If the Submission is not valid, an exception will
be raised and the processing will not be performed.

The API for Submission validation can be found in the plugin API under the package
eu.domibus.plugin.validation.

542

Hereunder you can find the class diagram of the classes involved in the submission validation:

Submission validation class diagram

In order to validate the Submission object, one has to declare in the plugin Spring context a bean of
type eu.domibus.plugin.validation.SubmissionValidatorList.

The bean id needs to contain the plugin name. The core will automatically discover the bean of type
SubmissionValidatorList and perform the validation by calling the validate method on each
configured SubmissionValidator.

In the plugin API there is already a default implementation of the SubmissionValidatorList interface
DefaultSubmissionValidatorList that has an java.util.ArrayList for maintaining the list of
validators.

By default Domibus comes with 3 implementations of the SubmissionValidator interface. An
example how to use them can be found in the next paragraph.

eu.domibus.submission.validation.OnePayloadSubmissionValidator

validates that there is at least one payload present in the Submission

eu.domibus.submission.validation.PayloadsRequiredSubmissionValidator

validates that there is only one payload present in the Submission

eu.domibus.submission.validation.SchemaPayloadSubmissionValidator

validates that the payloads are valid against a custom XSD schema

Below is an extract of a custom plugin Spring context where we can see that a custom validator has
been implemented and there are 3 validators used to validate the Submission:

<!-- custom validator -->
<bean id="customValidator"

543

class="eu.domibus.submission.validation.CustomSubmissionValidator"/>

<bean id="customJaxbContext" class="javax.xml.bind.JAXBContext"
factory-method="newInstance">
<**constructor-arg type="java.lang.String"
value="eu.domibus.plugin.custom.domain"/> +
</**bean**>

_<!-- schema validator -->
<bean id="customPayloadSchemaValidator"
class="eu.domibus.submission.validation.SchemaPayloadSubmissionValidator">
<property name="jaxbContext" ref="customJaxbContext"/>
<property name="schema" value="classpath:xsd/as4Payload.xsd"/>
</bean>
 +
__<!-- validators list -->
__<bean id="customSubmissionValidatorList"
class="eu.domibus.plugin.validation.DefaultSubmissionValidatorList">
<property name="submissionValidators">
<list>
<ref bean="onePayloadSubmissionValidator"/>
<ref bean="customValidator"/>
<ref bean="customPayloadSchemaValidator"/>
</list>
</property>
</bean>

15.3.7. Plugin Security

Plugins security is disabled by default.

Enable Plugin Security

To configure Domibus to require authorization, set domibus.auth.unsecureLoginAllowed to FALSE
in the domibus.properties configuration file.

IMPORTANT

When security for plugins is activated:

• eu.domibus.plugin.AbstractBackendConnector methods can only be called
by authenticated users.

Authentication

The service eu.domibus.ext.services.AuthenticationExtService provided in the plugin API can be
used by the plugins to authenticate the request.

It provides to the plugins two Java methods for authentication:

544

authenticate (HttpServletRequest httpRequest) • throws AuthenticationExtException

• supports the following authentication types:

◦ Basic Authentication

◦ X509 Certificates Authentication

◦ Blue Coat Authentication

basicAuthenticate(String username, String
password)

• throws AuthenticationExtException

• only supports basic authentication

Blue Coat

Blue Coat is the name of the reverse proxy at the EC. It forwards the request in HTTP with the
certificate details inside the request (“Client-Cert” header key).

How Dominus Evaluates Authentication Methods

The authenticate method evaluates the three supported authentication methods in the following
order: Basic Authentication, X509Certificates, Blue Coat certificates. The first authentication method
found is executed, and additional authentication methods available aren’t evaluated.

Plugins User Authentication

Users configured in the Plugin User UI page can authenticate and call any operation provided by
the eu.domibus.plugin.AbstractBackendConnector class.

By default, there are two plugin users defined:

• admin, with the role ROLE_ADMIN;

• user, with the role ROLE_USER,

configured with Original User, urn:oasis:names:tc:ebcore:partyid-type:unregistered:C1.

Custom Authentication

Custom plugins can use their own custom authentication providers and perform different types of
authentications.

In case of custom authentication:

• the Spring SecurityContextHolder has to set correctly the authentication parameter after a
successful authentication:
SecurityContextHolder.getContext().setAuthentication(authentication)

• It is mandatory that the method getPrincipal() of the authentication parameter set above
returns the original user value associated to the authenticated user.

• This original user value is used to authorize the user to a specific message.

SEE ALSO For more information on how it is implemented, see Authorization.

545

Authorization

The authorization for the method defined in eu.domibus.plugin.AbstractBackendConnector is
performed at Java method level using the Spring @PreAuthorize annotation.

@PreAuthorize("hasAnyRole('ROLE_USER', 'ROLE_ADMIN')")
public void hasUserOrAdminRole() {}
@PreAuthorize("hasAnyRole('ROLE_ADMIN')")
public void hasAdminRole() {}

There are three roles defined for the plugin users:

• ROLE_AP_ADMIN:

• ROLE_ADMIN

• ROLE_USER

Below is a table mapping user roles and the methods from the
eu.domibus.plugin.AbstractBackendConnector class they are allowed to call and when.

Roles vs. Allowed Methods

Roles Methods

• ROLE_AP_ADMIN

• ROLE_ADMIN

• submit

• downloadMessage

• listPendingMessages

• getStatus

• getMessageErrors

• ROLE_USER
(associated to an
Original User)

Method Conditions

• submit when the value of the originalSender from the
submitted message is equal to the Original
User of the authenticated user

• downloadMessage only if the finalRecipient value from the
message to be downloaded is equal the
Original User of the authenticated user

• listPendingMessages pending messages for which the
finalRecipient value is equal to the Original
User of the authenticated user

• getStatus

• getMessageErrors

When the value of the originalSender or
finalRecipient of the message is equal to the
Original User of the authenticated user.

546

15.3.8. Logging

The logging service is provided in the domibus-logging module, which is released together with the
main Domibus application.

SEE ALSO
For more information about the domibus-logging module, see Logging Module in
the Domibus Architecture chapter.

Usage Example:

private static final DomibusLogger LOG =
DomibusLoggerFactory.getLogger(BackendWebServiceImpl.class);

15.3.9. Caching

Domibus has two types of caching mechanisms available:

• Local - Available when Domibus is deployed in a single instance as well as in a cluster.
Use this cache when you don’t want to replicate the cache across the cluster deployment.

• Distributed - Only available in a cluster deployment.
Use this cache when you want to replicate the cache across the cluster deployment.

Local cachex

Domibus uses Ehcache implementation for local caching using @Cacheable annotations or
programmatically.

At plugin level you can add two configuration files for Ehcache, to define their specific cache
names.

IMPORTANT All configured caches are merged into the Domibus Ehcache manager.

Ehcache Default File

Regarding the default Ehcache file (classpath file), the:

• filename convention is <pluginname>-plugin-default-ehcache.xml, where <pluginname> stands
for the name of the plugin. For example, for the default WS plugin, the file name is ws-plugin-
default-ehcache.xml.

• expected location for this file (in a Java project) is: /src/main/resources/config/ehcache/.

◦ While in the plugin’s .jar, this cache file is located at /config/ehcache/.

NOTE
Cache names defined in this file need to be prefixed with a plugin name to avoid
collision with Domibus cache names. Otherwise, Domibus will throw an exception
and will not deploy.

<ehcache>

547

architecture.pdf#logging_module
architecture.pdf#logging_module

 <cache name="wsplugin.policyCache"
 maxBytesLocalHeap="5m"
 timeToLiveSeconds="3600"
 overflowToDisk="false">
 </cache>
</ehcache>

External cache

• The filename convention is <pluginname>-plugin-ehcache.xml, where <pluginname> stands for
the name of the plugin. For example, for the default WS plugin, the file name is ws-plugin-
ehcache.xml.

• The expected location is: $\{domibus.config.location}/plugins/config.
Where {domibus.config.location} stands for your Domibus installation directory.

NOTE
The cache names defined here can override the ones defined in the classpath file
(see Ehcache Default File), they must not override with Domibus cache names.

Sample caches

<ehcache>
 <cache name="wsplugin.policyCache" ①
 maxBytesLocalHeap="5m"
 timeToLiveSeconds="360"
 overflowToDisk="false">
 </cache>
 <cache name="wsplugin.crlByCert"
 maxBytesLocalHeap="5m"
 timeToLiveSeconds="3600"
 overflowToDisk="false">
 </cache>
</ehcache>

① In this example, wsplugin.policycache overrides the name defined in the classpath file.

How Domibus processed multiple declared caches:

1. Parses:

◦ default-ehcache.xml (classpath), and

◦ config/internal/ehcache.xml (which may override the caches declared in the first file).

2. Parses:

◦ all plugin default files from classpath (.jar) <pluginname -default-ehcache.xml>, and

◦ all caches to a plugin cache manager (in memory).

3. Next,

◦ Parses all plugin non-default files - from /plugins/config folders.

◦ Adds the caches to the same plugins manager, which may override the caches defined at

548

step 2.

4. Merges the plugins cache manager (steps 2 and 3) to the Domibus cache manager (step 1).

5. If there is a plugin cache that is overriding a Domibus cache, then Domibus throws a
DomibusCoreException exception and deployment is stopped.

Distributed cache

The distributed cache is only available in a cluster deployment. In a non-cluster deployment, the
distributed cache defaults to the local cache.

In a cluster deployment, once you add an entry in a distributed cache, the change is replicated
automatically across the cluster members.

The distributed cache is accessible via Java API and via REST.

A custom plugin can access the distributed cache via the
eu.domibus.ext.services.DistributedCacheExtService Java class.

The following methods are available:

• void createCache(String cacheName): creates or gets a distributed cache with the specified name.
If the cache does not exist, it will be created with the default values and near cache
configuration specified in the domibus-default.properties file.

• void createCache(String cacheName, int cacheSize, int timeToLiveSeconds, int
maxIdleSeconds): creates or gets a distributed cache with the specified name and configuration.
If the cache does not exist, it will be created with the specified configuration and near cache
configuration specified in the domibus-default.properties file.

• void createCache(String cacheName, int cacheSize, int timeToLiveSeconds, int
maxIdleSeconds, int nearCacheSize, int nearCacheTimeToLiveSeconds, int
nearCacheMaxIdleSeconds): creates or gets a distributed cache with the specified name and
configuration.

• void addEntryInCache(String cacheName, String key, Object value) throws
CacheExtServiceException: adds an entry in the cache.

• Object getEntryFromCache(String cacheName, String key) throws CacheExtServiceException: gets
an entry from the cache.

• void evictEntryFromCache(String cacheName, String key) throws CacheExtServiceException:
evicts an entry from the cache

SEE ALSO
For more about Distributed caching, see the Architecture Overview and
Configuring Domibus.

15.3.10. Plugin Services

The Plugin API offers several services such as monitoring or message acknowledgment, which are
described below.

Services can be accessed in two ways:

549

• Java API - can be used by the plugin implementers of the custom plugins.

• REST interface - can be used directly by the C1/C4 backends if the network configuration allows
it. See also, Domibus REST API docs.

Message acknowledgement service

This service is used to acknowledge when a message is:

• delivered from C3 to the backend;

• processed by the backend.

Typical use cases for using MessageAcknowledgementService

A message is:

• received by C3 from C2: the plugin that handles the message registers an acknowledgment
before delivering the message to the backend;

• processed by the backend and it informs C3 via the plugin; the plugin registers an
acknowledgment that the message has been processed by the backend;

• processed by the backend and informs C3 directly via the REST service exposed by the core; a
REST service is exposed containing the same signature as \{@link MessageAcknowledgeService}.

Ways of performing Message Acknowledgments

There are two ways of performing message acknowledgments between C3 and the backend:

Synchronously

C3 (via the plugin) notifies the backend synchronously and the backend process the messages
also synchronously. In this case, there is no need for the backend to send a separate message
acknowledgement so the plugin at the C3 side registers the processing of the message by the
backend.

Synchronous Message Acknowledgment

BackendResponse backendResponse = plugin.callBackendWS(message)
messageAcknowledgeService.acknowledgeMessageDelivered(message.getId(),
new Timestamp(System.currentTimeMillis()))
messageAcknowledgeService.acknowledgeMessageProcessed(message.getId(),
new Timestamp(System.currentTimeMillis()))

Asynchronously

C3 notifies the backend synchronously and the backend process the messages asynchronously.
In this case, the backend will send a separate message acknowledgement when it manages to
process the message successfully.

Asynchronous Message Acknowledgment

plugin.sendMessageToTheBackend(message)

550

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Domibus+v5.0.4+REST+services+documentation

messageAcknowledgeService.acknowledgeMessageDelivered(message.getId(),
new Timestamp(System.currentTimeMillis()))

Monitoring service

This service is used to monitor failed messages and to restore them if necessary.

Assuming that "failed message" means failed to be sent by the sender access point and getting the
status set to SEND_FAILURE, the monitoring service provides the possibility to:

• List all the failed messages

• Restore a failed message

• Restore all messages failed during a specific period

• Know for how long a message has been failing

• Get the history of all delivery attempts

• Delete the payload of a failed message

Command service

This service is used to execute commands in a cluster.

A plugin can execute a cluster command using the steps below:

1. Implement the command logic in a Spring service bean which implements the
eu.domibus.ext.services.CommandExtTask interface. The command task must use a unique
command name and must indicate that it can handle the command in the canHandle method.

@Service
public class CustomCommandTask implements CommandExtTask \{
public static final String COMMAND_NAME = "mycommand";

@Override
public boolean canHandle(String command) \{
return COMMAND_NAME.equals(command);
}

@Override
public void execute(Map<String, String> properties) \{

//custom logic
}
}

2. Trigger the execution of the command using the method
eu.domibus.ext.services.CommandExtService#executeCommand(String commandName, Map<String,
Object> properties).
The command name is the name of the command defined in the step above. Custom parameters

551

can be passed to the command using the properties parameter.

Backend Connector Provider Service

This service is used to check and validate the backend providers configuration in relation to the
enabled state, meaning that Domibus requires at least one plugin to be enabled on each domain.

void validateConfiguration(final String domainCode)

To trigger the validation of the enable state configuration on a domain, this method throws a
`ConfigurationException ` exception if there is no plugin enabled on the respective domain.

boolean canDisableBackendConnector(String backendName, final String domainCode)

To verify if the plugin with the specified name can be disabled on the specified domain:

void backendConnectorEnabled(String backendName, String domainCode)

The specified plugin notifies Domibus that it wants to be enabled on the specified domain. This
is necessary because Domibus manages message queues and CRON trigger jobs for a plugin and
this method creates these resources for the specified domain.

backendConnectorDisabled(String backendName, String domainCode)

The specified plugin notifies Domibus that it wants to be disabled on the specified domain. This
is necessary because Domibus manages message queues and CRON trigger jobs for a plugin and
this method deletes these resources for the specified domain. Validation is performed before:

15.3.11. Password encryption

Passwords configured in the plugin configuration files are stored by default in clear text. But
password encryption of Domibus plugins’s defined in the plugin’s configuration file is supported
using symmetric encryption with the AES/GCM/NoPadding algorithm.

To use password encryption, users need to implement the
eu.domibus.plugin.encryption.PluginPropertyEncryptionListenerinterface interface. The plugins'
passwords can be configured in property files or in other sources, such as a database.

If password encryption is enabled, when `domibus.password.encryption.active is set to TRUE,
Domibus generates the secret keys that are used to encrypt the passwords.

Domibus notifies the subscribed plugin listeners to encrypt their own passwords via the via the
PluginPropertyEncryptionListenerinterface interface.

Custom plugins can use eu.domibus.ext.services.PasswordEncryptionExtService,to handle password
encryption.

Sample Plugin Password Encryption

Password encryption is already implemented for the Default File System Plugin, which you can use
as template for implementing password encryption for your custom plugins.

Example illustrating encryption results for a property

For example, the fsplugin.authentication.password set as fsplugin.authentication.password=test123

552

when encrypted the result is:
fsplugin.authentication.password=ENC(4DTXnc9zUuYqB0P/q7RtRHpG9VJLs3E=).

Runtime decryption

At the API level, the password properties are decrypted automatically at runtime by the
eu.domibus.ext.services.DomibusPropertyExtService service when they are retrieved, so there
plugins are not require to perform additional actions.

15.3.12. Enable awareness of plugins

To signal that plugins can be enabled or disabled, you can implement the EnableAware interface. This
can be implemented per domain in the case of Multitenant environments.

For users' convenience, AbstractBackendConnector already implements this interface.

boolean isEnabled(final String domainCode)

The default implementation returns TRUE for backward compatibility. In the
AbstractBackendConnector class, there is the protected method, doIsEnabled that checks the value
of the property that specifies if a domain is enabled. To do this, the method asks the plugin’s
implementation to provide the property manager and the property name by calling the two
methods below:

• DomibusPropertyManagerExt getPropertyManager()

• String getDomainEnabledPropertyName()

Unspecified Property Managers

If a property manager is not specified by the implementing plugin, the domibus property provider
is used instead. A plugin implementor can call this method when overriding the isEnabled. Default
plugins do exactly this.

void setEnabled(final String domainCode, final boolean enabled)

The default implementation does nothing for backward compatibility. The doSetEnabled
protected method in AbstractBackendConnector checks if the enabled property value has the
required value. If it does not have it, it sets the property value to the required value.
The default property change listener for this property is called DefaultEnabledChangeListener. It
calls one of the following methods, depending on the requested value:

• void backendConnectorEnabled(String backendName, String domainCode)

• void backendConnectorDisabled(String backendName, String domainCode)

These methods are described in Backend Connector Provider Service.

String getName()

Provides the name of the plugin.

boolean shouldCoreManageResources()

The default implementation returns false for backward compatibility. Default plugins return
true. This means that Domibus will create and destroy some resources (like message listener

553

containers and CRON triggers) when a plugin is enabled or disabled on a domain.

PluginMessageListenerContainer getMessageListenerContainerFactory()

The default implementation returns NULL, for backward compatibility. The custom
implementation should return the plugin’s service that manages the plugin message listener
containers' factory and which is used by Domibus to create and destroy them on behalf of the
plugin.

Plugin loading at startup

At startup, Domibus ensures that at least one plugin is enabled per domain. When Domibus loads
the plugins at startup, if all plugins are disabled, it will enable one plugin.

15.4. Plugin properties
A plugin is expected to need to define its specific set of properties at some point, apart from the
Domibus properties. Plugin properties are configured in a property file, such as ws-
plugin.properties in the case of the default WS plugin.

Integrated Property Managing

Domibus supports plugins using integrated property management.

The plugin must: 1. Define its properties in the plugin property file, 2. Create the properties'
metadata, a property metadata manager and a property manager, to manage how and where these
properties are retrieved and set.

15.4.1. Property files

A plugin can configure properties in two locations:

• in the classpath

• the file system.

Domibus introspects the classpath for files under the config location which ends xin plugin-
default.properties.

When using Maven, the plugin can configure the default property file under
src/main/resources/config. Once a default property file is found, Domibus adds all the properties in
the central org.springframework.context.support.PropertySourcesPlaceholderConfigurer.

IMPORTANT
A plugin cannot configure another PropertySourcesPlaceholderConfigurer,
neither via Java configuration nor XML configuration (context:property-
placeholder).

Properties precedence

A plugin can also configure an external property file located under
{domibus.config.location}/plugins/config. The properties defined in the external property file
override the default properties defined in the classpath.

554

15.4.2. Property metadata

To integrate into the property management, one needs to create a property manager. This can be
achieved by:

1. Creating a class that implements the DomibusPropertyManagerExt interface or

2. By extending the abstract class DomibusPropertyExtServiceDelegateAbstract.

Scenario a

If the properties are intended to be managed using its own property bag then you should
implement the interface directly. If the properties are to be stored in the Domibus property bag
then one should extend the abstract class.

Scenario b

If you are extending the abstract class (as, for example, the default JMS plugin does), implement
only the Map method, and provide the map of properties metadata.

public abstract Map <String, DomibusPropertyMetadataDTO> ①
getKnownProperties();

① Where the DomibusPropertyMetadataDTO class stores the attributes of a property.

The most relevant attributes are:

• name- the name of the property, the same as the one stored in the file with the value.

• type - used for validation when changing them at runtime.
Can be: NUMERIC, BOOLEAN, CONCURRENCY, EMAIL, CRON or STRING.

• writable- specifies if the property can be changed at runtime.

• usage - Options are GLOBAL, DOMAIN, SUPER or a combination of them, as described in Domibus
Architecture.

• withFallback – falls back to the global value for the domain property.

• storedGlobally – must be

◦ FALSE: if the plugin manages its value

◦ TRUE: if Domibus property provider does it.

Plugins and Internal Property Management

For plugins to manage properties internally, you need to:

• Implement all the methods of the DomibusPropertyManagerExt interface.

• Besides providing the map of property metadata as described above, you need to implement the
get and set methods to store and retrieve the property value from the bag.

• The storedGlobally attribute must be set to false.

Properties marked writable

If a property is marked as writable, it must be possible to change it at runtime and it will appear in

555

the admin console properties page (and users will be able to change it), so the set methods need to
be implemented accordingly. If some custom code needs to be executed while changing it, you need
to:

• create a class that implements the PluginPropertyChangeListener interface,

• and the method handlesProperty() must return TRUE if the propertyName parameter is equal to
the property name for which the custom code must be executed.

Property and domain usage

If a property has domain usage, the property manager needs to manage a different value for each
domain. In this case, the methods

• String getKnownPropertyValue(String propertyName)

• void setKnownPropertyValue(String propertyName, String propertyValue)

need to get and set the value for the current domain of the Domibus.

15.5. Plugin configuration and deployment
Message routing configuration and plugin deployment instructions for all supported platforms can
be found in Domibus Configuration.

15.6. API Documentation
Domibus scans automatically the classpath inside the plugin’s .jar file:

• The filename convention is <pluginname>-domibusServlet.xml, as in the example: config/ws-
plugin-domibusServlet.xml.

• The expected location (in the Java project) is: /src/main/resources/config/,

◦ while in the plugin’s .jar, this file is located at `/config/;

◦ this file should contain the package name used for all the REST APIs (Example:
com.custom.plugin.rest):

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd">
 <context:component-scan base-package="com.custom.plugin.rest" />
</beans>

556

Example of a simple Rest API:

package com.custom.plugin.rest;
@RestController
 @RequestMapping(value = "/custom/plugin")
 public class CustomPluginConfiguration {
 @GetMapping(path = "/example")
 public ResponseEntity<String> get() {
 return ResponseEntity.ok("rest service triggered");
}

This API will be called with the path:

NOTE
Standard Javadoc documentation for the API can be downloaded from:
https://ec.europa.eu/digital-building
-blocks/wikis/display/DIGITAL/Domibus+releases.

15.7. Multitenancy
To understand how Multitenancy works in Domibus, please refer to Multitenancy in Domibus
Architecture, especially the Plugins sections.

After reading about the Domibus architecture, the following should be clear regarding multitenant
environments:

• Authentication is always required to submit a message (C1 to C2),

• Each plugin user is associated to one domain exclusively,

• Each domain has its own schema in the database,

• A general schema exists to match users to domains,

• Default plugins already work in multitenant environment; they can be used as examples.

Domibus Plugin API and domain handling

As a requirement, Custom plugins should work in a Domibus multitenant environment.

The Domibus Plugin API supports the handling of multiple domains and accessing domain-specific
database schemas.

Handling Domains

Check if Domibus runs in Multitenancy mode

@Autowired
protected DomibusConfigurationExtService domibusConfigurationExtService;

boolean isMultiTenantAware =
domibusConfigurationExtService.isMultiTenantAware();

557

https://ec.europa.eu/

Get the current domain

@Autowired
private DomainContextExtService domainContextExtService;
DomainDTO domainDTO = domainContextExtService.getCurrentDomainSafely();

Set the current domain for an asynchronous execution

When the plugin uses asynchronous execution, the domain code is required to be configured
manually.

Consider the scenario where a message is put in a JMS queue and a worker picks it up and sends it.

• Along with the message, the domain code must be added to the JMS message.

• The consumer should first get the domain based on the domain code, set it as current domain,
and only then execute the job.

• Finally, the plugin is responsible to clear the current domain.

Get the domain

@Autowired
protected DomainExtService domainExtService;
final DomainDTO = domainExtService.getDomain(domainCode)

Set current domain, execute job and clear domain

@Autowired
protected DomainContextExtService domainContextExtService;
try {
domainContextExtService.setCurrentDomain(currentDomain);

// … executeJob

} finally {
domainContextExtService.clearCurrentDomain();
}

Accessing the Database

Every domain has its own schema in the database. In case the plugin needs a new table to persist
plugin specific data, it is recommended to keep the same segregation as in the Domibus core and
add a new table in the database schema of each domain.

The recommended naming convention is:

• <pluginname>TB<name> for tables storing plugin data.

• <pluginname>QRTZ<name> for quartz tables. See also Creating a Quartz Job.

558

Example

The example below shows how to save message info into a new table:

1. Create the tables in the database (requires database admin user access).

◦ Table Name: WS_PLUGIN_TB_MESSAGE

◦ Columns:

▪ ID_PK [primary key (auto increment)]

▪ DESCRIPTION

2. Create the entity class:

import javax.persistence.;
@Entity
@Table(name = "WS_PLUGIN_TB_MESSAGE")
public class MessageInfoEntity {

@Id +
@Column(name = "ID_PK")
private long entityId;
@Column(name = "DESCRIPTION")
private String description;

/*** @return the primary key of the entity ***/
public long getEntityId() {
return this.entityId;
}

public void setEntityId(long entityId) {
this.entityId = entityId;
}

public MessageInfoEntity(final String description) {
this.description = description;
}

public String getDescription() {
return description;
}

public void setDescription(String description) {
this.description = description;
}
}

3. Create a basic DAO implementation providing the standard CRUD operations. The class reuses
Domibus' EntityManager.

559

public abstract class BasicDao<T> {
protected final Class<T> typeOfT;
@PersistenceContext(unitName = "domibusEM")
protected EntityManager em;

/*** @param typeOfT The entity class this DAO provides access to ***/
public BasicDao(final Class<T> typeOfT) \{
this.typeOfT = typeOfT;
}

public <T> T findById(Class<T> typeOfT, String id) \{
return em.find(typeOfT, id);
}

@Transactional(propagation = Propagation.REQUIRED)
public void create(final T entity) \{
em.persist(entity);

}

@Transactional(propagation = Propagation.MANDATORY)
public void delete(final T entity) \{
em.remove(em.merge(entity));
}

public T read(final long id) \{
return em.find(this.typeOfT, id);
}

@Transactional(propagation = Propagation.MANDATORY)
public void updateAll(final Collection<T> update) \{
for (final T t : update) \{
this.update(t);
}

}

@Transactional(propagation = Propagation.MANDATORY)
public void deleteAll(final Collection<T> delete) \{
for (final T t : delete) \{
this.delete(t);
}

}

@Transactional(propagation = Propagation.MANDATORY)
public void update(final T entity) \{
em.merge(entity);
}

560

public void flush() \{
em.flush();
}

}

NOTE
EntityManager is already configured in Domibus core to be multitenant aware
and persist the data in the right table of the current domain.

4. Create the MessageInfoDao class, that extends the BasicDao:

@Repository
public class MessageInfoDao extends BasicDao<MessageInfoEntity> \{
 +
public MessageInfoDao() \{
super(MessageInfoEntity.class);
}
}

5. Save the message info:

@Autowired +
MessageInfoDao messageInfoDao;

String description = “New message messageId = "
messageInfo.getMessageId();
messageInfoDao.create(new MessageInfoEntity(description));

15.7.1. Creating a Quartz Job

To create a new Quartz job that executes plugin specific tasks, it is recommended to extend the
DomibusQuartzJobExtBean abstract class and override the executeJob() method with the specific
actions.

If you follow this implementation, the domain configuration is handled internally by Domibus.

@DisallowConcurrentExecution
// Only one Worker runs at any time on the same node
public class MyPluginWorker extends DomibusQuartzJobExtBean {

@Override
protected void executeJob(JobExecutionContext context, DomainDTO domain)
{
//do plugin specific tasks

}

561

}

Create the quartz job:

<bean id="myPluginWorkerJob"
class="org.springframework.scheduling.quartz.JobDetailFactoryBean">
<property name="jobClass" value="eu.domibus.plugin.worker.
MyPluginWorker "/>
<property name="durability" value="true"/>
</bean>

Create the Quartz job trigger:

<bean id="MyPluginWorkerTrigger"
class="org.springframework.scheduling.quartz.CronTriggerFactoryBean"
scope="prototype">
<property name="jobDetail" ref=" myPluginWorkerJob "/>
<property name="cronExpression" value=" 0 0/1 * * * ?"/>
<property name="startDelay" value="20000"/>
</bean>

NOTE
The default FileSystem plugin provides examples of how to create new Quartz jobs
to purge sent, received and failed files that were archived.

15.7.2. Setting the domain MDC in logs

SEE ALSO For more about information, see Logging.

In multi-tenant scenarios, the domain name is logged in an Mapped Diagnostic Context (MDC) field
represented in the logback configuration by [%X{d_domain}]. The DomibusLogger class should be
used for this purpose. Within the plugins, domain MDC can be set in the logs using the following
code:

+

import eu.domibus.logging.DomibusLogger;
import eu.domibus.logging.DomibusLoggerFactory;
import static eu.domibus.logging.DomibusLogger.MDC_DOMAIN;

private static final DomibusLogger LOG =
DomibusLoggerFactory.getLogger(….class);
LOG.putMDC(MDC_DOMAIN, domain.getCode());

15.8. Removed API and Migrating
Domibus 5.0 introduces the deprecation of several classes and methods from the Plugin API. Here

562

you can find more information about these changes and how to use the new API.

NotificationListener

• The NotificationListener interface, used by plugins to receive async notifications was replaced
by eu.domibus.plugin.notification.AsyncNotificationConfiguration.

• The NotificationListenerService class was implementing:

◦ eu.domibus.plugin.NotificationListener

◦ eu.domibus.plugin.MessageLister

SEE ALSO For more migration information, see Asynchronous notifications.

Methods removed from the NotificationListener interface

Obsolete Replacement

String getBackendName() BackendConnector#getName()

BackendConnector.Mode getMode() -

List<NotificationType>
getRequiredNotificationTypeList()

BackendConnector#getRequiredNotifications()

void deleteMessageCallback(String messageId) BackendConnector#messageDeletedEvent(MessageDe
letedEvent)

void notify(final String messageId, final
NotificationType notificationType, final
Map<String, Object> properties)

NOTE

Domibus notifies the connector
using the lifecycle methods, for
e.g. messageSendSuccess,
messageSendFailed, etc defined
in
eu.domibus.plugin.BackendConn
ector

Additional changes in classes and methods

Obsolete eu.domibus.plugin.NotificationListenerService

Replacement eu.domibus.plugin.notificatio.PluginAsyncNotificationConfiguration

Obsolete eu.domibus.submission.WeblogicNotificationListenerService

Replacement PluginAsyncNotificationConfiguration; set the JNDI name as the queue name

Methods from the eu.domibus.plugin.BackendConnector class:

Obsolete deliverMessage(java.lang.String)

Replacement deliverMessage(eu.domibus.common.DeliverMessageEvent)

Obsolete messageSendSuccess(java.lang.String)

Replacement messageSendSuccess(eu.domibus.common.MessageSendSuccessEvent)

563

Obsolete messageSendFailed(java.lang.String)

Replacement messageSendFailed(eu.domibus.common.MessageSendFailedEvent)

Obsolete eu.domibus.plugin.BackendConnector#getMode

Replacement (removed)

Plugin Mode

Obsolete Plugin mode concepts Mode.PUSH and Mode.PULL

Replacement

NOTE

From the Domibus 5.0 version onwards, All Domibus plugins are
notified for various lifecycle events, and it is the responsibility of
each plugin to determine how to consume the notification. For
instance, a plugin can persist the notification received from
Domibus and let the backend application pull the notifications from
the plugin.

Methods from the eu.domibus.ext.services.DomibusPropertyManagerExt class

Obsolete getKnownPropertyValue(java.lang.String, java.lang.String)

Replacement getKnownPropertyValue(java.lang.String)

Obsolete setKnownPropertyValue(java.lang.String, java.lang.String,java.lang.String)

Replacement setKnownPropertyValue(java.lang.String,java.lang.String)

Methods from the eu.domibus.ext.services.PModeExtService class

Obsolete updatePModeFile(byte[], java.lang.String)

Replacement updatePModeFile(org.springframework.web.multipart.MultipartFile,
java.lang.String)

15.8.1. Plugin Configuration Sample Migration

Below is an example with an old plugin configuration and the explanation on how to migrate to the
new plugin configuration. This example features the WS Plugin.

Old configuration:

<amq:queue id="notifyBackendWebServiceQueue"
physicalName="domibus.notification.webservice"/>
<bean id="backendWebservice"
class="eu.domibus.plugin.webService.impl.BackendWebServiceImpl">
<constructor-arg value="backendWebservice"/>
</bean>

<bean id="webserviceNotificationListenerService"
class="eu.domibus.plugin.NotificationListenerService"
c:queue-ref="notifyBackendWebServiceQueue" c:mode="PULL"
p:backendConnector-ref="backendWebservice"/>

564

New configuration:

<bean id="backendWebservice"
 class="eu.domibus.plugin.webService.impl.WebServicePluginImpl">
 <constructor-arg value="backendWebservice"/>
</bean>

<bean id="webserviceNotificationListenerService"
 class="eu.domibus.plugin.notification.PluginAsyncNotificationConfiguration"
 c:queue-ref="notifyBackendWebServiceQueue"
 c:backendConnector-ref="backendWebservice"/>
</bean>

565

Extensions

566

Chapter 16. Extension Development
Here you can find technical specifications of Domibus extension mechanism. In particular, this
document lays out applicable guidelines to support the technical implementation of an extension.

The scope of this document is to define:

• The functional aspects of the extension mechanism,

• The technical and operational aspects of the extension mechanism.

Target Audience for this content

This document is intended for the Directorate Generals and Services of the European Commission,
Member States (MS) and companies of the private sector wanting to customize the incoming AS4
messages authorisation and signing certificate trust validation.

In particular:

• Business Architects will find it useful for understanding the possible integration towards
external trust systems.

• Analysts and developers will find it useful to understand and implement how to customize
message trust and authorisation.

• Testers can use this document to test the use cases described.

What you can find in this chapter:

• Overview of the extension mechanism and links to related information.

• Functional specifications of the existing extension mechanism and an overview of the
customisation possibilities.

• Technical specifications of the existing extension mechanism and an overview of the
customisation possibilities. In-depth description of the extension interfaces.

• How to build and register a custom extension.

• List of configuration files useful for extension development.

Overview

The extension cookbook defines the technical and operational aspects of Domibus extension
mechanism with links to the functional specifications. It also provides guidelines for the adequate
implementation of the interfaces.

The extension mechanism allows the customisation of AS4 message signing certificate trust
validation and AS4 message authorisation in a flexible way.

Extensions are dependent on the domibus-iam-spi module, which is released together with the main
Domibus application. Any changes to previous API versions will be addressed in a migration guide.

It is assumed that the reader is aware of the operational, technical and functional context of
eDelivery Domibus access point:

567

• Domibus Software Architecture

• Domibus Administration Guide

• OASIS ebXML Messaging Services

16.1. Functional information

16.1.1. Trust validation

Identity certificates are issued and digitally signed by a Certificate Authority. The Certificate
Authority that signed your own certificates is called an Intermediate Certificate Authority (ICA),
because it was issued by another Certificate Authority. This process of issuing and signing continues
until there is one Certificate Authority that is called the Root Certificate Authority (CA).

The whole process of proving identity when issuing the certificates, auditing the certificate
authorities and the cryptographic protections of the digital signatures establish the basis of Trust
for certificates.

Default Domibus behaviour

Domibus uses WS-Policy framework to express the access point MSH webservice constraints and
requirements. Please consult the Security Policies section to have an overview of the different
configuration provided with the Domibus distribution.

Domibus uses an on disk (private) KeyStore to store the access point private certificate and a
second on disk (public) KeyStore to store public certificates of counterpart access point. See also the
Certificates for setup instructions.

Domibus can ensure the trust in two ways:

1. Direct trust: if the leaf certificate is present and valid in the public KeyStore,

2. Indirect trust: if the leaf certificate is not present in the public KeyStore, the leaf certificate
issuer is checked until the certificate root is reached. Practically, Domibus trusts an incoming
message if the certificate chain, excluding the leaf, is present and valid in the public KeyStore.
This is typically the case for a dynamic receiver profile.

Incoming AS4 messages are signed with the sender certificate. The AS4 protocol uses WSS SOAP
Message Security which references X509 certificate by one of the following means:

• Reference to a subject key identifier

To configure Domibus to reference certificate by subject key identifier, please use the provided
eDeliveryAS4Policy policy.

Domibus will use the subject key identifier contained in the AS4 SOAP envelope to extract the
signing certificate from the public KeyStore. If the certificate is found and valid, the AS4 message
will be considered as trusted. This type of configuration only supports direct trust method.

• Reference to an issuer and a serial number#

568

To configure Domibus to reference certificate by issuer and serial number, please use the provided
eDeliveryAS4Policy_IS policy.

Domibus will use issuer and serial number contained in the AS4 SOAP envelope to extract the
signing certificate from the public KeyStore. If the certificate is found and valid, the AS4 message
will be considered as trusted. This type of configuration only supports direct trust method.

• Reference to a binary security token

To configure Domibus to extract the certificate out of the AS4 message SOAP envelope, please use
the provided eDeliveryAS4Policy_BST policy.

Domibus will extract the signing certificate from the AS4 SOAP envelope and use its issuer and
serial number to retrieve its equivalent from the public KeyStore.

If the certificate is found and valid, the AS4 message will be considered as trusted. If the leaf
certificate is not found within the public KeyStore, Domibus will try to trust the message against the
trust chain as explain above. This type of configuration supports both direct and indirect trust
method.

• Reference to a Binary Security token with PKI path#

To configure Domibus to extract the certificate and its trust certificate chain directly out of the AS4
message SOAP envelope, please use the provided eDeliveryAS4Policy_BST_PKI policy.

Generally, the chain is composed of the leaf signing certificate, the ICA and the CA.

Domibus verifies the signing trust path of the certificate chain. To achieve this verification,
Domibus expects to find the CA certificate of the chain within the public KeyStore.

If the CA is present and valid, and the signing path of the chain is valid, the AS4 message will be
considered as trusted. This type of configuration only supports indirect trust method.

Custom behaviour

By creating a new Trust extension, one can bypass the default Domibus behaviour previously
explained.

There is one certificate trust validation extension provided with the Domibus distribution: the
domibus-authentication-dss-extension.

For more information about the DSS extension, please refer to the chapter “DSS Extension
Configuration” in Domibus Administration guide [REF2].

Trust validation sequence

Incoming message certificate trust sequence

569

16.1.2. Authorisation

The authorisation extension goal is to provide the possibility to accept or refute messages based on
an aggregation of data extracted from different parts of the Domibus system. Information related to
certificate, PMode and AS4 message content is provided to the extension.

Default Domibus behaviour

The default Domibus trust mechanism is verifying AS4 message authorisation with the following
configurable means:

• Subject expression validation

By setting a valid regular expression within the “domibus.sender.trust.validation.expression”
property, Domibus will apply the regular expression to the signing certificate “subject distinguished
name” (see also X509 Certificate specifications).

If the subject distinguished name does not match with the regular expression, the authorisation
process will end and reject the AS4 message.

If domibus.sender.trust.validation.expression is empty, no validation is performed on the
certificate subject distinguished name.

• Public keystore alias validation

By setting domibus.sender.trust.validation.truststore_alias property to true, Domibus will extract

570

the party name configured in the PMode that corresponds to the PartyId present within the
AS4Message.

The process is as follows:

1. The process looks in the PMode for the value
“configuration/businessProcesses/parties/identifier@partyId” that is equal to the value
“/eb:Messaging/eb:UserMessage/eb:PartyInfo/eb:From/eb:PartyId” from the AS4 message.

2. Out of that entry, the process extracts the value
“configuration/businessProcesses/parties/party@name” to retrieve the name attributed to that
party within the PMode.

3. The party name is then used as an alias to extract a certificate from the public KeyStore.

◦ If the certificate found is not equal to the one used to sign the message, the authorisation
process will end and reject the AS4 message.

◦ If no certificate is found for the given alias, Domibus logs a warning but the authorisation
process continues.

By setting domibus.sender.certificate.subject.check property to TRUE, and extra validation is
performed on the alias. The authorisation process verifies that the certificate “subject distinguished
name” contains the alias. If it does not, the authorisation process will end and reject the AS4
message.

Custom behaviour

By creating a new authorisation extension, one can bypass the default Domibus behaviour
previously explained.

An authorisation extension can use information from the AS4 Message, the signing certificate and
the PMode to perform a custom authorisation.

No default implementation is provided with Domibus.

Authorisation sequence

Incoming message authorisation sequence

571

16.2. Technical information

16.2.1. Implementing TrustServiceSpi interface

The interface has 2 methods:

• verifyTrust

• getIdentifier

The verifyTrust method

The verifytrust method purpose is to validate the trust of the incoming AS4 message signing
certificate.

As explain in section 3.1, the location from where the signing certificate is extracted depends on the
security policy used.

The Domibus security policy configuration will determine from where to extract the certificates
that will be passed as parameter to the verifytrust method.

If the method executes without exception, the signing certificate of the incoming AS4 Message will
be considered as trusted and the processing of the message will resume.

void verifyTrust(List<X509Certificate> signingCertificateTrustChain,
X509Certificate signingCertificate) throws CertificateTrustException;

If any runtime exception is triggered, the message is refused, and the exception is transformed into
an EBMS exception by Domibus.

By throwing a CertificateTrustException exception, one can more precisely control the type of
EBMS exception thrown by Domibus. A CertificateTrustException to EBMSException mapping table

572

is documented in section 4.1.1.2.

The following table documents the location of certificates used as verifyTrust method parameters,
based on the security policies provided with Domibus.

Policy name Certificate token
reference

Certificate
location

Description

eDeliveryAS4Policy.xml Key identifier

See also section
3.3.1 of OASIS Web
Services Security
document.

Receiver trust store With this policy,
Domibus extracts
the signing
certificate from the
configured public
KeyStore.

eDeliveryAS4Policy_BST.xml Binary security
token

See also 3.3.2 of
OASIS Web
Services Security
document.

AS4 Message With this policy,
Domibus extracts
the signing
certificate from the
AS4 message.

eDeliveryAS4Policy_BST_PKIP.xml Binary security
token with
PKIPATH

See also section
3.1.2 and 3.3.2 of
OASIS Web
Services Security.

AS4 Message With this policy,
Domibus extracts
the signing
certificate and its
truth path from the
AS4 message.

eDeliveryAS4Policy_IS.xml Issuer and serial
number.

See also section
3.3.3 of OASIS Web
Services Security
document.

Receiver trust store With this policy,
Domibus extracts
the signing
certificate from the
configured public
KeyStore.

Only the eDeliveryAS4Policy_BST and eDeliveryAS4Policy_BST_PKIP policies extract the signing
certificate from the AS4 Message. Therefore, if the trust validation custom extension requires not to
use the public KeyStore for incoming messages trust validation, one of those policies should be
used.

Data dictionary

Trust Service Diagram

573

The following table describes the parameters of the verifytrust method:

Class Field Data origin Description

List <X509Certificate> See X509
Certificate
specification

AS4 Message or
Domibus public
KeyStore store
depending on
the policy
configuration.

List of java.security.cert.X509
Certificate containing the
signing certificate chain of trust.

X509Certificate See X509
Certificate
specification

AS4 Message or
Domibus public
KeyStore store
depending on
the policy
configuration.

The signing certificate.

The following table describes the parameters of the CertificateTrustException class:

Class Field Data origin Description

CertificateTrustException N/A N/A Runtime exception allowing to
control the type of
EBMSException triggered by
Domibus.

trustErrorCod
e

N/A Enumeration containing
distinct trust error code.

message N/A Default exception message.

Exception mapping

Throwing a CertificateTrustException from the trust extension gives the flexibility to control the

574

type of EBMS exception returned by Domibus.

EBMS
Exception
Error Code

EBMS Exception
Message

TrustException code Severity Description

EBMS:0004 T0003: Technical
exception

CONFIGURATION failure Please use to notify any
configuration issue.

EBMS:0004 Unknown error
occurred

TRUST_VALIDATION failure Please use to notify a
certificate trust path
validation issue.

EBMS:0001 T0001:
Certification
validation
problem.

OTHER_VALIDATION failure Please use to notify any other
certificate validation.

EBMS:0004 T0003: Technical
exception

UNKNOWN failure Please use to notify any other
exception.

Any other runtime exception thrown by the authorisation module will be transformed into an
EBMS exception with code EBMS:0004 and “T0003:Technical issue” as message.

The getIdentifer method

The domibus.extension.iam.authentication.identifier property is a domain specific property, which
provides a way to configure the trust extension to be used. Per default the property value is
DEFAULT_AUTHENTICATION_SPI. With the default configuration, Domibus will behave as
described in the section 3.1.2.

In order to configure Domibus to use a specific trust extension for the domain, the above property
value should be set with the value returned from the getIndentifer() method of the registered
custom trust extension. A description of how to register the extension is available in section 5.2.

The property being domain specific, a Domibus configured for multitenancy can choose different
trust strategy per domain.

For more information on the multitenancy feature of Domibus, see Multitenancy.

The extension developer is free to choose a meaningful name. However, the returned value of the
getIdentifer() function should be compliant with the property file format as described in the
document REF9.

String getIdentifier();

16.2.2. Implementing AuthorizationServiceSpi interface

The interface has 3 methods:

• 2 authorize methods

• getIdentifier method

575

The UserMessage and PullRequest authorize methods

Two authorize methods are used as trust authorization for UserMessage and PullRequest
respectively.

This method is used to authorize an incoming AS4 UserMessage received by Domibus:

void authorize(
List<X509Certificate> signingCertificateTrustChain,
X509Certificate signingCertificate,
UserMessageDTO userMessageDTO,
UserMessagePmodeData userMessagePmodeData) throws
AuthorizationException;

This method is used to authorize an incoming AS4 PullRequest received by Domibus:

void authorize(List<X509Certificate> signingCertificateTrustChain,
X509Certificate signingCertificate,
PullRequestDTO pullRequestDTO,
PullRequestPmodeData pullRequestPmodeData) throws
AuthorizationException;

If the previous methods are executed without exception, the incoming AS4 Message will be
authorized, and the processing of the message will continue.

If any runtime exception is triggered, the message will be refused, and the exception will be
transformed into an EBMS exception by Domibus. By throwing an AuthorizationException runtime
exception, one can more precisely control the type of EBMS exception thrown by Domibus. An
AuthorizationException to EBMSException mapping table is documented in section 4.2.1.2.

Data dictionary

The authorisation SPI interface and its dependencies

The following table describes the authorize method parameters:

576

Class Field Data origin Description

List<X509Certificate> See also the
X509Certificate
specifications

AS4 Message or
Domibus public
KeyStore
depending on the
policy
configuration.

List of
java.security.cert.X509Certificate
containing the signing certificate
chain of trust.

X509Certificate See also the
X509Certificate
specifications

AS4 Message or
Domibus public
KeyStore
depending on the
policy
configuration.

The signing certificate.

UserMessageDTO N/A AS4 UserMessage The UserMessageDTO class is a
model class mapping the AS4
UserMessage model. Please refer
to the class model below for
detailed information.

UserMessagePmodeData N/A PMode The UserMessagePmodeData
class is a model class grouping
PMode information related to
the received AS4 UserMessage.

serviceName PMode PMode service name associated
with the received AS4 Message.

actionName PMode PMode action name associated
with the received AS4 Message.

partyName PMode PMode sender party name
associated with the received AS4
Message.

The UserMessageDTO parameter has the following class structure:

The UserMessageDTO model

577

The following table describes the mapping between the class model and the AS4 UserMessage
fields. See ebMS3 specification document for detailed AS4 UserMessage content.

Class Field Data origin Description

UserMessageDT
O

N/A eb:Messaging/eb:UserMessage ebMS3
specifications.

mpc eb:Messaging/eb:UserMessage/@mpc ebMS3
specifications.

MessageInfoDT
O

eb:Messaging/eb:UserMessage/eb:MessageIn
fo

ebMS3
specifications.

timestamp eb:Messaging/eb:UserMessage/eb:MessageIn
fo/eb:Timestamp:

ebMS3
specifications.

messageId eb:Messaging/eb:UserMessage/eb:MessageIn
fo/eb:MessageId:

ebMS3
specifications.

refToMessage
Id

eb:Messaging/eb:UserMessage/eb:MessageIn
fo/eb:RefToMessageId

ebMS3
specifications.

PartyInfoDTO eb:Messaging/eb:UserMessage/eb:PartyInfo ebMS3
specifications.

FromDTO eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:From

ebMS3
specifications.

role eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:From/eb:Role

ebMS3
specifications.

578

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf

Class Field Data origin Description

PartyIdDTO ebMS3
specifications.

value eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:From/eb:PartyId

ebMS3
specifications.

type eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:From/eb:PartyId@type

ebMS3
specifications.

ToDTO eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:To

ebMS3
specifications.

role eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:To /eb:Role

ebMS3
specifications.

PartyIdDTO ebMS3
specifications.

value eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:To/eb:PartyId

ebMS3
specifications.

type eb:Messaging/eb:UserMessage/eb:PartyInfo/e
b:To/eb:PartyId@type

ebMS3
specifications.

CollaborationIn
foDTO

eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo

ebMS3
specifications.

conversationI
d

eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo/eb:ConversationId

ebMS3
specifications.

action eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo/eb:Action

ebMS3
specifications.

AgreementRefD
TO

value eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo/eb:AgreementRef

ebMS3 specifications

type eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo/eb:AgreementRef@type

ebMS3 specifications

pmode eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo/eb:AgreementRef@pmode

ebMS3 specifications

ServiceDTO

value eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo/eb:Service

ebMS3 specifications

type eb:Messaging/eb:UserMessage/eb:Collaborati
onInfo/eb:Service@type

ebMS3 specifications

MessageProper
tiesDTO

eb:Messaging/eb:UserMessage/eb:MessagePr
operties

ebMS3
specifications.

PropertyDTO ebMS3
specifications.

579

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf

Class Field Data origin Description

value eb:Messaging/eb:UserMessage/eb:MessagePr
operties/eb:Property

ebMS3
specifications.

name eb:Messaging/eb:UserMessage/eb:MessagePr
operties/eb:Property@name

ebMS3
specifications.

type eb:Messaging/eb:UserMessage/eb:MessagePr
operties/eb:Property@type

ebMS3 specifications

PayloadInfoDT
O

eb:Messaging/eb:UserMessage/eb:PayloadInf
o

ebMS3
specifications.

PartInfoDTO eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo

ebMS3
specifications.

PartInfoDTO ebMS3
specifications.

href eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/@href

ebMS3
specifications.

inBody Domibus Can be used to
submit a message on
the backend
interface in order to
send the payload of
the AS4
UserMessage within
the SOAP envelope
body. This way of
sending messages is
not supported in the
AS4 profile and is
therefore not
recommended.

mime Domibus Contains the
payload content
type.

SchemaDTO eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:Schema

ebMS3
specifications.

location eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:Schema@location

ebMS3
specifications.

version eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:Schema@version

ebMS3
specifications.

namespace eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:Schema@namespace

ebMS3
specifications.

580

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf

Class Field Data origin Description

DescriptionDTO Domibus Deprecated, please
use
PartPropertiesDTO

PartProperties
DTO

eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:PartProperties

List containing the
properties.

PropertyDTO ebMS3
specifications.

value eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:PartProperties

ebMS3
specifications.

type eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:PartProperties@type

ebMS3
specifications.

name eb:Messaging/eb:UserMessage/eb:PayloadInf
o/eb:PartInfo/eb:PartProperties@name

ebMS3
specifications.

The following table describes the parameters of the AS4 PullRequest authorize method:

Class Field Data origin Description

List<X509Certifica
te>

Check
X509Certificate
specifications

AS4 Message or Domibus trust
store depending on the policy
configuration.

List of
java.security.cert.X509Certifi
cate containing the chain of
trust of the signing
certificate.

X509Certificate Check
X509Certificate
specifications

AS4 Message or Domibus trust
store depending on the policy
configuration.

The signing certificate.

PullRequestDTO eb:Messaging/eb:SignalMessag
e/eb:PullRequest

The PullRequestDTO class is
a model class mapping the
AS4 PullRequest model.

mpc eb:Messaging/eb:SignalMessag
e/eb:PullRequest@mpc

PullRequestPmode
Data

mpcName PMode PMode MPC name for the
received AS4 PullRequest.

The following table describes the parameters of the AuthorizationException method:

Class Field Data origin Description

AuthorizationException N/A N/A Runtime exception allowing to
control the type of
EBMSException triggered by
Domibus.

581

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf

Class Field Data origin Description

authorizationErro
r

N/A Enumeration containing
distinct error code.

messageId N/A Field containing the message
id or the refused message.

The AuthorizationException method

Exception mapping

Throwing an AuthorizationException from the authorisation extension gives the flexibility to
control the type of EBMS exception returned by Domibus. It also ensures that the message id of the
failed message is copied within the EBMS exception.

EBMSExcepti
on Error Code

EBMSExcep
tion
Message

AuthorizationExc
eption code

Severity Description

EBMS:0001 Message
contained in
the
TrustExcepti
on.

INVALID_FORMAT failure Please use to notify any format
issue.

EBMS:0004 A0001:Autho
rization to
access the
targeted
application
refused to
sender.

AUTHORIZATION_
REJECTED

failure Please use to notify any
authorisation rejection.

582

EBMSExcepti
on Error Code

EBMSExcep
tion
Message

AuthorizationExc
eption code

Severity Description

EBMS:0004 A0003:Techn
ical issue.

AUTHORIZATION_
MODULE_CONFIG
URATION_ISSUE

AUTHORIZATION_
SYSTEM_DOWN

failure Please use to notify any issue with
the authorisation system.

EBMS:0004 A0002:Techn
ical issue.

AUTHORIZATION_
CONNECTION_REJ
ECTED

failure Please use to notify any connection
issue with the authorisation system.

Any other runtime exception thrown by the authorisation module will be transformed into an
EBMS exception with code EBMS:0004 and “A0003:Technical issue” as a message.

The getIdentifer function

The domibus.extension.iam.authorization.identifier property is a domain specific property
providing a way to configure the authorisation extension to be used. Per default the property value
is DEFAULT_AUTHORIZATION_SPI. With the default configuration Domibus will behave as
described in the section 3.2.2.

In order to configure Domibus to use a specific authorisation extension for a domain, the above
property value should be set with the value returned from the getIndentifer() method of the
extension. A description of how to register the extension is available in section 5.2. The property
being domain specific, a Domibus configured for multitenancy can choose different trust strategy
per domain.

SEE ALSO For more about the multitenancy feature of Domibus, see Multitenancy.

The extension developer is free to choose a meaningful name. However, the returned value of the
getIdentifer() function should be compliant with the property file format.

String getIdentifier();

16.3. Building an extension
The recommended way to build an extension is to use Maven and the maven-shade-plugin.

By setting the Domibus main POM as the parent POM, the extension benefits from the dependency
management of Domibus. The following rule should be respected:

• Before using a library within your custom extension, please verify if the library exists within
the Domibus dependencies. If it does, use the same version as the one existing in the
dependency management.

583

• If the needed library exists, set its scope as provided.

The complete pom.xml is detailed in the section 6.1.

16.3.1. Dependency management

The following xml samples highlight the specific aspects of an extension pom configuration:

• Use the main Domibus pom as parent pom. The <modelVersion> must reflect the Domibus
version that the extension is built for:

<xml version="1.0" encoding="UTF-8">
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<parent>
 <artifactId>domibus</artifactId>
 <groupId>eu.domibus</groupId>
 <version>4.2-SNAPSHOT</version>
</parent>
<modelVersion>4.0.0</modelVersion>
<artifactId>your_artifact_id</artifactId>
<name> your_artifact_name</name>

The minimum set of dependencies to implement an extension is the following:

• the $\{project.version} corresponds to the version defined in the <version> tag in the <parent>
block;

• any library provided by Domibus dependency management should have a provided <scope>.

<dependencies>
<!-- Domibus dependencies -->
<dependency>
 <groupId>eu.domibus</groupId>
 <artifactId>domibus-ext-model</artifactId>
 <version>$\{project.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>eu.domibus</groupId>
 <artifactId>domibus-iam-spi</artifactId>
 <version>$\{project.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>eu.domibus</groupId>
 <artifactId>domibus-logging</artifactId>
 <version>$\{project.version}</version>

584

 <scope>provided</scope>
</dependency>
</dependencies>

• domibus-ext-model contains cross module classes. The DTO objects described above are defined
in this library.

• domibus-iam-spi is the core extension library containing the interfaces described above and
their related model.

• domibus-logging is not mandatory but its usage is recommended because it keeps a uniform
logging style with the Domibus core.

The use of other dependencies existing in Domibus dependencies should be configured as follows:
NOTE: The <scope> is set as provided and there is no version definition as it is inherited from the
Domibus dependency management:

<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-context</artifactId>
<scope>provided</scope>
</dependency>

16.3.2. Logging

The logging service is provided in the domibus-logging module, which is released together with the
main Domibus application.

For more information about the domibus-logging module, see the Domibus Software Architecture.

Example of use:

private static final DomibusLogger LOG =
DomibusLoggerFactory.getLogger(BackendWebServiceImpl.class);

16.4. Registering an extension
Domibus has a main configuration folder. For more information, see Domibus Deployment to know
how to configure that folder for the various application servers supported by Domibus.

In the following sections, we will refer to that folder as $\{domibus.config.location}.

16.4.1. Properties configuration

In order to configure Domibus to use a custom trust extension, please adapt the
$\{domibus.config.location}/domibus.properties file. Uncomment the property
domibus.extension.iam.authentication.identifier and set its value to the value returned by the
getIdentifier() method of the TrustServiceSpi interface implementation.

585

In order to configure Domibus to use a custom authorisation extension, please adapt the
$\{domibus.config.location}/domibus.properties file. Uncomment the property
domibus.extension.iam.authorization.identifier and set its value to the to the value returned by the
getIdentifier() method of the AuthorizationServiceSpi interface implementation.

16.4.2. Deployment

To install a custom extension for Domibus, please follow the steps below:

1. Stop the application server.

2. Copy the custom plugin jar file into the plugins folder:
$\{domibus.config.location}/extensions/lib

3. Make sure that the steps in section 5.2.1 are completed.

4. Start the application server.

16.5. POM samples
The following link references the latest production parent pom.xml of Domibus. It contains the
dependency management of Domibus:

• https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/
Domibus-authentication-dss-extension/pom.xml

• The following link references the latest production pom.xml used in the Domibus-
authentication-dss-extension module of Domibus:

• https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/
Domibus-authentication-dss-extension/pom.xml

SEE ALSO Extension Validation

586

https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/Domibus-authentication-dss-extension/pom.xml
https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/Domibus-authentication-dss-extension/pom.xml
https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/Domibus-authentication-dss-extension/pom.xml
https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/domibus/browse/Domibus-authentication-dss-extension/pom.xml

Chapter 17. Extension Validation
In this section we lay out the applicable guidelines that support the technical implementation of an
extension and the relevant technical specifications behind the Domibus Validation Extension
mechanism.

Target Audience

This content is aimed at the Directorate Generals and Services of the European Commission,
Member States (MS) and companies of the private sector wanting to customize the incoming AS4
messages authorisation and signing certificate trust validation. Namely: * Business Architects -
information about the available validation options. * Analysts and developers - information on how
to customize the UserMessage validation implementation. * Testers - information that supports them
in testing the described use cases.

Prior Knowledge

This content assumes the reader is aware of the operational, technical and functional context of
eDelivery Domibus Access Point described in:

• Domibus Software Architecture

• Domibus Administration

17.1. Extension Validation Overview
The validation extension mechanism allows:

• the customisation of the AS4 UserMessage validation prior to it being saved in the database
and delivered to the plugins.

• the validation of the UserMessage and its payloads if requested from a custom plugin.

A validation extension must implement the SPI defined in domibus-MSH-spi module, which is
released together with the main Domibus application.

Any changes to previous API versions will be documented in a migration guide.

17.2. AS4 UserMessage validation
In several scenarios, it is useful to validate the received AS4 UserMessage metadata and associated
payloads before saving them in the database and delivering them to the plugins. A common
example is the scanning of received messages using an antivirus.

Default Domibus behaviour

After an AS4 UserMessage is received via the MSH endpoint, Domibus saves:

• the AS4 metadata in the database and,

• the associated payloads in the database or in the file system.

587

Domibus does not perform any sort of validation in this case, and delivers the received messages to
the configured plugin.

Custom behaviour

You implement a custom validation for the received AS4 UserMessages by creating a custom
Validation Extension,

The validation of the UserMessage can be performed synchronously or asynchronously.

Synchronous validation

the UserMessage is rejected (considered not valid) at the receiving Domibus, acting as C3, a Signal
error message is sent back as a response to the sending C2. This is useful whenever C2 needs to
know synchronously, the UserMessage received is rejected by the validation process in place.

Asynchronous validation

this type of validation can be implemented if the validation of the UserMessage and its associated
payloads are likely to take a long time. Which might be the case when the UserMessage payloads
are scanned using an antivirus. In this scenario, it is no longer possible to synchronously return
a signal with an error to the sending C2 Access Point.

Choosing a scenario

Choosing between synchronous validation and asynchronous validation depends on the business
case in question and the expected processing time of the validation implemented.

17.3. Validation Extension Interface
The Validation Extension SPI has, in this version, one interface:

eu.domibus.core.spi.validation.UserMessageValidatorSpi

Creating a Validator

To create a validator, two conditions must be met:

1. The class implementing the interface must be a bean. One way to achieve this is by annotating
the class with @Service or @Component annotations.

@Component

public class CustomMessageValidation implements UserMessageValidatorSpi
\{

2. The class implementing the interface must have a package name starting with the prefix
eu.domibus:

package eu.domibus.my.custom.validator;

588

17.4. Implementing the Validation Interface
To implement the eu.domibus.core.spi.validation.UserMessageValidatorSpi interface, you have two
possible methods:

• validateUserMessage

• validatePayload

The validateUserMessage method

The validateUserMessage method validates the incoming AS4 UserMessage and its associated
payloads.
If the:

• validation passes, Domibus continues its normal processing, saves the incoming UserMessage in
the database and informs the configured plugin.

• validation fails, the method must throw a UserMessageValidatorSpiException containing the
details of the error. The exception is transformed by Domibus into an EBMS3 exception and a
signal with an error is sent as a response to the sending C2.

Data dictionary

validateUserMessage method’s parameters:

Class Field Description

UserMessageDTO userMessage AS4 UserMessage metadata and its
associated payloads received by C3.

CertificateTrustException class description:

Class Field Data origin Description

UserMessageValidatorSpiException N/A N/A Runtime exception raised in
case the validation fails.

The validatePayload method

The validatePayload method validates an AS4 UserMessage payload on demand, for instance, from
a custom plugin. A typical use case for this method is to scan the payloads using an antivirus
solution.

If the validation fails, the method must throw a UserMessageValidatorSpiException that contains the
details of the error.

Data dictionary

validatePayload method parameters

589

Class Field Description

InputStream payload AS4 UserMessage payload to be
validated on demand.

String mimeType The mime type of the payload.

17.5. Implementing an extension
The recommended way to implement an extension is to use Maven and the maven-shade-plugin.

By setting the Domibus main POM file as the parent POM, your extension benefits from Domibus'
dependency management and, consequently, you need to follow the rule below:

Before using a library from your custom extension, verify if it exists in the Domibus
dependencies.
If the library you want to use is listed as a Domibus dependency:

• Use the same version specified in the dependency management

• Set its scope as provided

SEE ALSO
A sample of a complete POM file (pom.xml) is available. Check the link in the
POM samples section.

17.5.1. Maven Dependency Management

The following XML samples highlight the specific aspects of an extension’s POM configuration:

• Use the main Domibus POM as parent POM. The <modelVersion> must reflect the Domibus
version that the extension is built for:

<xml version="1.0" encoding="UTF-8">
 <project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <parent>
 <artifactId>domibus</artifactId>
 <groupId>eu.domibus</groupId>
 <version5.0>SNAPSHOT</version5.0>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>your_artifact_id</artifactId>
 <name>your_artifact_name</name>

The minimum set of dependencies to implement an extension is the following:

590

https://maven.apache.org/plugins/index.html
https://maven.apache.org/plugins/maven-shade-plugin/

• the $\{project.version} corresponds to the version defined in the <parent>.<version> tag;

• any library provided by Domibus dependency management should have a provided <scope>.

<dependencies>
<!-- Domibus dependencies -->
 <dependency>
 <groupId>eu.domibus</groupId>
 <artifactId>domibus-ext-model</artifactId> ①
 <version>$\{project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>eu.domibus</groupId>
 <artifactId>domibus-MSH-spi</artifactId> ②
 <version>$\{project.version}</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>eu.domibus</groupId>
 <artifactId>domibus-logging</artifactId> ③
 <version>$\{project.version}</version>
 <scope>provided</scope>
 </dependency>
</dependencies>

① domibus-ext-model contains cross-module classes. The DTO objects described above are defined
in this library.

② domibus-MSH-spi is the library containing the interfaces described above and their related model.

③ domibus-logging is not mandatory but its usage is recommended because it keeps an harmonized
logging style with the Domibus core.

Configuring other dependencies

The use of other dependencies existing in Domibus dependencies management should be
configured as follows:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-context</artifactId>
 <scope>provided</scope> ①
</dependency>

① <scope> is set as provided and there is no version attribute as it is inherited from the Domibus
dependency management.

Logging

The logging service is provided in the domibus-logging module, which is released together with the

591

main Domibus application.

Usage example:

private static final DomibusLogger LOG =
DomibusLoggerFactory.getLogger(BackendWebServiceImpl.class);

SEE ALSO
Find more information about the domibus-logging module in the Domibus
Software Architecture.

17.6. Registering an extension
Domibus has a main configuration folder referenced by the domibus.config.location property.

To know how to configure the specified folder for the various application servers supported by
Domibus, see Configuring Domibus.

Generally we use $\{domibus.config.location} as token referring to that folder as the location
depends on where you have installed Domibus in your system.

17.6.1. Deployment

To install a custom validation extension in Domibus, perform the steps below:

1. Stop the application server;

2. Copy the custom plugin’s jar file into the plugins folder:
$\{domibus.config.location}/extensions/lib

3. Start the application server.

592

Properties Reference
The table below details the properties defined in the property file
a|`_path/conf/domibus/domibus.properties that can be used to configure Domibus.

NOTE

All the properties which are commented are considered as default values. Domibus
takes into account all the commented default values on start up. If you want to
modify the default value of a property, then you must uncomment it and change it
to the desired value.

Available References

• Domibus General Properties

• Domibus Super-User Properties

• WS Plugin Properties

593

Chapter 18. Domibus General Properties

Jump to property category:

Mandatory
eArchiving
Error Logs
Message
Retry Strategy
Dynamic Discovery
JMS
Cluster
Dispatcher

Pulling
Retention
Task Executor
Validation
Security
Keystore

Entity Manager
Factory
Entity Manager
Factory
Active MQ
Database
Plugin User Security
GUI

Proxy
Alert Management
Plugin Password
Policy Alert
Management
Plugin Authentication
Module Alert
Management
Split and Join
Metrics
Password Policy

Property Name Description and Usage Default

Properties listed with (*) are mandatory

(*) domibus.alert.sender.smtp.url Smtp server URL for sending alert Installation

dependent

(*) domibus.alert.sender.smtp.port Smtp server port Installation

dependent

(*) domibus.alert.sender.smtp.user Smtp server user Installation

dependent

(*)
domibus.alert.sender.smtp.password

Smtp server user password Installation

dependent

Configuration Property Description and Usage Default

eArchive

domibus.earchive.active Enables/disables eArchiving.

Usage:

• FALSE (default) - eArchiving is
disabled.

• TRUE- eArchiving is enabled.

FALSE

594

Configuration Property Description and Usage Default

domibus.earchive.export.empty Defines whether a batch is created even
if there are no AS4 messages to
archive.

Usage:

• FALSE (default) - no batch or files
are created if there are no AS4
messages.

• TRUE - allows creation of empty
export batches even if no
messages are found. This can be
useful for testing purposes.

FALSE

domibus.earchive.queue.concurrency Defines the eArchive queue
concurrency.
The number of message consumers is
managed based on the volume of
messages to be consumed and on this
property’s definition.

Value Format: <property>=n-M
Where:

• n is initial number of consumers,
and

• M is the maximum umber of
consumers.

1-1

domibus.earchive.notification.queue.
concurrency

eArchive notification queue
concurrency.
These notifications inform of the
success or failure in the archiving of
each message batch enlisted for
archiving.

Value Format: <property>=n-M
Where:

• n is initial number of consumers,
and

• M is the maximum number of
consumers.

1-1

595

Configuration Property Description and Usage Default

domibus.earchive.notification.dlq.co
ncurrency

eArchive dead letter queue
concurrency.

Value Format: <property>=n-M
Where:

• n is initial number of consumers,
and

• M is the maximum number of
consumers.

1-1

domibus.earchive.cron CRON expression defining the
scheduling of the eArchiving
Continuous process job execution.
Default value for this property
expresses the following schedule:
"execute this job every one hour daily".

Value Format: Expected value is a
CRON expression.

Examples

CRON
Expression

Schedule

* * * * * Every minute

0 * * * * Every hour

0 0 * * * Every day at 12:00 AM

0 0 * * FRI At 12:00 AM, only on
Friday

0 0 1 * * At 12:00 AM, on day 1 of
the month

SEE ALSO

Cron Expression
explainers and/or
generators online,
such as
https://devtoolcafe
.com/tools/cron.

0 0 0/1 * * ?

596

https://devtoolcafe.com/tools/cron
https://devtoolcafe.com/tools/cron

Configuration Property Description and Usage Default

domibus.earchive.sanitizer.cron CRON expression defining the
scheduling og the eArchiving Sanity
process job execution.
Default value for this property
expresses the following schedule:
"execute this job every one hour daily".

Value Format:
See domibus.earchive.cron.

0 0 0/1 * * ?

domibus.earchive.retention.cron CRON configuration for executing the
eArchiving cleanup process.
Default value for this property
expresses the following schedule:
"execute this job every two hours
daily".

Value Format:
See domibus.earchive.cron.

0 0 0/2 * * ?

domibus.earchive.batch.size Defines the maximum number of
messages in the eArchiving batch.

5000

domibus.earchive.batch.max Defines the maximum eArchive batches
created per batch.

10

597

Configuration Property Description and Usage Default

domibus.earchive.batch.retry.timeout Delay time in relation to current
execution time after which an
eArchiving exporting mechanism
retrieves messages in their final state.

Usage:

• Assume time at runtime is 14h25, if

◦ retry.timeout=5 → scopes
messages older than 5 minutes
counting from runtime, i.e,
with 14h20 as latest timestamp.
This timestamp is then
rounded down to the earliest
top of the hour, 14h. Resulting
scope is messages timestamped
up to 14h.

◦ retry.timeout=30 → latest
message timestamp considered
is 13h55 which is then rounded
down to 13h. Resulting scope is
messages timestamped up to
13h.

• The time rounding down to
the previous whole hour is
done to limit the messages
search scope.

• -1 disables this functionality
and retrieve the timeout with
the loaded PMode.

0

domibus.earchive.rest.messages.retur
n

For methods: history of exports and
enqueued batches, also return
message list as part of batches objects.

NOTE

in case of large batch
size, returning
message list in all of
the batches in a list
will slow down the
response time of the
services.

FALSE

598

Configuration Property Description and Usage Default

domibus.earchive.notification.timeou
t

Timeout in milliseconds applied to
notification calls to the eArchiving
client.

5000

domibus.earchive.notification.usePro
xy

Enables/disables proxy use when
notifying the eArchiving client.

Usage:

• FALSE (default) - to disable Proxy
use in notification calls to the
eArchiving client.

• TRUE - to enable for Proxy use in
notifications call. This refers to the
Domibus default Proxy configured
via the domibus.proxy set of
properties. Requires
domibus.proxy.enabled to be set to
TRUE and relevant proxy settings
configured, otherwise this setting
will be ignored.

FALSE

domibus.earchive.retention.days Period in days after which a
unarchived batch is considered expired.

30

domibus.earchive.retention.delete.ma
x

Maximum number of eArchive batches
that are deleted when the scheduled job
is run.

SEE ALSO

Related with
domibus.earchive.
retention.cron,
where the
schedule of the
job that deletes
expired batches is
defined.

Value Format: N, where N is an
integer.

5000

599

Configuration Property Description and Usage Default

domibus.earchive.start_date.stopped.
allowed_hours

Start date is the timestamp of the last
message exported by the Continuous
job.

Example: 1) Property is set to 24
hours, 2) at time of inspection the
Sanitizer job determines the start date
has been 28h ago. This means the
Continuous job has stopped and it
triggers this alert.

NOTE
If the Continuous job
stops it requires a
manual restart.

24

domibus.alert.earchive.notification.
active

Enable/disable alerts for when the
system fails to send a notification
regarding eArchiving processes.

TRUE

domibus.alert.earchive.notification.
level

Defines the level of the alert triggered
when the system fails to send a
notification regarding eArchiving
processes.

Possible Values: LOW, MEDIUM or HIGH

SEE ALSO
For more
information, see
Alert Management

MEDIUM

domibus.alert.earchive.notification.
mail.subject

Defines the subject (string) of the email
sent informing that an eArchive alert
for “Notification failed” was triggered.

NOTE

The designation of the
recipient of these
emails is part of Alert
Management.

Default: eArchive client notification
failed

See

description

600

Configuration Property Description and Usage Default

domibus.alert.earchive.messages_non_
final.active

Enable/disable the eArchive “Non-final
message” alert. The “Non-final
message” alert informs you if there are
any non-final messages that were not
exported by the Sanitizer job.

SEE ALSO
For more
information, see
Alert Management

TRUE

domibus.alert.earchive.messages_non_
final.level

Defines the level of the “Non-final
message” alert. The “Non-final
message” alert informs you if there are
any non-final messages that were not
exported by the Sanitizer job.

Possible Values: LOW, MEDIUM or HIGH

HIGH

domibus.alert.earchive.messages_non_
final.mail.subject

Defines the subject (string) of the email
sent informing that an eArchive alert
for “Message not in final state” was
triggered.

NOTE
The recipient for these
emails is part of Alert
Management.

Default: eArchive: message not in
final state

See

description

domibus.alert.earchive.start_date_st
opped.active

Enable/disable the alert that eArchive
Continuous job has stopped.

SEE ALSO

See
domibus.earchive.
start_date.stoppe
d.allowed_hours.

TRUE

domibus.alert.earchive.start_date_st
opped.level

Defines the level of the “Start date
stopped” alert. The “Start date stopped”
alert informs you if the Continuous job
has stopped.

Possible Values: LOW, MEDIUM or HIGH

HIGH

601

Configuration Property Description and Usage Default

domibus.alert.earchive.start_date_st
opped.mail.subject

Defines the subject (string) of the email
sent informing that an eArchive alert
for “Start date stopped” was triggered.
The “Start date stopped” alert informs
you if the Continuous job has stopped.

NOTE
The recipient for these
emails is part of Alert
Management.

Default: eArchive:continuous job
start date stopped

See

description

(*) domibus.alert.receiver.email Defines the recipients alerts emails.

Usage:
Allows multiple values.
Separator: semicolon (;).

Example

name1@gmail.com;name2@gmail.com

See

description

(*) domibus.sample.line • Usage: min: 2 - Máx: 20000

Example

domibus.sample.line=1200

domibus.alert.cleaner.cron CRON configuration for cleaning alerts 0 0 0/1 * * ?

domibus.alert.cleaner.alert.lifetime Lifetime in days of alerts before
cleaning

20

domibus.alert.queue.concurrency Concurrency to process the alerts 1

domibus.alert.retry.cron Frequency of failed alerts retry 0 0/1 * * * ?

domibus.alert.retry.time Elapsed time in minutes between alert
retry

1

domibus.alert.retry.max_attempts Maximum number of attempts for
failed alerts

2

Configuration Property Description and Usage Default

Error Logs

domibus.errorlog.cleaner.cron CRON configuration for cleaning error
logs without message IDs.

0 0 0/1 * * ?

domibus.errorlog.cleaner.older.days CRON job to delete error logs without
message iDs older than this property
days.

100

602

mailto:name2@gmail.com

Configuration Property Description and Usage Default

domibus.errorlog.cleaner.batch.size Maximum number of error logs to be
deleted in each run.

5000

Configuration Property Description and Usage Default

Message

domibus.msh.messageid.suffix Fixed suffix used to generate a random
_Message ID. Message ID format is
UUID@$domibus.msh.messageid.suffix._

domibus.eu

domibus.message.resend.cron Messages resend job execution interval
as a CRON expression.

0 0/1 * * * ?

Configuration Property Description and Usage Default

Retry

domibus.msh.retry.messageExpirationD
elay

The retry strategy grants a few extra
seconds to avoid not sending the last
attempt.

• unit: milliseconds.

5000

(*) domibus.msh.retry.cron It is the retry CRON job to send the
messages. It is set by default to every 5
seconds.

0/5 * * * * ?

domibus.smart.retry.enabled List of parties for which the smart
retry mechanism is enabled.

The smart retry mechanism prevents
message retry to be sent to a party
already identified as not reachable by
the monitoring feature.

Usage:

• Separator: Comma(,).

• Case sensitive.

Example:

domibus-red,domibus-blue,domibus-
green

-

603

Configuration Property Description and Usage Default

domibus.msh.retry.timeoutDelay Retry strategy adds these extra minutes
to the interval used to search back for
messages in WAITING_FOR_RETRY status.

+ For performance reasons, the
default interval is 10 minutes.
When there are older messages in
WAITING_FOR_RETRY (e.g., restored
messages), the interval should be
increased to capture those messages
as well.

10

Configuration Property Description and Usage Default

Dynamic Discovery

domibus.smlzone Set the SMLZone if Domibus needs to be
used under Dynamic discovery model.
This property is only mandatory if an
SML is used.

acc.edelivery.tec
h.ec.europa.eu

domibus.dynamicdiscovery.useDynamicD
iscovery

Whether dynamic discovery is used or
not.

FALSE

domibus.dynamicdiscovery.client.spec
ification

The property specifies the dynamic
discovery client to be used for the
dynamic process. Possible values:
OASIS and PEPPOL.

OASIS

domibus.dynamicdiscovery.peppolclien
t.mode

This information is passed to the
PEPPOL client that needs to know
whether the usage is for PRODUCTION
or TESTING mode.

TEST

domibus.dynamicdiscovery.oasisclient
.regexCertificateSubjectValidation

Apart from validating response of
signer certificates against the
truststore, the Oasis Dynamic
Discovery Client gives the possibility to
add (optional) a regular expression to
validate any certificate metadata
related to the subject of the signer
certificate.

Example:
domibus.dynamicdiscovery.oasisclien.
regexCertificateSubjectValidation=”.$”.or

".*EHEALTH_SMP.$"

-

604

Configuration Property Description and Usage Default

domibus.dynamicdiscovery.peppolclien
t.regexCertificateSubjectValidation

Apart from validating the response of
the signer certificates against the
truststore, the PEPPOL Dynamic
Discovery Client gives the possibility to
add (optional) a regular expression to
validate the subject of the SMP signer
certificate when only the issuer chain is
added to the truststore.

.*

domibus.dynamicdiscovery.client.allo
wedCertificatePolicyOIDs

List of certificate policy OIDs separated
by comma. To trust/allow certificate, at
least one must be in the service
metadata signer’s
certificate policy extension (and
certificate chain).

Empty value disables the certificate
policy validation.

Example:

1.3.6.1.4.1.7879.13.25

-

domibus.dynamicdiscovery.partyid.res
ponder.role

The role of the responder PartyId may
be defined here for both PEPPOL and
OASIS.

http://docs.oasis
-open.org/ebxml-
msg/ebms/v3.0/ns/
core/200704/
responder

domibus.dynamicdiscovery.partyid.typ
e

The type of the PartyId may be defined
here (default values are:
urn:fdc:peppol.eu:2017:identifiers:ap
for PEPPOL and
urn:oasis:names:tc:ebcore:partyid-
type:unregistered for OASIS).

Default:
urn:oasis:names:tc:ebcore:partyid-
type:unregistered

See

description

domibus.dynamicdiscovery.transportpr
ofileas4

The AS4 transport profile by which the
endpoint is identified in the SMP
response.
In PEPPOL the latest value is peppol-
transport-as4-v2_0.

Default: bdxr-transport-ebms3-as4-
v1p0

See

description

605

http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/ns/core/200704/responder

Configuration Property Description and Usage Default

domibus.dynamicdiscovery.lookup.clea
n.retention.cron

CRON expression used for configuring
the the Retention worker scheduling.
Defines the schedule for the Retention
job that deletes:
1) the dynamically discovered
certificates from the truststore
2) the Pmode dynamically discovered
parties.

Default: Schedules execution for
every Saturday at 23:00h.

0 0 23 ? * SAT *

domibus.dynamicdiscovery.lookup.clea
n.retention.hours

Retention in hours before deleting the
following entities:

• the dynamically discovered
certificates from the truststore

• the Pmode the dynamically
discovered parties

• final recipient endpoint URL

Entities are deleted if they are not
looked up during the configured time
interval. If property value is empty,
the entities aren’t deleted.

48

Configuration Property Description and Usage Default

JMS

domibus.jms.queue.pull Domibus internal queue used for
dispatching the pull requests.
Default: domibus.internal.pull.queue

See

description

domibus.jms.internal.command.concurr
ency

Concurrency configured for executing
internal commands.

1-1

Configuration Property Description and Usage Default

Cluster

domibus.deployment.clustered If true the quartz scheduler jobs are
clustered. This property is mandatory,
it should be set to true if the
deployment of Domibus is done in a
cluster.

FALSE

Configuration Property Description and Usage Default

Dispatcher

606

Configuration Property Description and Usage Default

domibus.dispatcher.allowChunking Allows chunking when sending
messages to other Access Points.

TRUE

domibus.dispatcher.chunkingThreshold If domibus.dispatcher.allowChunking is
true, this property sets the threshold at
which messages start getting chunked
(in bytes). Messages under this limit do
not get chunked. Defaults to 100 MB.

104857600

domibus.dispatcher.concurency Specify concurrency limits via a "lower-
upper" String, e.g. "5-10", or a simple
upper limit String, e.g. "10" (the lower
limit will be 1 in this case) when
sending messages to other Access
Points.

5-20

domibus.dispatcher.largeFiles.concur
rency

Specify concurrency limits via a "lower-
upper" String, e.g. "5-10", or a simple
upper limit String, e.g. "10" (the lower
limit will be 1 in this case) when
sending large messages (SplitAndJoin)
to other Access Points.

1

domibus.dispatcher.connection.keepAl
ive

Specifies if the connection will be kept
alive between C2 and C3. Default value
is FALSE.

TRUE

domibus.dispatcher.connectionTimeout For connection between the access
points – C2 & C3. Specifies the amount
of time, in milliseconds, that the
consumer will attempt to establish a
connection before it times out. 0 is
infinite.

240000

domibus.dispatcher.receiveTimeout For connection between the access
points – C2 & C3. Specifies the amount
of time, in milliseconds, that the
consumer will wait for a response
before it times out. 0 is infinite.

240000

domibus.dispatcher.cacheable Cache the dispatcher clients used for
communication between the access
points.

TRUE

domibus.dispatcher.priority.rule1 Priority rule name. The rule name will
be further used to specify additional
rule properties.

-

domibus.dispatcher.priority.rule1.se
rvice

Service value to be matched against the
sent message.

-

607

Configuration Property Description and Usage Default

domibus.dispatcher.priority.rule1.ac
tion

List of actions separated by comma to
be matched against the sent message.

-

domibus.dispatcher.priority.rule1.va
lue

Priority value assigned to the JMS
message. Accepted priority values must
be between 1-9 included.

-

Configuration Property Description and Usage Default

Pulling

domibus.msh.pull.cron CRON expression used for configuring
the message puller scheduling.

Value Format: sSec Min Hour Day
Month weekday Year. The example
shown is running every hour.

0 0 0/1 * * ?

domibus.pull.queue.concurency Number of threads used to parallelize
the pull requests.

1-1

domibus.pull.request.send.per.job.cy
cle

Number of pull requests executed every
CRON cycle.

1

domibus.pull.receipt.queue.concurren
cy

Number of threads used to parallelize
the sending of pull receipts.

1-1

domibus.pull.request.frequency.recov
ery.time

Time in second for the system to
recover its full pull capacity when job
schedule is one execution per second.
Usage: If configured to 0, no
incremental frequency is executed
and the pull pace is executed at its
maximum.

0

domibus.pull.retry.cron Pull Retry Worker execution interval as
a CRON expression.

0/10 * * * * ?

domibus.pull.dynamic.initiator Allow dynamic initiator on pull
requests - 0 or multiple initiators are
allowed in the PMode process.
WARNING: This property is
experimental and should be used only
in very specific scenarios.

FALSE

domibus.pull.multiple_legs Allow multiple legs configured on the
same pull process (with the same
security policy).

FALSE

608

Configuration Property Description and Usage Default

domibus.pull.force_by_mpc _Force message into READY_TO_PULL
when mpc attribute is present.
WARNING: This property is
experimental and should be used only
in very specific scenarios.

TRUE

domibus.pull.mpc_initiator_separator Mpc initiator separator. This is used
when the mpc provides information on
the initiator:
baseMpc/SEPARATOR/partyName.
WARNING: This property is
experimental and should be used only
in very specific scenarios.

PID

Configuration Property Description and Usage Default

Retention

domibus.retentionWorker.cronExpressi
on

CRON expression used for configuring
the retention worker scheduling. The
retention worker deletes the expired
messages (downloaded and not-
downloaded).

0 0/1 * * * ?

domibus.retentionWorker.message.rete
ntion.downloaded.max.delete

This property is used to tweak the
maximum downloaded messages to be
deleted by the retention worker.

50

domibus.retentionWorker.message.rete
ntion.not_downloaded.max.delete

This property is used to tweak the
maximum not-downloaded messages to
be deleted by the retention worker.

50

domibus.retentionWorker.deletion.str
ategy

This property defines the message
deletion strategy. The possible values
are DEFAULT and PARTITIONS. The
deletion strategy PARTITIONS is only
available on Oracle when partitioning
was performed on the tables.

DEFAULT

domibus.retention.jms.concurrency Specify concurrency limits via a "lower-
upper" string, e.g. "5-10", or a simple
upper limit string, e.g. "10" (the lower
limit will be 1 in this case), when
deleting messages. This property is
only used when Deletion Strategy is
DEFAULT.

5-10

609

Configuration Property Description and Usage Default

domibus.retentionWorker.message.rete
ntion.batch.delete

Maximum number of messages to be
deleted by the retention worker in a
bulk delete (when not specified in the
pMode MPC). Default set to 1000,
maximum allowed when using Oracle
database.+ This property is only used
when the deletion strategy is DEFAULT.

1000

Configuration Property Description and Usage Default

Task Executor

domibus.taskExecutor.threadCount Tomcat only: customize the task
executor threads count.

50

domibus.mshTaskExecutor.threadCount Property to customize the msh
endpoint task executor threads count.
Defaults to 100.

100

Configuration Property Description and Usage Default

Validation

dateTime format Pattern accepted by Domibus for AS4
connection for the type dateTime.

Possible values:
2020-06-02T20:12:34.5678901
2020-06-02T20:12:34.5678901.234
2020-06-02T20:12:34.5678901.234567
2020-06-
02T20:12:34.5678901.234567890
2020-06-02T20:12:34.5678901Z
2020-06-02T20:12:34.5678901.234Z
2020-06-
02T20:12:34.5678901.234567Z
2020-06-
02T20:12:34.5678901.234567890Z

Default:
yyyy-MM-
dd’T’HH:mm:ss[.SSSSSSSSS][.SSSSSS][.S
SS][z]

See

description

610

Configuration Property Description and Usage Default

domibus.sendMessage.messageIdPattern When an initiator backend client
submits messages to Domibus for
transmission, with the message id field
populated, then the message id should
be RFC2822 compliant. The pattern
specified here ensures this validation.

This field is optional. In case the
existing client does not match this
message id pattern during submission,
then this property can be omitted to
skip the validation.

^[\\x20-\\x7E]*$

domibus.receiver.certificate.validat
ion.onsending

If activated Domibus will verify before
sending a User Message if the receiver’s
certificate is valid and not revoked. If
the receiver’s certificate is not valid or
it has been revoked, Domibus will not
send the message and it will mark it as
SEND_FAILURE.

TRUE

domibus.sender.certificate.validatio
n.onsending

If activated, Domibus will verify before
sending a User Message if his own
certificate is valid and not revoked. If
the certificate is not valid or it has been
revoked, Domibus will not send the
message and it will mark it as
SEND_FAILURE (default is TRUE).

TRUE

domibus.sender.certificate.validatio
n.onreceiving

If activated, Domibus will verify before
receiving a User Message if the sender’s
certificate is valid and not revoked. If
the certificate is not valid or it has been
revoked, Domibus will not accept the
message (default is true).

TRUE

domibus.sender.trust.validation.onre
ceiving

Enable/disable both the authorization
and the validation checks on the
sender’s certificate.
When set to FALSE, none of the other
checks on the sender’s certificate are
performed.

TRUE

domibus.sender.trust.validation.trus
tstore_alias

Check that sender’s certificate matches
the certificate stored in the truststore.
The certificate is loaded from the
truststore based on the alias (party
name).

TRUE

611

Configuration Property Description and Usage Default

domibus.sender.trust.validation.expr
ession

When this property is not empty,
Domibus will verify, before receiving a
message, if the subject of the sender’s
certificate matches the regular
expression.

Empty (no regular
expression)

domibus.sender.trust.validation.allo
wedCertificatePolicyOIDs

List of certificate policy OIDs separated
by comma. When this property is not
empty, Domibus will verify before
receiving a message that the certificate
contains at least one certificate policy
OID in certificatePolicy extension.

Empty (no
certificate policy
is required)

domibus.sender.certificate.subject.c
heck

Check that the subject of the sender’s
certificate contains the alias (party
name). Because this check is very
restrictive, it is set by default to FALSE.

FALSE

Configuration Property Description and Usage Default

JMS

domibus.listPendingMessages.maxCount This property specifies the maximum
number of messages that would be
served when the 'listPendingMessages'
operation is invoked. Setting this
property is expected to avoid timeouts
due to huge result sets being served.

A value of 0 would return all the
pending messages. This property is
optional. Omitting this property would
default the result set size to 500.

NOTE

For Tomcat server, the
maximum number of
shown messages in
queue monitoring is
defined by the
‘domibus.listPendingM
essages.maxCount’
property.

• 10000 - Tomcat

• 500 - WildFly,
Weblogic

612

Configuration Property Description and Usage Default

domibus.jms.queue.maxBrowseSize The maximum number of messages to
be listed from the JMS queues. Setting
this property is expected to avoid
timeouts due to huge results being
served.

Setting this property to zero returns
all messages.

10000

domibus.jms.queue.alert Domibus internal queue used for alerts. domibus.internal.
alert.queue

domibus.jms.internalQueue.expression Regular expression used for identifying
the internal queues in the Admin Page.

`domibus\.(intern
al

DLQ backend\.jms notification\.jms

notification\.webservice notification\.kerkovi notification\.filesy
stem)`

domibus.jms.connectionFactory.sessio
n.cache.size

Defines JMS Session cache size. 1

domibus.jms.XAConnectionFactory.maxP
oolSize

Tomcat only
The max pool size of the JMS
connection factory.

100

Configuration Property Description and Usage Default

Security

domibus.auth.unsecureLoginAllowed The property specifies if authentication
is required or not.

TRUE

domibus.console.login.maximum.attemp
t

Maximum connection attempts before
the account gets locked (suspended).

5

domibus.console.login.suspension.tim
e

Property defining how many seconds
the account remains locked
(suspended) before it is automatically
unlocked by the system.

3600

domibus.account.unlock.cron CRON job that determines the interval
at which the system checks for account
to be reactivated.

0 0/1 * * * ?

domibus.certificate.revocation.offse
t

When a certificate is about to expire,
the system will log a warning. The
warning will appear as from the
expiration date minus the offset in
days.

15

domibus.certificate.check.cron CRON expression that specifies the
frequency of the certificate revocation
check.

0 0 0/1 * * ?

613

Configuration Property Description and Usage Default

domibus.security.provider.bouncyCast
le.position

Position of the Bouncy Castle in the
security list.

NOTE

The performance
decreases as the
Bouncy Castle
provider is moved
down in the list.

1

domibus.certificate.crl.excludedProt
ocols

The list of protocols to be excluded
from CRL list.

Possible values: HTTP, HTTPS, FTP,
FILE, LDAP, etc).

-

domibus.password.encryption.active Domibus encrypts the configured
passwords if activated.

FALSE

domibus.password.encryption.properti
es

Enable this property if the password
encryption is activated. Add the list of
configured passwords to be encrypted.

Server-dependent

value

domibus.password.encryption.key.loca
tion

The location where the encrypted key is
stored.

Default:
$\{domibus.config.location}/internal
/encrypt

See

description

Configuration Property Description and Usage Default

Keystore/Truststore

domibus.security.keystore.location The location of the keystore.

Default:
$\{domibus.config.location}/keystore
s/gateway_keystore.jks

See

description

domibus.security.keystore.type The type of the used keystore. jks

614

Configuration Property Description and Usage Default

domibus.security.keystore.password The password used to load the
keystore.

Accepted characters are:

!\"#$%&\'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKL
MNOPQRSTUVWXYZ[\\]^_`abcdefghij
klmnopqrstuvwxyz\{|}~

NOTE

\\ \' and \" must be
escaped in
domibus.properties
file.

test123

domibus.security.key.private.alias The alias from the keystore of the
private key.

Accepted characters are:

!\"#$%&\'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKL
MNOPQRSTUVWXYZ[\\]^_`abcdefghij
klmnopqrstuvwxyz\{|}~

NOTE

\\ \' and \" must be
escaped in
domibus.properties
file.

blue_gw

domibus.security.key.private.passwor
d

The private key password. test123

domibus.security.truststore.location The location of the truststore. $\{domibus.config
.location}/keysto
res/gateway_trust
store.jks

domibus.security.truststore.type The type of truststore in use. jks

615

Configuration Property Description and Usage Default

domibus.security.truststore.password The password used to load the
trustStore.

Accepted characters are:

!\"#$%&\'()*+,-
./0123456789:;<=>?@ABCDEFGHIJKL
MNOPQRSTUVWXYZ[\\]^_`abcdefghij
klmnopqrstuvwxyz\{|}~

NOTE

\\ \' and \" must be
escaped in
domibus.properties
file.

test123

Configuration Property Description and Usage Default

EntityManagerFactory

domibus.entityManagerFactory.package
sToScan

Packages to be scanned (comma-
separated) by the
EntityManagerFactory.

eu.domibus

domibus.entityManagerFactory.jpaProp
erty.hibernate.connection.driver_cla
ss

The JDBC driver class used for
connecting to the database.

-

domibus.entityManagerFactory.jpaProp
erty.hibernate.dialect

This property makes Hibernate
generate the appropriate SQL for the
chosen database.

-

domibus.entityManagerFactory.jpaProp
erty.hibernate.format_sql

Pretty print the SQL in the log and
console.

TRUE

domibus.entityManagerFactory.jpaProp
erty.transaction.factory_class

The classname of a TransactionFactory
to use with Hibernate Transaction API.

-

domibus.entityManagerFactory.jpaPrope
rty.hibernate.transaction.manager_loo
kup_class

The classname of the
TransactionManagerLookup.

-

Configuration Property Description and Usage Default

ActiveMQ

activeMQ.broker.host Tomcat only
The host of the JMS broker.

localhost

activeMQ.brokerName Tomcat only
The name of the JMS broker.

localhost

616

Configuration Property Description and Usage Default

activeMQ.embedded.configurationFile Tomcat only
The configuration file of the embedded
ActiveMQ broker. In case an external
broker is used this property is not
needed and it should be deleted from
the property file.

Default: file:///
$\{domibus.config.location}/
internal/activemq.xml

See

description

activeMQ.JMXURL Tomcat only: the service URL of the
MBeanServer.

Default:
service:jmx:rmi:///jndi/rmi://$\{act
iveMQ.broker.host}:$\{activeMQ.conne
ctorPort}/jmxrmi

See

description

activeMQ.connectorPort Tomcat only The port that the JMX
connector will use for connecting to
ActiveMQ.

1199

activeMQ.transportConnector.uri Tomcat only:
The connection URI that the clients can
use to connect to an ActiveMQ broker
using a TCP socket.

tcp://$\{activeMQ
.broker.host}:616
16

activeMQ.username Tomcat only: The username that is
allowed to connect to the ActiveMQ
broker.

domibus

activeMQ.password Tomcat only:
The password of the username defined
in the activeMQ.username property. It is
recommended to change the password
value.

-

activeMQ.persistent The persistence enabled flag. TRUE

Configuration Property Description and Usage Default

Database

domibus.datasource.xa.xaDataSourceCl
assName

Tomcat only (XA datasource) The fully
qualified underlying XADataSource
class name.

Default:
com.mysql.jdbc.jdbc2.optional.MysqlX
ADataSource

See

description

617

file:///$\{domibus.config.location}/internal/activemq.xml
file:///$\{domibus.config.location}/internal/activemq.xml
file:///$\{domibus.config.location}/internal/activemq.xml

Configuration Property Description and Usage Default

domibus.datasource.xa.maxLifetime Tomcat only (XA datasource) Sets the
maximum amount of seconds that a
connection is kept in the pool before it
is destroyed automatically.

60

domibus.datasource.xa.minPoolSize Tomcat only (XA datasource) Sets the
minimum pool size. The amount of
pooled connections will not go below
this value. The pool will open this
amount of connections during
initialization.

5

domibus.datasource.xa.maxPoolSize Tomcat only (XA datasource) Sets the
maximum pool size. The amount of
pooled connections will not go above
this value.

100

domibus.database.serverName Tomcat only (XA datasource) The host
name or the IP address of the database
server.

localhost

domibus.database.port Tomcat only (XA datasource) The port
number of the database server.

3306

domibus.datasource.xa.property.user Tomcat only (XA datasource) A user
who has access to the Domibus
database schema.

edelivery_user

domibus.datasource.xa.property.passw
ord

Tomcat only (XA datasource) The
password of the user defined in the
domibus.datasource.xa.property.user
property.

edelivery_passwor
d

domibus.datasource.xa.property.url Tomcat only (XA datasource) The
JDBC URL connection. It re-uses the
properties for the user and password
defined above.

Default:
jdbc:mysql://$\{domibus.database.ser
verName}:$\{domibus.database.port}/d
omibus_schema?pinGlobalTxToPhysicalC
onnection=true

See

description

domibus.database.schema Tomcat only The Domibus database
schema.

domibus_schema

domibus.datasource.driverClassName Tomcat only (Non-XA datasource) The
JDBC driver class name.

com.mysql.jdbc.Dr
iver

618

Configuration Property Description and Usage Default

domibus.datasource.url Tomcat only (Non-XA datasource): the
JDBC URL connection.

Default:
jdbc:mysql://localhost:3306/domibus_s
chema?useSSL=false

See

description

domibus.datasource.user Tomcat only (Non-XA datasource) A
user who has access to the Domibus
database schema.

edelivery_user

domibus.datasource.password Tomcat only (Non-XA datasource) The
password of the user defined in the
domibus.datasource.user property.

edelivery_passwor
d

allowPublicKeyRetrieval Allows the client to automatically
request the public key from the server if
set to TRUE (Optional).

TRUE

domibus.properties.passwordPolicy.pa
ttern

Regular expression defining the
complexity rules enforced on all
properties in which passwords are set.

Default expression description:

• Minimum length: 16 characters

• Maximum length: 32 characters

• At least one letter in lowercase

• At least one letter in uppercase

• At least one digit

• At least one special character

Usage:

• Set
domibus.properties.passwordPolicy
.enforce to TRUE to keep Domibus
from starting while there are
policy non-conformant passwords
in the properties files.

^(?=.*[0-9])(?=.*[a-
z])(?=.*[A-
Z])(?=.*[~`!@#$%
^&+=\\-
_<>.,?:;*/()|\\[\\]\{}'"
\\\\]).\{16,32}$

619

Configuration Property Description and Usage Default

domibus.properties.passwordPolicy.en
force

Defines if the password policy defined
via
domibus.properties.passwordPolicy.pa
ttern is enforced. On start, Domibus
evaluates the passwords set on the
properties files against the defined
policy and it issues a warning for each
password not conforming to that
policy. If set to:

• TRUE - and finds non-complying
passwords, Domibus stops.

• FALSE - only issues warnings and
proceeds working.

FALSE

domibus.database.general.schema Multitenancy only Schema used by
Domibus to configure the association of
users to domains, the super users and
other things that are not related to a
specific domain. This property is
mandatory for Multitenancy mode.

general_schema

Configuration Property Description and Usage Default

Plugin User Security

Properties for configuring plugin users security policy

domibus.plugin.login.maximum.attempt Plugin user security property:
Number of console login attempts
before the user is deactivated.

5

domibus.plugin.login.suspension.time Plugin user security property: Time
in second for a suspended plugin user
to be reactivated. (1 hour per default if
property is not set, if 0 the user will not
be reactivated).

3600

domibus.plugin.account.unlock.cron Plugin user security property: CRON
job that determines the interval at
which the system checks for plugin
account to be reactivated.

0 0/1 * * * ?

Configuration Property Description and Usage Default

GUI

domibus.ui.title.name Property where you can specify the title
in the Tab of Admin Console.

Domibus

620

Configuration Property Description and Usage Default

domibus.ui.pages.messageLogs.countLi
mit

The limit when calculating the number
of message logs (disabled when 0).

50000

domibus.ui.pages.messageLogs.interva
l.default

Description. ``

domibus.ui.csv.rows.max Description ``

Configuration Property Description and Usage Default

Proxy Settings

In case your Access Point has to use a proxy server you can configure it with these properties.

domibus.proxy.enabled Specifies if Domibus default proxy is
enabled.

Values are TRUE or FALSE, depending on
whether you need to use proxy or not.

FALSE

domibus.proxy.http.host Host name of the proxy server. -

domibus.proxy.http.port Port of Proxy server. -

domibus.proxy.user Username for authentication on the
proxy server.

-

domibus.proxy.password Defines Domibus proxy’s password. -

domibus.proxy.nonProxyHosts Indicates that hosts should be accessed
directly (as opposed to via the proxy).

-

Configuration Property Description and Usage Default

Alert management

domibus.alert.active Enable/disable the entire alert module. TRUE

domibus.alert.mail.sending.active Allow to disable alert mail sending. FALSE

domibus.alert.mail.smtp.timeout SMTP Socket I/O timeout value in
milliseconds.

5000

domibus.alert.msg.communication_fail
ure.active

Enable/disable the messaging alert
module.

TRUE

domibus.alert.msg.communication_fail
ure.states

Message status change that should be
notified by the messaging alert module.

Comma-separated.

SEND_FAILURE

domibus.alert.msg.communication_fail
ure.level

Alert levels corresponding to message
status defined in previous property
(domibus.alert.msg.communication_fail
ure.states).

Possible Values: HIGH, MEDIUM, LOW.

HIGH

621

Configuration Property Description and Usage Default

domibus.alert.msg.communication_fail
ure.mail.subject

Messaging alert module mail subject. Message status
change

domibus.alert.user.login_failure.act
ive

Enable/disable the login failure alert of
the authentication module.

TRUE

domibus.alert.user.login_failure.lev
el

Alert level for login failure. LOW

domibus.alert.user.login_failure.mai
l.subject

Login failure mail subject. Login failure

domibus.alert.user.account_disabled.
active

Enable/disable the account disable alert
of the authentication module.

TRUE

domibus.alert.user.account_disabled.
level

Alert level for account disabled. HIGH

domibus.alert.user.account_disabled.
moment

Time when the account disabled alert
should be triggered.

Possible values: AT_LOGON,
WHEN_BLOCKED

Usage:

• AT_LOGON - triggers an alert each
time a user tries to log in into a
disabled account.

• WHEN_BLOCKED - triggers when a user
account is disabled.

WHEN_BLOCKED

domibus.alert.user.account_disabled.
subject

Account disabled mail subject. Account disabled

domibus.alert.cert.imminent_expirati
on.active

Enable/disable the imminent certificate
expiration alert of certificate scanner
module.

TRUE

domibus.alert.cert.imminent_expirati
on.frequency_days

Frequency in days between alerts. 14

domibus.alert.cert.imminent_expirati
on.level

Certificate imminent expiration alert
level.

HIGH

domibus.alert.cert.imminent_expirati
on.mail.subject

Certificate imminent expiration mail
subject.

Certificate
imminent
expiration

domibus.alert.cert.expired.active Enable/disable the certificate expired
alert of certificate scanner module.

TRUE

domibus.alert.cert.expired.frequency
_days

Frequency in days between alerts. 7

domibus.alert.cert.expired.duration_d
ays

Number of days after the revocation
when the system should trigger alerts
for the expired certificate.

90

622

Configuration Property Description and Usage Default

domibus.alert.cert.expired.level Certificate expired alert level. HIGH

domibus.alert.cert.expired.mail.subj
ect

Certificate expired mail subject. Certificate
expired

domibus.alert.partition.expiration.f
requency_days

Frequency in days between alerts sent
when attempting to delete a partition
that contains messages not in final
state.

1

Configuration Property Description and Usage Default

Alert management for Plugin Password policy

Properties for configuring alerts for plugin users security policy.

domibus.alert.plugin_password.immine
nt_expiration.active

Enable/disable the imminent password
expiration alert.

TRUE

domibus.alert.plugin_password.immine
nt_expiration.delay_days

Number of days before expiration as
for how long before expiration the
system should send alerts.

15

domibus.alert.plugin_password.immine
nt_expiration.frequency_days

Frequency in days between alerts. 3

domibus.alert.plugin_password.immine
nt_expiration.level

Password imminent expiration alert
level.

-

domibus.alert.plugin_password.immine
nt_expiration.mail.subject

Password imminent expiration mail
subject.

Password imminent
expiration

domibus.alert.plugin_password.expire
d.active

Enable/disable the imminent password
expiration alert.

TRUE

domibus.alert.plugin_password.expire
d.delay_days

Number of days after expiration as for
how long the system should send alerts.

30

domibus.alert.plugin_password.expire
d.frequency_days

Frequency in days between alerts. 5

domibus.alert.plugin_password.expire
d.level

Password expiration alert level. LOW

domibus.alert.plugin_password.expire
d.mail.subject

Password expiration mail subject. Password expired

Configuration Property Description and Usage Default

Alert management:authentication module for plugin users

Properties for configuring alerts for plugin user authentication

domibus.alert.plugin.user.login_fail
ure.active

Enable/disable the login failure alert of
the authentication module.

-

domibus.alert.plugin.user.login_fail
ure.level

Alert level for login failure. LOW

623

Configuration Property Description and Usage Default

domibus.alert.plugin.user.login_fail
ure.mail.subject

Login failure mail subject. Login failure

domibus.alert.plugin.user.account_di
sabled.active

Enable/disable the account disable alert
of the authentication module.

TRUE

domibus.alert.plugin.user.account_di
sabled.level

Alert level for account disabled. HIGH

domibus.alert.plugin.user.account_di
sabled.moment

Time when the account disabled alert
should be triggered.

Possible values: AT_LOGON,
WHEN_BLOCKED

Usage:

• AT_LOGON - triggers an alert each
time a user tries to log in into a
disabled account.

• WHEN_BLOCKED - triggers when a user
account is disabled.

WHEN_BLOCKED

domibus.alert.plugin.user.account_di
sabled.subject

Account disabled mail subject. Account disabled

Configuration Property Description and Usage Default

SplitAndJoin

domibus.attachment.temp.storage.loca
tion

SplitAndJoin only: Domibus uses a file
system location for storing temporary
data when processing SplitAndJoin
messages. In a cluster configuration
the temporary file system storage needs
to be accessible by all the nodes from
the cluster.

-

domibus.dispatcher.splitAndJoin.conc
urrency

SplitAndJoin only: specify concurrency
limits via a "lower-upper" String, e.g.
"5-10", or a simple upper limit String,
e.g. "10" (the lower limit will be 1 in
this case) when sending the
SourceMessage receipt (Split and Join)
to other Access Points.

1

domibus.dispatcher.splitAndJoin.payl
oads.schedule.threshold

SplitAndJoin only: The threshold value
in MB to switch from synchronous to
asynchronous saving of outgoing
SourceMessage payloads.

1000

624

Configuration Property Description and Usage Default

domibus.splitAndJoin.receive.expirat
ion.cron

SplitAndJoin only: CRON expression
that specifies the frequency of the
checking if the joinInterval has expired.

0 0/5 * * * ?

Configuration Property Description and Usage Default

Metrics

Properties related to Metrics configuration.

domibus.metrics.jmx.reporter.enable Enable jmx reporter for dropwizard
metrics. It is not recommended to
gather metrics via JMX. However, it
can be helpful for development and
browsing purposes.

FALSE

domibus.metrics.sl4j.reporter.enable Enable sl4j reporter for dropwizard
metrics.

TRUE

domibus.metrics.sl4j.reporter.period
.time.unit

The time unit used to configure the
frequency of writing statistics into the
statistic.log file.

Possible values: SECONDS,MINUTES,
HOURS.

MINUTES

domibus.metrics.sl4j.reporter.period
.number

The number of period of the previously
time unit used to configure the
frequency of writing statistics into the
statistic.log file. For example, the
default configuration will write
statistics with the file every 1 MINUTE.

1

domibus.metrics.monitor.memory Enable/disable dropwizard memory
metrics.

TRUE

domibus.metrics.monitor.gc Enable/disable dropwizard GC metrics. TRUE

domibus.metrics.monitor.cached.threa
ds

Activate dropwizard cached threads
metrics.

TRUE

domibus.metrics.monitor.jms.queues Activate dropwizard JMS Queues
metrics.

TRUE

domibus.metrics.monitor.jms.queues.r
efresh.period

Amount of time (in seconds) the JMS
count will be cached. Count is not
cached.

0

domibus.metrics.monitor.jms.queues.s
how.dlq.only

Add metrics for only for DLQ queue
count only.

TRUE

Configuration Property Description and Usage Default

Password Policy

625

Configuration Property Description and Usage Default

Properties related to admin user security policy management.

domibus.passwordPolicy.pattern Password minimum complexity rules
(empty to disable password complexity
enforcement).

^(?=.*[0-
9])(?=.*[a-
z])(?=.*[A-
Z])(?=.*[~`!@
#$%^&+=\\-
_<>.,?:;*/()|
\\[\\]\{}'"\\
\\]).\{8,32}$

domibus.passwordPolicy.validationMes
sage

Password validation message in case it
does not meet the rules the
requirements listed below.

Password requirements

• Minimum length: 8 characters.

• Maximum length: 32 characters.

• At least one letter in lowercase.

• At least one letter in uppercase.

• At least one digit.

• At least one special character.

-

domibus.passwordPolicy.expiration Password expiration policy in days.
Usage:
Set as 0 to disable.

90

domibus.passwordPolicy.defaultPasswo
rdExpiration

Default password expiration policy in
days.

Usage:
Set as 0 to disable.

15

domibus.passwordPolicy.warning.befor
eExpiration

Password expiration policy: number of
days before expiration when the system
warns users at login.

15

domibus.passwordPolicy.dontReuseLast Password reuse policy: do not reuse
any of the last N passwords.

Usage:
Set as 0 to disable.

5

domibus.passwordPolicy.checkDefaultP
assword

Default password validation policy
enabled/disabled.

TRUE

626

Configuration Property Description and Usage Default

domibus.passwordPolicies.check.cron CRON expression that specifies the
frequency of the password expiration
check.

0 0 0/1 * * ?

Configuration Property Description and Usage Default

Plugin Users Password Policy

Properties related to plugin user security policy management

domibus.plugin.passwordPolicy.patter
n

Password minimum complexity rules.

Usage:
Leave empty to disable password
complexity enforcement.

^(?=.*[0-
9])(?=.*[a-
z])(?=.*[A-
Z])(?=.*[~`!@
#$%^&+=\\-
_<>.,?:;*/()|
\\[\\]\{}'"\\
\\]).\{8,32}$

domibus.plugin.passwordPolicy.valida
tionMessage

Password validation message in case it
does not meet the rools stated opposite
left.

Password requirements

Minimum length: 8 characters.
Maximum length: 32 characters.
At least one letter in lowercase.
At least one letter in uppercase.
At least one digit.
At least one special character.

-

domibus.plugin.passwordPolicy.expira
tion

Password expiration policy in days.

Usage:
Set as 0 to disable.

90

domibus.plugin.passwordPolicy.defaul
tPasswordExpiration

Default password expiration policy in
days.

Usage:
Set as 0 to disable.

1

domibus.plugin.passwordPolicy.dontRe
useLast

Password reuse policy: do not reuse
any of the last N passwords.

Usage:
Set as 0 to disable.

5

627

Configuration Property Description and Usage Default

Payload

domibus.payload.encryption.active Whether Domibus encrypts the
payloads stored in the database or file
system.

FALSE

domibus.payload.temp.job.retention.e
xclude.regex

Temporary files are excluded from
deletion if this regular expression
matches the file name.

ehcache-sizeof-
agent

domibus.payload.temp.job.retention.d
irectories

List of directories to check for cleaning
the temporary files.

domibus.attachmen
t.temp.storage.lo
cation

domibus.payload.temp.job.retention.c
ron

CRON expression that specifies the
frequency of checking if the temporary
payloads have expired.

0 0/10 * * * ?

domibus.payload.temp.job.retention.e
xpiration

The threshold in minutes for
considering the temporary payloads as
expired. The expired temporary
payloads are scheduled to be deleted.

120

628

Configuration Property Description and Usage Default

domibus.attachment.storage.location Path to preferred location for storing
message’s payloads.

Usage:
You can configure Domibus to save
the message payloads in the File
System instead of in the Database. We
recommend this setting when
payloads of exchanged messages are
in excess of 30MB.

In order to enable the file system
storage please add the following
property:

domibus.attachment.storage.loca
tion=<your_file_system_location
>

where:
your_file_system_location is the
location on the file system where the
payloads will be saved.

This property expects an absolute
path when specifying
your_file_system_location. Domibus
does not allow using relative paths
when specifying payload storage
locations.

IMPORTANT

In a cluster
configuration
the file system
storage needs
to be accessible
by all the nodes
from the
cluster.

WARNING

\\ \ and \ must
be escaped in
domibus.propertie
s file. So, when
specifying
your_file_system_
location, use /

-

629

Configuration Property Description and Usage Default

DSS

domibus.dss.ssl.trust.store.path TLS truststore for DSS data-loader.
$\{domibus.co
nfig.location
}/keystores/d
ss-tls-
truststore.p1
2

domibus.dss.ssl.trust.store.password TLS truststore password for DSS data-
loader.

dss-tls

domibus.dss.ssl.trust.store.type TLS truststore type DSS dataloader. PKCS12

domibus.dss.ssl.cacert.path Override cacert truststore path if
needed.

-

domibus.dss.ssl.cacert.type Cacert truststore type. JKS

domibus.dss.ssl.cacert.password Cacert truststore password.

IMPORTANT

It is
recommended
to change the
password
value.

-

domibus.dss.perform.crl.check Enable/disable CRL check within DSS
performed by Domibus.

FALSE

Configuration Property Description and Usage Default

Connection monitoring

domibus.monitoring.connection.cron CRON expression that specifies the
frequency of test messages sent to
monitor the C2-C3 connections.

0 0 0/2 ? * * *

domibus.monitoring.connection.party.
enabled

Specifies the parties for which to
monitor the connection (comma-
separated list).

-

Configuration Property Description and Usage Default

Extensions

domibus.extension.iam.authentication
.identifier

Name of the authentication extension
used to verify the chain trust.
Defaults to CXF.

DEFAULT_AUTHENTIC
ATION_SPI

630

Configuration Property Description and Usage Default

domibus.extension.iam.authorization.
identifier

Name of the authorization extension
used to check incoming message
authorization.
Default is truststore check.

DEFAULT_AUTHORIZA
TION_SPI

Configuration Property Description and Usage Default

Various

messageFactoryClass The factory for creating SOAPMessage
objects.

Defaults:

• Tomcat/WebLogic:
com.sun.xml.internal.messaging.sa
aj.soap.ver1_2.SOAPMessageFactory
1_2Impl

• WildFly:
com.sun.xml.messaging.saaj.soap.v
er1_2.SOAPMessageFactory1_2Impl

See

description

domibus.jmx.user WebLogic specific
The user that will be used to access the
queues via JMX.

jmsManager

domibus.jmx.password WebLogic specific
The associated password of the
configured`domibus.jmx.user.`

jms_Manager1

domibus.plugin.notification.active If disabled, Domibus will not notify the
plugins when the state of the User
Message changes.

TRUE

domibus.nonrepudiation.audit.active If disabled, Domibus will not save the
non-repudiation audit data.

TRUE

(*)
domibus.dispatch.ebms.error.unrecove
rable.retry

This property should be set to true if
Domibus needs to retry sending the
failed messages.

TRUE

domibus.userInput.blackList List of characters that are not accepted
for user input in admin console. '\u0022()\{}[

];,+=%&*#<>/\
\

domibus.internal.queue.concurrency Number of threads used to parallelize
the dispatching of messages to the
plugins.

3-10

631

Configuration Property Description and Usage Default

domibus.logging.ebms3.error.print Prints the raw XML response in the logs
in case of EBMS3 error on
receiver/sender side (if eu.domibus is
put at least on ERROR).

TRUE

domibus.logging.payload.print Prints the AS4 payload in the logs while
org.apache.cxf is set to at least INFO in
logback.xml.

FALSE

domibus.logging.metadata.print Prints the AS4 metadata in the logs
when org.apache.cxf is set to at least
INFO in logback.xml.

TRUE

domibus.logging.cxf.limit The size limit at which messages are
truncated in the logs when
org.apache.cxf is set to at least INFO in
logback.xml.

Usage:
Number between 0 and 1000000000
bytes.

18000

domibus.connection.cxf.ssl.offload.e
nable

Enables offloading the SSL connection
to another application (e.g. SSL
Forward Proxy).

FALSE

domibus.property.length.max The maximum length accepted for a
property value, in bytes.

10000

domibus.property.backup.period.min Description ``

domibus.property.backup.period.max Description ``

domibus.userInput.whiteList Characters that are accepted in user
input

-

domibus.internal.queue.concurrency Number of threads used to parallelize
the dispatching of messages to the
plugins.

3-10

domibus.property.validation.enabled Enables the validation of domibus
properties values (default to TRUE).

TRUE

domibus.instance.name Domibus instance/environment name. Domibus

domibus.sendMessage.failure.delete.p
ayload

Defines if message payload is deleted
on send failure. Defaults to FALSE (the
admin can put the message back in
the send queue).

FALSE

domibus.sendMessage.success.delete.p
ayload

Defines if message payload is deleted
on send success. Set to TRUE by default
to keep backwards compatibility.

TRUE

632

Configuration Property Description and Usage Default

domibus.sendMessage.attempt.audit.ac
tive

If disabled, Domibus will not save the
message attempt details when there is
a failure sending a message.

TRUE

domibus.synchronization.timeout Description ``

compressionBlacklist The list of mime-types that will not be
compressed (in outgoing messages)
even if compression is turned on for the
given message.

application/v
nd.etsi.asic-
s+zip,image/j
peg

Super-user specific Domibus properties

The properties that are specific to super users (ROLE_AP_ADMIN) are defined in a separate file called
super-domibus.properties, a file that can be found along with the others. See Domibus Super-User
Properties.

These properties are related to password policy and alert configuration for super users. For more
information see, Users.

633

Chapter 19. Domibus Super-User Properties
Property Name Description and Usage Default

domibus.alert.super.cleaner.cron Cron configuration for cleaning superuser
alerts.

0 0 0/1 * * ?

domibus.alert.super.cleaner.aler
t.lifetime

Lifetime in days of superuser alerts. 20

domibus.alert.super.active Enable/disable the super user alert module. TRUE

domibus.alert.super.mail.sending
.active

Enable/disable the superuser alert mail
sending.

FALSE

domibus.alert.super.retry.cron Frequency of failed super user alert retry. 0 0/1 * * * ?

domibus.alert.super.retry.time Elapsed time in minutes between super user
alert retry.

1

domibus.alert.super.retry.max_at
tempts

Maximum number of attempts for failed
super user alert

2

domibus.alert.super.user.login_f
ailure.active

Enable/disable the login failure super user
alert of the authentication module.

TRUE

domibus.alert.super.user.login_f
ailure.level

Super user alert level for login failure. LOW

domibus.alert.super.user.login_f
ailure.mail.subject

Super user login failure alert mail subject. Super user login
failure

domibus.alert.super.user.account
_disabled.active

Enable/disable the account disabled super
user alert of the authentication module.

TRUE

domibus.alert.super.user.account
_disabled.level

Super user alert level for account disabled. HIGH

domibus.alert.super.user.account
_disabled.moment

Time when the account disabled super user
alert should be triggered.

Possible values:

• AT_LOGON: an alert will be triggered each
time a user tries to login to a disabled
account.

• WHEN_BLOCKED: an alert will be triggered
once when the account got disabled.

WHEN_BLOCKED

domibus.alert.super.user.account
_disabled.subject

Super user account disabled alert mail
subject.

Super user
account disabled

634

Chapter 20. WS Plugin Properties
Here’s a list of the properties used for configuring the WS Plugin.

Configuration Property Description and Usage Default

wsplugin.mtom.enabled When TRUE enables the support for
MTOM.

FALSE

wsplugin.schema.validation.enabled Enable the schema validation. By default,
the schema validation has been disabled
due to performance reasons. For large
files, it is recommended to keep the
schema validation as disabled.

FALSE

wsplugin.messages.pending.list.max The maximum number of pending
messages to be listed from the pending
messages table. Setting this property is
expected to avoid timeouts due to huge
_resultsets being served. Setting this
property to zero returns all pending
messages._

500

wsplugin.messages.notifications The notifications sent by Domibus to the
plugin. The following values are
possible:

• MESSAGE_RECEIVED

• MESSAGE_FRAGMENT_RECEIVED

• MESSAGE_SEND_FAILURE

• MESSAGE_FRAGMENT_SEND_FAILURE

• MESSAGE_RECEIVED_FAILURE

• MESSAGE_FRAGMENT_RECEIVED_FAILURE

• MESSAGE_SEND_SUCCESS

• MESSAGE_FRAGMENT_SEND_SUCCESS

• MESSAGE_STATUS_CHANGE

• MESSAGE_FRAGMENT_STATUS_CHANGE

MESSAGE_RECEIVE
D,
MESSAGE_SEND_FA
ILURE,
MESSAGE_RECEIVE
D_FAILURE,
MESSAGE_SEND_SU
CCESS,
MESSAGE_STATUS_
CHANGE

wsplugin.dispatcher.connectionTimeou
t

Timeout values for communication
between the ws plugin and the backend
service
ConnectionTimeOut - Specifies the
amount of time, in milliseconds, that the
consumer will attempt to establish a
connection before it times out. 0 is
infinite.

240000

635

Configuration Property Description and Usage Default

wsplugin.dispatcher.receiveTimeout ReceiveTimeout - Specifies the amount of
time, in milliseconds, that the consumer
will wait for a response before it times
out. 0 is infinite.

240000

wsplugin.dispatcher.allowChunking Allows chunking when sending messages
to the backend service

FALSE

wsplugin.dispatcher.chunkingThreshol
d

If domibus.dispatcher.allowChunking is
TRUE, this property sets the threshold at
which messages start getting chunked(in
bytes). Messages under this limit do not
get chunked. Defaults to 100 MB.

104857600

wsplugin.dispatcher.connection.keepA
live

Specifies if the connection will be kept
alive between C2-C1 and C3-C4.

TRUE

wsplugin.dispatcher.worker.cronExpre
ssion

Specify concurrency limits via a "lower-
upper" String, e.g. "5-10", or a simple
upper limit String, e.g. "10" (the lower
limit will be 1 in this case)
when sending files,

0 0/1 * * * ?

wsplugin.push.enabled Enables push notifications to the
Backend.
Properties wsplugin.push.rules.X,
wsplugin.push.rules.X.recipient,
wsplugin.push.rules.X.endpoint,
wsplugin.push.rules.X.retry and
wsplugin.push.rules.X.type needed
with X finalRecipient.

FALSE

wsplugin.push.rules.X Description of the rule X -

wsplugin.push.rules.X.recipient Recipient that will trigger the rule (ex:
urn:oasis:names:tc:ebcore:partyid-
type:unregistered:C1). If empty, the rule is
triggered for any recipient.

-

wsplugin.push.rules.X.endpoint End point used to submit a message to
the backend (ex: http://localhost:8080/
backend)

-

wsplugin.push.rules.X.retry Cron expression for the retry mechanism
to push to backend

-

636

http://localhost:8080/backend
http://localhost:8080/backend

Configuration Property Description and Usage Default

wsplugin.push.rules.X.type Type of notifications to be sent to the
Backend:

• RECEIVE_SUCCESS

• RECEIVE_FAIL

• SEND_SUCCESS

• SEND_FAILURE

• MESSAGE_STATUS_CHANGE

• SUBMIT_MESSAGE

• DELETED

• DELETED_BATCH

See Notifications to the Backend.

-

wsplugin.push.auth.username Basic authentication username that will
be added to the http header of push
notification requests to C4. If not
specified, no authorization header will be
added.

-

wsplugin.push.auth.password Basic authentication password that will
be added to the http header of push
notification requests to C4. If not
specified, no authorization header will be
added.

-

wsplugin.push.markAsDownloaded If TRUE, the SUBMIT_MESSAGE notification
also pushes the message. If FALSE, the
backend will be able to retrieve the same
message multiple times and explicitly set
the message status to DOWNLOADED.

TRUE

637

Chapter 21. JMS Plugin Properties
Here’s a list of the properties used for configuring the JMS Plugin.

Property name Default value Description Domain
specific

jmsplugin.queue.notifi
cation

jms/domibus.notifi
cation.jms

This queue is used by Domibus to notify the
JMS Plugin about message events.

No

jmsplugin.queue.in jms/domibus.back
end.jms.inQueue

This queue is the entry point for messages
to be sent to Domibus via the JMS plugin

No

jmsplugin.queue.in.con
currency

5-20 Concurrency setting for the in queue
Concurrency limits via a "lower-upper"
String, e.g. 5-10, or a simple upper limit
String, for example 10 (the lower limit will
be 1 in this case)

No

jmsplugin.queue.out jms/domibus.back
end.jms.outQueue

This queue contains the received messages,
the backend listens to this queue to
consume the received messages

Yes

jmsplugin.queue.reply jms/domibus.back
end.
jms.replyQueue

This queue is used to inform the backend
about the message status after sending a
message to Domibus

Yes

jmsplugin.queue.consum
er.notification.error

jms/domibus.back
end.jms.errorNotif
yConsumer

This queue is used to inform the backend
that an error occurred during the
processing of receiving a message

Yes

jmsplugin.queue.produc
er.notification.error

jms/domibus.back
end.jms.
errorNotifyProduc
er

This queue is used to inform the backend
that an error occurred during the
processing of sending a message

Yes

jmsplugin.messages.not
ifications

MESSAGE_RECEIV
ED,
MESSAGE_SEND_F
AILURE,
MESSAGE_RECEIV
ED_FAILURE,
MESSAGE_SEND_S
UCCESS,
MESSAGE_STATUS
_CHANGE

The notifications sent by Domibus to the
plugin. The following values are possible:
MESSAGE_RECEIVED,
MESSAGE_FRAGMENT_RECEIVED,
MESSAGE_SEND_FAILURE,
MESSAGE_FRAGMENT_SEND_FAILURE,
MESSAGE_RECEIVED_FAILURE,
MESSAGE_FRAGMENT_RECEIVED_FAILUR
E,
MESSAGE_SEND_SUCCESS,
MESSAGE_FRAGMENT_SEND_SUCCESS,
MESSAGE_STATUS_CHANGE,
MESSAGE_FRAGMENT_STATUS_CHANGE

638

Support
Domibus Documentation is maintained by the eDelivery Support Team. For any questions,
comments or requests for change, please contact:

• Email: ec-edelivery-support@ec.europa.eu

• Hours: 8AM to 6PM (Normal EC working Days)

639

mailto:ec-edelivery-support@ec.europa.eu

	Domibus 5.1.5
	Contents
	Chapter 1. Domibus Architecture
	1.1. Architecture Overview
	1.2. Use Case View
	1.3. Logical View
	1.4. Implementation View
	1.5. Data View
	1.6. Size and Performance
	1.7. Logging
	1.8. Caching
	1.9. Local cache
	1.10. Distributed cache
	1.11. Multitenancy

	Chapter 2. Quick Start Guide
	2.1. Prerequisite
	2.2. Configure your environment
	2.3. Keystore
	2.4. Domibus Config location
	2.5. Launch the Domibus application
	2.6. Upload PModes
	2.7. Upload the PMode file on both Access Points
	2.8. Test
	2.9. Annex 1 - Parameters
	2.10. Annex 2 - Firewall Settings
	2.11. Annex 3 - Processing Mode
	2.12. Annex 4 - Domibus Pconf to ebMS3 mapping
	2.13. Annex 5 - Introduction to AS4 security

	Chapter 3. Administration Guide
	Chapter 4. Installing Domibus
	4.1. Pre-requisites
	4.2. Downloading Resources
	4.3. Databases
	4.4. Servers
	4.5. Secure Deployment Recommendations

	Chapter 5. Configuring Domibus
	5.1. Security Configuration
	5.2. Domibus Properties
	5.3. PMode Configuration
	5.4. Two-way MEP Scenario
	5.5. Special Scenario: Sender and Receiver are the same
	5.6. Administration Tools
	5.7. Large files support
	5.8. eArchiving
	5.9. Database Partitioning
	5.10. Non repudiation
	5.11. TLS Configuration
	5.12. Dynamic Discovery of unknown participants
	5.13. Message pulling
	5.14. Multitenancy
	5.15. Alerts
	5.16. DSS extension configuration
	5.17. Setting Logging levels at runtime
	5.18. EU Login Integration
	5.19. Domibus statistics
	5.20. Payload Encryption
	5.21. Message Prioritization
	5.22. SSL Offloading

	Chapter 6. Administration Tools
	6.1. Administration Console
	6.2. Message Log
	6.3. Message Filtering
	6.4. Application Logging
	6.5. PMode
	6.6. Queue Monitoring
	6.7. Configuration of the queues
	6.8. Truststores
	6.9. Users
	6.10. Plugin Users
	6.11. Audit
	6.12. Alerts
	6.13. Connection Monitoring
	6.14. Logging
	6.15. Domains
	6.16. Properties

	Chapter 7. Operational Guides
	7.1. JMS Queue Management
	7.2. Log Management
	7.3. Capacity Planning
	7.4. Database Management
	7.5. Domibus Monitoring/Domibus IsAlive AP
	7.6. Useful Resources

	Chapter 8. Testing Guide
	8.1. Prerequisites
	8.2. Test scenarios
	8.3. Verifying message status
	8.4. Multitenancy

	Plugins
	Chapter 9. Default Plugins
	Chapter 10. FS Plugin
	10.1. FS Plugin Interface

	Chapter 11. WS Plugin
	11.1. WS Plugin Interface
	11.2. Security
	11.3. Plugin Notifications
	11.4. Push to Backend
	11.5. Backward compatibility
	11.6. Message Standards

	Chapter 12. (Old) WS Plugin Interface
	12.1. Functional Specification
	12.2. Behavioural Specification
	12.3. Security
	12.4. Plugin Notifications
	12.5. Multitenancy
	12.6. Annexes

	Chapter 13. JMS Plugin
	13.1. JMS Plugin Interface
	13.2. JMS Plugin Configuration
	13.3. Referencing Payloads
	13.4. Interface Policy Specification
	13.5. Error codes table

	Chapter 14. Custom Plugins
	14.1. Custom Plugin Deployment
	14.2. Custom Plugin Configuration

	Chapter 15. Plugin Development
	15.1. Target Audience
	15.2. Backend Integration
	15.3. Implementing a Plugin
	15.4. Plugin properties
	15.5. Plugin configuration and deployment
	15.6. API Documentation
	15.7. Multitenancy
	15.8. Removed API and Migrating

	Extensions
	Chapter 16. Extension Development
	16.1. Functional information
	16.2. Technical information
	16.3. Building an extension
	16.4. Registering an extension
	16.5. POM samples

	Chapter 17. Extension Validation
	17.1. Extension Validation Overview
	17.2. AS4 UserMessage validation
	17.3. Validation Extension Interface
	17.4. Implementing the Validation Interface
	17.5. Implementing an extension
	17.6. Registering an extension

	Properties Reference
	Chapter 18. Domibus General Properties
	Chapter 19. Domibus Super-User Properties
	Chapter 20. WS Plugin Properties
	Chapter 21. JMS Plugin Properties

	Support

