
DomiSML 4.3
eDelivery

Contents
1. Architecture Description . 2

2. Quick Start Guide . 81

3. Interface Description . 100

4. Support . 233

Chapter 1. Architecture Description

1.1. Solution Overview
SML was initiated by PEPPOL. The PEPPOL SML specification was submitted as input to the OASIS
BDXR TC (Business Document Exchange Technical Committee) with the intent of defining a
standardized and federated document transport infrastructure for business document exchange.
They resulted into a new committee specification: BDXL (Business Document Metadata Service
Location).

In WP6, e-SENS defines the Service Location ABB based upon OASIS BDXL specification, compliant
with the legacy SML specification.

The DomiSML is the sample implementation of the Service Location ABB.

This document is the Software Architecture document of the DomiSML sample implementation. It
intends to provide detailed information about the project:

• An overview of the DomiSML implementation

• The different layers

• The principles governing its software architecture

▼ Useful References

SML Specification

Defines the profiles for the discovery and management interfaces for the Business Document
Exchange Network (BUSDOX) Service Metadata Locator service.

PEPPOL

The OpenPEPPOL Association is responsible for the governance and maintenance of the
PEPPOL specifications that enable European businesses to easily deal electronically with any
European public sector buyer in their procurement processes.

OASIS Business Document Metadata Service Location Version 1.0 (BDXL)

This specification defines service discovery methods. A method is first specified to query and
retrieve a URL for metadata services. Two metadata service types are then defined. Also an
auxiliary method pattern for discovering a registration service to enable access to metadata
services is described. The methods defined here are instances of the generic pattern defined
within IETF RFCs for Dynamic Delegation Discovery Services (DDDS). This specification then
defines DDDS applications for metadata and metadata-registration services.

WP6 from eSENS

Work Package 6, eSENS.

1.1.1. Solution’s Specification

eDelivery’s BDMSL is a solution conforming with:

©2025 eDelivery Chapter 1. Architecture Description |2

https://peppol.org/
https://docs.oasis-open.org/bdxr/BDX-Location/v1.0/csprd01/BDX-Location-v1.0-csprd01.html
https://docs.oasis-open.org/bdxr/BDX-Location/v1.0/csprd01/BDX-Location-v1.0-csprd01.html
https://ec.europa.eu/digital-building-blocks/sites/display/EIDCOMMUNITY/WP6%3A+Technical+solutions
https://github.com/OpenPEPPOL/edec-specifications/blob/master/releases/sml/ICT-Transport-SML_Service_Specification-101.pdf
https://peppol.org/
https://docs.oasis-open.org/bdxr/BDX-Location/v1.0/csprd01/BDX-Location-v1.0-csprd01.html
https://ec.europa.eu/digital-building-blocks/sites/display/EIDCOMMUNITY/WP6%3A+Technical+solutions

• SML specification

• BDXL Core Implementation Conformance specification

Service Metadata Locator (SML)

The SML is the only centrally operated component in the eDelivery Messaging Infrastructure. The
dynamic discovery process begins with the establishment of the Service Metadata relating to the
particular gateway to which a sender wants to transmit a message. To find the address of the
Service Metadata of a participant, the Service Metadata Locator specification is based on the use of
DNS (Domain Name System) lookups.

Business Document Metadata Service Location (BDXL)

The functionality of SML has been subsumed in a more general technical specification called the
Business Document Metadata Service Location Version (BDXL).

This specification is based on DNS, like SML, but is based on a different type of DNS resource
records called URI-enabled Naming Authority Pointer records (U-NAPTR), which are defined to
support Dynamic Delegation Discovery Service (DDDS). The result of a query is a full URI, which can
use HTTPS and supports server (and optionally client) authentication.

1.1.2. Solution Layers

A multi-layered architecture requires respecting some principles:

• Structure of the java packages: in a project, every layer is represented as a package containing
all the Java components of this layer

• Calls between the layers: The calls must respect the hierarchy of the layers and must be
performed only by using interfaces as shown in the diagram below:

3| Chapter 1. Architecture Description DomiSML 4.3 Documentation

https://github.com/OpenPEPPOL/edec-specifications/blob/master/releases/sml/ICT-Transport-SML_Service_Specification-101.pdf
https://docs.oasis-open.org/bdxr/BDX-Location/v1.0/csprd01/BDX-Location-v1.0-csprd01.html

1.1.3. Presentation Layer

The presentation layer manages the Graphical User Interface (GUI: pages, graphical components,
etc.) and the page flow.

This layer mainly handles:

• The GUI

• Interaction with the user

• The page flow

• User sessions

• Calls to the service layer through a controller

Naming convention

• Java package for controller: eu.europa.ec.bdmsl.presentation.controller

• Implementation: eu.europa.ec.bdmsl.presentation.controller.<PageName>Controller

• Folder for the JSP files : src/main/webapp/WEB-INF/jsp

Dependencies

In this layer, only the following calls are allowed:

• Calls to technical components

• Calls to the service layer

• Calls to the common package

Frameworks and patterns

The presentation layer relies on the Spring MVC (Model-View-Controller) framework.

• Views are represented by JSP files. These files are bound to controllers.

• Models are built from calls to the service layer. They are then returned to the views.

• The presentation layer includes the controllers.

For instance, this is the ListDNSController implementation class:

ListDNSController

package eu.europa.ec.bdmsl.presentation.controller;
{empty}[...]
@Controller
public class ListDNSController \{
@Autowired
private ILoggingService loggingService;
@Value("$\{dnsClient.enabled}")

private String dnsEnabled;
@Value("$\{dnsClient.server}")

©2025 eDelivery Chapter 1. Architecture Description |4

private String dnsServer;
// Path to the service
@RequestMapping("/listDNS")
public String listDNS(Model model) \{
loggingService.debug("Calling listDNS...");

{empty}[...]

// We can add any object in the model and retrieve them in the views
model.addAttribute("dnsEnabled", dnsEnabled);

// bound to listDNS.jsp file in the src/main/webapp/WEB-INF/jsp folder
return "listDNS";
}
}

In the listDNS.jsp file, the model can be accessed like this:

listDNS.jsp file

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

 <head>
 <title>BDMSL Service</title>
 </head>
 <body>
 <h1>ListDNS</h1>
 <c:choose>
 <!-- Access to the model -->
 <c:when test="$\{dnsEnabled}">
 {empty}[...]
 </c:when>
 <c:otherwise>

 The DNS client is disabled.

 </c:otherwise>
 </c:choose>
 </body>
 </html>

5| Chapter 1. Architecture Description DomiSML 4.3 Documentation

1.1.4. Service Layer

The service layer is the most important layer of the application as it coordinates the calls to the
business rules.

The service layer handles the transaction management. It creates the transaction and
instantiates the technical objects required (sessions, connection, etc.). The transactions manage the
commit/rollback depending on the errors raised by the different layers that it calls (service,
business, and persistence).

The transaction management is handled by Spring through the use of the annotation
@Transactional. Spring transparently encapsulates the calls to the different services and create if
necessary transactions if the configuration requires it.

By default, the transactions are in read-only mode (attribute readOnly = true) at the class level.

...

@Transactional(readOnly = true)
public class ManageServiceMetadataServiceImpl extends
AbstractServiceImpl implements IManageServiceMetadataService\ {
 ...

 @Transactional(readOnly = false, rollbackFor = Exception.class)
 public void create(final ServiceMetadataPublisherBO smpBO) throws
 BusinessException,
 TechnicalException\ {
 ...

 }
 public ServiceMetadataPublisherValue read(ServiceMetadataPublisherBO messagePartBO)
throws BusinessException,
 TechnicalException\ {
 ...

 }
}

The service layer performs different calls to the service/business layers.

The objects from the service layer are POJO that implement the singleton pattern. The objects from
the different layers are injected by Spring by setters.

Naming convention

Naming convention for:

• Package: eu.europa.ec.bdmsl.service

• Interface: eu.europa.ec.bdmsl.service.I<InterfaceName>Service

• Implementation package: eu.europa.ec.bdmsl.service.impl

©2025 eDelivery Chapter 1. Architecture Description |6

• Implementation: eu.europa.ec.bdmsl.service.impl.<InterfaceName>ServiceImpl

Dependencies

In this layer, only the following calls are allowed:

• Calls to technical components;

• Calls to the business layer;

• Calls to the common package.

Frameworks and Patterns

The service layer uses these frameworks:

• Spring: transaction management, exception handling, dependency injection.

Service Layer’s Development

▼ Interface

public interface IManageServiceMetadataService \{

/**
* Retrieves the Service Metadata Publisher record for the service
metadata.
* @param serviceMetadataPublisherID the unique ID
* of the Service Metadata Publisher for which the record is required
* @return ServiceMetadataPublisherBO the service metadata publisher record.
* @throws TechnicalException Technical exception.
* @throws BusinessException Business exception.
*/

ServiceMetadataPublisherBO read(String serviceMetadataPublisherID)

throws TechnicalException, BusinessException;
...

}

▼ Implementation Classes

The implementation classes extend the parent-class AbstractServiceImpl and implement their
dedicated interface (here IManageServiceMetadataService).

@Transactional(readOnly = true)

public class ManageServiceMetadataServiceImpl extends
AbstractServiceImpl implements IManageServiceMetadataService \{

private IManageServiceMetadataServiceBusiness
manageServiceMetadataServiceBusiness;

7| Chapter 1. Architecture Description DomiSML 4.3 Documentation

/*
* (non-Javadoc)
*
* @see eu.europa.ec.bdmsl.service.IManageServiceMetadataService#read
(String)
*/

@Override

@Transactional(readOnly = true)

public ServiceMetadataPublisherBO read(String
serviceMetadataPublisherID)

throws TechnicalException, BusinessException \{

ServiceMetadataPublisherBO smpBO =
manageServiceMetadataServiceBusiness.read(serviceMetadataPublisherID);

return smpValue;

}

...

}

The parent-class AbstractServiceImpl contains all common attributes and methods of the
implementation classes of the service layer (logging service, etc.).

▼ Transaction configuration

The transaction management is managed by Spring.

The JDBC connections to the database are open by Spring if the processing of the service requires
access to the database (though the call to the business layer).

The configuration of the transaction management is made by annotations. These annotations
define the rollback policy when certain types of exception may be raised. Indeed, if a non-critical
error is raised, it could be useful to perform a commit anyway.

The annotations for the transaction management are set in the service class implementations
with @Transactional. This way, we scan specify which interface and methods are executed in a
transactional context.

There are two types of transaction modes:

• read-only is used by default: can perform read actions but cannot write anything in the
database.

• read-write is used for CUD methods (Create, Update, Delete).

©2025 eDelivery Chapter 1. Architecture Description |8

Propagation attributes manage the opening of the transactions. In this project, the attribute
REQUIRED is used. This attribute, which is used by default, means that the method must be
executed in a transaction context. If the transaction does not exist at the time of the call, a new
one is created.

Thus, only one transaction is allowed for a call to a method in the service layer. If the method
calls itself other services, the transaction will be propagated.

By default, Spring performs a rollback when a runtime exception is thrown. This behaviour can
be modified with the attribute rollbackFor by passing a list of exceptions for which a rollback
will be performed. In the DomiSML component, we rollback for any type of exception (checked
and runtime), so we set the following value: rollbackFor = Exception.class.

1.1.5. Web Service Package

This chapter describes the use of the Apache CXF framework in the web service package to expose
SOAP and REST web services.

A web service is a service that can be remotely invoked by another system.

The services of the eDelivery DomiSML application are declared in Spring and implement the
Singleton pattern.

To connect the classes exposed by CXF to the service class managed by Spring, we use an additional
package that plays the role of Façade: eu.europa.ec.bdmsl.ws.

The façades define the same interfaces as the services they are linked to. They have the same
methods as the Java implementation classes of the services managed by Spring. The façades
implement strictly the interface they reference and serve as a transition with the external systems,
taking into consideration matters like database connection, transaction, security, etc. The façade
also performs the conversion of the objects from JAXB to BO and vice-versa.

The reference to the underlying service is injected in the façade with Spring. For each method of
the interface implemented by the façade, we invoke the same method as on the service
implementation class:

[...]
public class ManageParticipantIdentifierWSImpl extends AbstractWSImpl implements
IManageParticipantIdentifierWS {

 @Autowired
 private IManageParticipantIdentifierService manageParticipantIdentifierService;

 @Autowired
 private MapperFactory mapperFactory;

 [...]

 @Override
 @WebResult(name = "ParticipantIdentifierPage", targetNamespace =

9| Chapter 1. Architecture Description DomiSML 4.3 Documentation

"http://busdox.org/serviceMetadata/locator/1.0/", partName = "messagePart")
 @WebMethod(operationName = "List", action =
"http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:listIn")
 public ParticipantIdentifierPageType list(@WebParam(partName = "pageRequestType",
name = "PageRequest", targetNamespace =
"http://busdox.org/serviceMetadata/locator/1.0/") PageRequestType pageRequestType)
throws NotFoundFault, InternalErrorFault, UnauthorizedFault, BadRequestFault {
 ParticipantIdentifierPageType result = null;
 try {
 [...]
 // convert input from JAXB to BO
 PageRequestBO pageRequestBO =
mapperFactory.getMapperFacade().map(pageRequestType, PageRequestBO.class);

 // call the service layer
 ParticipantListBO resultParticipantBOList =
manageParticipantIdentifierService.list(pageRequestBO);
 loggingService.businessLog(LogEvents.BUS_PARTICIPANT_LIST,
pageRequestBO.getSmpId());

 // convert output from BO to JAXB
 result = mapperFactory.getMapperFacade().map(resultParticipantBOList,
ParticipantIdentifierPageType.class);
 } catch (Exception exc) {
 [...]
 handleException(exc);
 }
 return result;
 }
 ...
}

Dependencies

In this package, only the following calls are allowed:

• Calls to technical components

• Calls to the service layer

• Calls to the common package

SOAP Web Services

This section describes the general principles governing SOAP web services.

Naming convention

• Package: eu.europa.ec.bdmsl.ws.soap

• Interface: eu.europa.ec.bdmsl.ws.soap.I<InterfaceName>WS

• Implementation package: eu.europa.ec.bdmsl.ws.soap.impl

©2025 eDelivery Chapter 1. Architecture Description |10

• Implementation: eu.europa.ec.bdmsl.ws.soap.impl.<InterfaceName>WSImpl

Exposing a Web Service

As from Java 5, the JSR 181, implemented in Apache CXF, allows declaring a Java class as a SOAP
web service.

To declare a façade as a web service class, the use of the annotations @WebService, @SOAPBinding et
@BindingType is required as follow:

@WebService(serviceName = "ManageServiceMetadataService", portName =
"ManageServiceMetadataServicePort", targetNamespace =
Constants.MANAGE_METADATA_SERVICE_NS)
@SOAPBinding(style = SOAPBinding.Style.DOCUMENT, use = SOAPBinding.Use.LITERAL)
@BindingType(javax.xml.ws.soap.SOAPBinding.SOAP11HTTP_BINDING)
public class ManageServiceMetadataWSImpl
// ...
}

NOTE

these annotations are provided by the JSR 181 API and must be set at both the
implementation class and interfaces level.
To avoid the exposition of some methods like getter/setters, we use the annotation
@WebMethod(exclude=true).

Exposed Services Declaration

The endpoint and the implementing classes are defined in the cxf-servlet.xml file. This is how we
can expose the service bdmslservice:

<?xml version="1.0" encoding="UTF-8" ?>
<beans
 xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://cxf.apache.org/jaxws
http://cxf.apache.org/schemas/jaxws.xsd">

{empty}[...]

<jaxws:endpoint
id="bdmslService"
implementor="eu.europa.ec.bdmsl.ws.soap.impl.BDMSLServiceWSImpl"
address="/bdmslservice"></jaxws:endpoint>

</beans>

11| Chapter 1. Architecture Description DomiSML 4.3 Documentation

WSDL

The exposed web services are defined in a contract interface file named WSDL. In the eDelivery
BDMSL application, we use a WSDL-first approach. It means that we first design the WSDL and
generate Java code from the WSDL.

The classes are generated through the use of a maven plugin defined in the pom.xml file. To
generate the classes, the following command line must be run. Among other operations, this
command will automatically call the wsdl2java goal from the cxf-codegen-plugin plugin:

• mvn package

For the SML compliance, the WSDL files are defined in the SML specification. In the eDelivery
BDMSL application, they are:

• ManageBusinessIdentifierService-1.0.wsdl

• ManageServiceMetadataService-1.0.wsdl

• BDMSLService-1.0.wsdl

These files are located in the src/main/webapp/WEB-INF/wsdl directory.

Binding

The use of JAXB configuration allows customizing the generated sources like package or class
names, and also allowing the definition of adapters between XML and Java types
(marshalling/unmarshalling).

These binding files are stored as xjb files in the src/main/webapp/WEB-INF/wsdl directory.

Mapping JAXB objects / BO

JAXB objects are generated from the WSDL. Inside the different layers of the application, we only
use Business Objects (BO). We don’t directly use JAXB generated objects in the business logic
because this would tightly couple the business logic to the WSDL. A schema change in a WSDL (such
as for version update) typically leads to a different package structure for classes generated from
that WSDL via JAXB. To mitigate this risk, we use different Java objects: the business objects (BO).

See Object Mapping, for more information on the mapping of JAXB objects to BO.

Frameworks and Patterns

• Apache CXF: Exposing SOAP/REST web services. Only in the web module service.

• Spring: dependency injection

Services Specifications

This paragraph provides implementation details of the BDMSL.

There are three interfaces described in this paragraph:

©2025 eDelivery Chapter 1. Architecture Description |12

Interface Description

ManageServiceMetadataService-1.0.wsdl Defined in the PEPPOL SML Specification, in
Appendix B: WSDLs.

ManageBusinessIdentifierService-1.0.wsdl Defined in the PEPPOL SML Specification, in
Appendix B: WSDLs.

BDMSLService-1.0.wsdl Contains services not covered by any
specification from OASIS or PEPPOL, used by the
SMP user.

BDMSLAdminService-1.0.wsdl Contains administration services for managing
the SML instance.

ManageService Metadata Service

WSDL file

• ManageServiceMetadataService-1.0.wsdl

▼ Operation Create()

Pre-requisites

• The user has a valid certificate.
NOTE: We consider a certificate is valid if it has not been revoked or isn’t expired.

• The role associated to the certificate is ROLE_SMP

• The SMP doesn’t already exists in the system

Description

Establishes a Service Metadata Publisher metadata record, containing the metadata about the
Service Metadata Publisher (SMP), as outlined in the ServiceMetadataPublisherService data type.

• Input CreateServiceMetadataPublisherService: ServiceMetadataPublisherService - contains
the service metadata publisher information, which includes the logical and physical
addresses for the SMP (Domain name and IP address). It is assumed that the
ServiceMetadataPublisherID has been assigned to the calling user out-of-bands.

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Create
operation.

• Fault: badRequestFault - returned if the supplied CreateServiceMetadataPublisherService
does not contain consistent data.

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason.

13| Chapter 1. Architecture Description DomiSML 4.3 Documentation

https://github.com/OpenPEPPOL/edec-specifications/blob/master/releases/sml/ICT-Transport-SML_Service_Specification-101.pdf
https://github.com/OpenPEPPOL/edec-specifications/blob/master/releases/sml/ICT-Transport-SML_Service_Specification-101.pdf

▼ Operation Read()

Pre-requisites

• The user has a valid certificate

• The role of the user is ROLE_SMP

• The SMP already exists

Description

Retrieves the Service Metadata Publisher record for the service metadata publisher.

• Input ReadServiceMetadataPublisherService: ServiceMetadataPublisherID

◦ the unique ID of the Service Metadata Publisher for which the record is required

• Output: ServiceMetadataPublisherService - the service metadata publisher record, in the
form of a ServiceMetadataPublisherService data type

• Fault: notFoundFault - returned if the identifier of the SMP could not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Read
operation

• Fault: badRequestFault - returned if the supplied parameter does not contain consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

▼ Operation Update()

Pre-requisites

• The user has a valid certificate

• The role of the user is ROLE_SMP

©2025 eDelivery Chapter 1. Architecture Description |14

• The SMP already exists

Description

Updates the Service Metadata Publisher record for the service metadata publisher.

• Input UpdateServiceMetadataPublisheServicer: ServiceMetadataPublisherService - contains
the service metadata for the service metadata publisher, which includes the logical and
physical addresses for the SMP (Domain name and IP address). If the request’s logical address
is different from the logical address stored into the database, all participant’s NAPTR records
under the specified SMP will be updated with the new logical address passed by request.

• Fault: notFoundFault - returned if the identifier of the SMP could not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Update
operation.

• Fault: badRequestFault - returned if the supplied UpdateServiceMetadataPublisheServicer
does not contain consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason.

▼ Operation Delete()

Pre-requisites

• The user has a valid certificate

• The role of the user is ROLE_SMP

• The SMP already exists

Description

Deletes the Service Metadata Publisher record for the service metadata publisher.

• Input DeleteServiceMetadataPublisherService: ServiceMetadataPublisherID - the unique ID of
the Service Metadata Publisher to delete

• Fault: notFoundFault - returned if the identifier of the SMP could not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Delete
operation

15| Chapter 1. Architecture Description DomiSML 4.3 Documentation

• Fault: badRequestFault - returned if the supplied DeleteServiceMetadataPublisherService
does not contain consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

Implementation note: If the SMP is linked to many participants, then the participants are
deleted from the database and the DNS by batch of 300 elements. This is to avoid reaching the
limit of the DNS protocol. Indeed, the RFC1035 of the DNS standard states that the messages are
bound to 65535 bytes length.

Manage Participant Identifier

WSDL file

• ManageBusinessIdentifierService-1.0.wsdl

▼ Operation Create()

Pre-requisites

• The user has a valid certificate

• The SMP already exists

• The role of the user is ROLE_SMP

• The participants do not exist yet

Description

Creates an entry in the Service Metadata Locator Service for information relating to a specific
participant identifier. Regardless of the number of services a recipient exposes, only one record
corresponding to the participant identifier is created in the Service Metadata Locator Service by
the Service Metadata Publisher which exposes the services for that participant.

• Input CreateParticipantIdentifier: ServiceMetadataPublisherServiceForParticipantType -

©2025 eDelivery Chapter 1. Architecture Description |16

contains the Participant Identifier for a given participant and the identifier of the SMP which
holds its data

• Fault: notFoundFault - returned if the identifier of the SMP could not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Create
operation

• Fault: badRequestFault - returned if the supplied CreateParticipantIdentifier does not contain
consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

▼ Operation CreateList()

Pre-requisites

• The user has a valid certificate

• The SMP already exists

• The participants do not exist yet

• The role of the user is ROLE_SMP

• The number of participants in the list is less than 100

Description

Creates a set of entries in the Service Metadata Locator Service for information relating to a list
of participant identifiers. Regardless of the number of services a recipient exposes, only one
record corresponding to each participant identifier is created in the Service Metadata Locator
Service by the Service Metadata Publisher which exposes the services for that participant.

• Input CreateList: ParticipantIdentifierPage - contains the list of Participant Identifiers for the
participants which are added to the Service Metadata Locator Service. The NextPageIdentifier
element is absent.

• Fault: notFoundFault - returned if the identifier of the SMP could not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the CreateList
operation

17| Chapter 1. Architecture Description DomiSML 4.3 Documentation

• Fault: badRequestFault - returned if:

• The supplied CreateList does not contain consistent data

• The number of participants in the list is greater than 100

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

▼ Operation Delete()

Pre-requisites

• The user has a valid certificate

• The SMP already exists

• The role of the user is ROLE_SMP

• The participants already exist

• The participant is not under migration process and does not have an active migration key

Description

Deletes the information that the SML Service holds for a specific Participant Identifier.

• Input DeleteParticipantIdentifier: ServiceMetadataPublisherServiceForParticipantType -
contains the Participant Identifier for a given participant and the identifier of the SMP that
publishes its metadata

• Fault: notFoundFault - returned if the participant identifier or the identifier of the SMP could
not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Delete
operation or if the migration to another SMP is in progress

• Fault: badRequestFault - returned if the supplied DeleteParticipantIdentifier does not contain
consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

©2025 eDelivery Chapter 1. Architecture Description |18

▼ Operation DeleteList()

Pre-requisites

• The user has a valid certificate

• The SMP already exists

• The participants already exist

• The participants are not under migration process

• The role of the user is ROLE_SMP

• The number of participants in the list is less than 100

Description

Deletes the information that the SML Service holds for a list of Participant Identifiers.

• Input DeleteList: ParticipantIdentifier - contains the list of Participant Identifiers for the
participants which are removed from the Service Metadata Locator Service. The
NextPageIdentifier element is absent.

• Fault: notFoundFault - returned if one or more participant identifiers or the identifier of the
SMP could not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the DeleteList
operation or if one of the participants is under migration process

• Fault: badRequestFault - returned if:

• The supplied DeleteList does not contain consistent data

• The number of participants in the list is greater than 100

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

19| Chapter 1. Architecture Description DomiSML 4.3 Documentation

▼ Operation PrepareToMigrate()

Pre-requisites

• The user has a valid certificate

• The SMP already exists

• The role of the user is ROLE_SMP

• The participants already exist

Description

Prepares a Participant Identifier for migration to a new Service Metadata Publisher. This
operation is called by the Service Metadata Publisher which currently publishes the metadata for
the Participant Identifier. The Service Metadata Publisher supplies a Migration Code which is
used to control the migration process. The Migration Code must be passed (out of band) to the
Service Metadata Publisher which is taking over the publishing of the metadata for the
Participant Identifier and which MUST be used on the invocation of the Migrate() operation. This
operation can only be invoked by the Service Metadata Publisher which currently publishes the
metadata for the specified Participant Identifier.

• Input PrepareMigrationRecord: MigrationRecordType - contains the Migration Key and the
Participant Identifier which is about to be migrated from one Service Metadata Publisher to
another.

• Fault: notFoundFault - returned if the participant identifier or the identifier of the SMP could
not be found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the
PrepareToMigrate operation

• Fault: badRequestFault - returned if the supplied PrepateMigrationRecord does not contain
consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

©2025 eDelivery Chapter 1. Architecture Description |20

▼ Operation Migrate()

Pre-requisites

• The user has a valid certificate

• The SMP already exists

• The participants already exist

• The role of the user is ROLE_SMP

• The prepareToMigrate service has been called for this participant

Description

Migrates a Participant Identifier already held by the Service Metadata Locator Service to target a
new Service Metadata Publisher. This operation is called by the Service Metadata Publisher
which is taking over the publishing for the Participant Identifier. The operation requires the new
Service Metadata Publisher to provide a migration code which was originally obtained from the
old Service Metadata Publisher. The PrepareToMigrate operation MUST have been previously
invoked for the supplied Participant Identifier, using the same MigrationCode, otherwise the
Migrate() operation fails. Following the successful invocation of this operation, the lookup of the
metadata for the service endpoints relating to a particular Participant Identifier will resolve (via
DNS) to the new Service Metadata Publisher.

• Input CompleteMigrationRecord: MigrationRecordType - contains the Migration Key and the
Participant Identifier which is to be migrated from one Service Metadata Publisher to
another.

• Fault: notFoundFault - returned if the migration key or the identifier of the SMP could not be
found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the Migrate
operation

• Fault: badRequestFault - returned if the supplied CompleteMigrationRecord does not contain
consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

21| Chapter 1. Architecture Description DomiSML 4.3 Documentation

▼ Operation List()

Pre-requisites

• The user has a valid certificate

• The role of the user is ROLE_SMP

• The SMP already exists

Description

List() is used to retrieve a list of all participant identifiers associated with a single Service
Metadata Publisher, for synchronization purposes. Since this list may be large, it is returned as
pages of data, with each page being linked from the previous page.

• Input Page: PageRequest - contains a PageRequest containing the
ServiceMetadataPublisherID of the SMP and (if required) an identifier representing the next
page of data to retrieve. If the NextPageIdentifier is absent, the first page is returned.

• Output: ParticipantIdentifierPage - a page of Participant Identifier entries associated with the
Service Metadata Publisher, also containing a <Page/> element containing the identifier that
represents the next page, if any.

• Fault: notFoundFault - returned if the next page or the identifier of the SMP could not be
found

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the List operation

• Fault: badRequestFault - returned if the supplied NextPage does not contain consistent data

• Fault: internalErrorFault - returned if the SML service is unable to process the request for any
reason

Note that the underlying data may be updated between one invocation of List() and a subsequent
invocation of List(), so that a set of retrieved pages of participant identifiers may not represent a
consistent set of data.

©2025 eDelivery Chapter 1. Architecture Description |22

BDMSLService interface

This interface describes non-core services that are not defined in the SML or BDX specifications.
The services are used by SMP and Monitor users.

WSDL file

• BDMSLService-1.0.wsdl

▼ Operation PrepareChangeCertificate()

Pre-requisites

• The current certificate of the user is valid

• The role of the user is ROLE_SMP

• The user has the new certificate for the SMP(s)

Description

This operation allows an SMP to prepare a change of its certificate. It is typically called when an
SMP has a certificate that is about to expire and already has the new one. This operation MUST
be called while the certificate that is already registered in the BDMSL is still valid. If the
migrationDate is not empty, then the new certificate MUST be valid at the date provided in the
migrationDate element. If the migrationDate element is empty, then the "Valid From" date is
extracted from the certificate and is used as the migrationDate. In this case, the "Not Before" date
of the certificate must be in the future.

• Fault: unauthorizedFault - returned if the caller is not authorized to invoke the
PrepareChangeCertificate operation

• Fault: badRequestFault - returned if

◦ The supplied request does not contain consistent data

◦ The new certificate is not valid at the date provided in the migrationDate element

◦ The migrationDate is not in the future.

◦ The migrationDate is not provided and the "Not Before" date of the new certificate is not
in the future

◦ The migrationDate is not provided and the "Valid From" is in the past

• Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for
any reason

23| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Notes

A nightly job performs an analysis to actually perform the change of certificates. The algorithm is
as following:

List<Certificate> certificates = findCertificateWithPessimisticLock()

for each certificate in certificates do

if [certificate.new_cert_migration_date ⇐ today] then

for each allowed_wildcard in bdmsl.allowed_wildcard do

allowed_wildcard.fk_certificate_id = certificate.new_cert_id

end for

for each smp in bdmsl.smp do

smp.fk_certificate_id = certificate.new_cert_id

end for

delete certificate

else if [certificate.new_cert_migration_date < today] then

warn "The migration of the certificate couldn’t be perform in time"

end if

end for

The scheduling of the job can be configured by setting the value of the property
certificateChangeCronExpression.

To avoid the job to be performed multiple times on a clustered environment, it is necessary to
use a pessimistic lock when finding the certificates. The job must run in a single transaction and
the lock is released at the end of the transaction.

©2025 eDelivery Chapter 1. Architecture Description |24

▼ Operation IsAlive()

Pre-requisites

• The certificate is valid

• The user has the role ROLE_MONITOR, ROLE_SMP or ROLE_ADMIN

Description

This service has only a monitoring purpose. It can be called to check if the application is up and
running.

This service checks if the database and the DNS are accessible by trying to read from the
database and to write to and read from DNS.

• Input : none

• Output : none. HTTP 200 OK expected

• Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for
any reason

▼ Operation CreateParticipantIdentifier()

Pre-requisites

• The certificate is valid

• The SMP already exists

• The participant doesn’t already exists

Description

This service has the same behaviour as the Create() operation in the ManageParticipantIdentifier
interface but it has one additional and optional input: the serviceName element. In the Create()
operation, the service name is "Meta:SMP" by default. In the CreateParticipantIdentifier()
operation, this service name can be customized.

• serviceName: the name of the service for the NAPTR record.

NOTE
the flow for the create method of ManageParticipantIdentifierServiceImpl can be
found here: Technical Design.

BDMSLAdminService interface

This interface describes non-core services that are not defined in the SML or BDX specifications.
Services are restricted only for role ROLE_ADMIN and it is advised to use the only behind Proxy so

25| Chapter 1. Architecture Description DomiSML 4.3 Documentation

that they are not exposed to Internet (They should be used only on intranet).

▼ Operation ClearCache()

Pre-requisites

• The certificate is a valid certificate

• The user has the role ROLE_SMP or ROLE_ADMIN

Description

The application manages in-memory caches to enhance performance. This service can be called
to clear all the caches managed by the application. The in-memory caches are used for:

• The list of trusted aliases and their corresponding domains, because these data are not
supposed to be changed frequently

• The content of the Certificate Revocation List, to avoid the cost of downloading each time the
CRLM for each certificate

• Input : none

• Output : none. HTTP 200 OK expected

• Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for
any reason

▼ Operation ChangeCertificate()

Pre-requisites

• The user credentials are valid

• The user has the role ROLE_ADMIN

• The user has the new certificate for the SMP

Description

This operation allows the admin team to change the SMP’s certificate. It is called by the admin
team in case the SMP’s certificate has expired and the new one needs to be applied. The new
certificate MUST be valid at the date time the request is sent.

• Input : SMP id, Certificate public key

• Output : none. HTTP 200 OK expected

• Fault: unauthorizedFault - returned if:

◦ The caller is not authorized to invoke the ChangeCertificate operation (The user doesn’t

©2025 eDelivery Chapter 1. Architecture Description |26

have the ROLE_ADMIN role)

◦ The public key already exists

• Fault: badRequestFault - returned if

◦ The supplied request does not contain consistent data

◦ Invalid public key

◦ The new certificate is not valid at the moment the request is sent

◦ The SMP id is unknown

• Fault: internalErrorFault - returned if the BDMSL service is unable to process the request for
some reason

▼ Operation SetProperty()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to change BDMSL property in the database such as:
passwords, DNS url, etc. The new property is taken into account when the cron task refreshes the
properties simultaneously on all nodes in the cluster. Crontab properties are only refreshed with
the restart of the BDMSL server.

• Input : Property name, Property value, optionally: Property description

• Output : Property data stored to BDMSL database

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: badRequestFault - returned if

◦ The supplied request does not contain consistent data

◦ Invalid propertyName

27| Chapter 1. Architecture Description DomiSML 4.3 Documentation

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation GetProperty()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to retrieve BDMSL property from the database such as:
DNS url, smtp configuration, etc.

• Input : Property name

• Output: Property data stored to BDMSL database

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid propertyName

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason

▼ Operation DeleteProperty()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to delete BDMSL non mandatory properties from
database.

• Input : Property name,

• Output : Property data stored to BDMSL database

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid propertyName

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason

▼ Operation CreateSubDomain()

Pre-requisite

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to create new BDMSL SubDomain. When creating
subdomain the DNS types, SMP url scheme restriction, Participant regular expression must be
defined.

©2025 eDelivery Chapter 1. Architecture Description |28

• Input : SubDomain name, DNS Zone name, SubDomain DNS RecordTypes, Allowed
SubDomain SMPs URL schema, Participant regular expression, expression for client
certificate subject validation, list of allowed certificate policy OIDs, max count of participants
which can be registered on the domain. Max. count of participants which can be registered
by one SMP.

• Output : Subdomain data stored to BDMSL database

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid SubDomain data

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason

▼ Operation UpdateSubDomain()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to update the BDMSL SubDomain properties. In case of
changing DNS Record Type and with DNS integration ON - the records are not updated
automatically. Records must be updated manually using operations: AddDNSRecord,
DeleteDNSRecord.

• Input: SubDomain name + Optional: SubDomain DNS RecordTypes, Allowed SubDomain
SMPs URL schema, Participant regular expression, expression for client certificate subject
validation, list of allowed certificate policy OIDs, max count of participants which can be
registered on the domain. Max. count of participants which can be registered by one SMP.

• Output: Subdomain data stored to BDMSL database

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid SubDomain data

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason

▼ Operation GetSubDomain()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to read BDMSL SubDomain properties.

• Input : SubDomain name.

• Output : Subdomain data stored to BDMSL database

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

29| Chapter 1. Architecture Description DomiSML 4.3 Documentation

• Fault: BadRequestFault - returned if

◦ Invalid SubDomain data

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason

▼ Operation DeleteSubDomain()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to delete empty BDMSL SubDomain.

• Input : SubDomain name.

• Output : Deleted Subdomain data from BDMSL database

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Subdomain has registered participants

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason

▼ Operation AddSubDomainCertificate()

Pre-requisites

• Valid Certificate

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to add new Domain certificate to BDMSL SubDomain.
Certificate can be flagged as RootPKI certificate and/or as Admin certificate. Admin certificate
can be only the certificate which is not flagged as RootPKI certificate.

• Input : SubDomain name, Certificate, Boolean value for: is certificate root PKI value and is
certificate Admin Certificate.

• Output : Registered new Domain certificate data.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid Subdomain Certificate data

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation UpdateSubDomainCertificate()

Pre-requisites

• The certificate is already added to database

©2025 eDelivery Chapter 1. Architecture Description |30

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to update SubDomain certificate data. Admin can set or
clear CRL distribution point, IsAdmin flag and SubDomain name.

• Input :Certificate Identifier + Optional: SubDomain name, Certificate CRL distribution URL,
boolean value for is certificate Admin Certificate Boolean value.

• Output : Updated Domain certificate data.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid Subdomain Certificate data

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation ListSubDomainCertificate()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to search for domain certificate by partial certificate DN
and by the Subdomain.

• Input: Partial certificate identifier and/or domain name.

• Output: List of registered Domain certificate data which match the search criteria.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation AddDNSRecord()

Pre-requisites

• BDMSL is integrated with DNS server.

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to add new record to DNS server for DNS RecordType: A,
CNAME and NAPTR.

• Input: DNS Record name, DNS record Type, DNS record Value and service name in case of
NAPTR record type.

• Output: Inserted DNS record.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

31| Chapter 1. Architecture Description DomiSML 4.3 Documentation

◦ Invalid DNS name

◦ Invalid DNS value

◦ Invalid DNS record type

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation DeleteDNSRecord()

Pre-requisites

• BDMSL is integrated with DNS server

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to remove records from DNS server. Varoius DNS records
can have the same name. The ‘DeleteDNSRecord’ operation removes all DNS records with the
same name. The deletion is done from the DNS server even if the DNS record does not exist in the
database.

• Input: DNS Record name.

• Output: List of deleted DNS records.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid DNS record name

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation AddTruststoreCertificate()

Pre-requisites

• Valid Certificate

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to add certificate to the truststore. Service is needed for
adding a complete certificate chain to the truststore.

• Input : Base64 encoded X509Certificate + Optional: alias.

• Output : Inserted X509Certificate with truststore alias.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ Invalid Certificate data

◦ Certificate already exists in truststore

◦ Certificate with given alias already exists in truststore

©2025 eDelivery Chapter 1. Architecture Description |32

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation GetTruststoreCertificate()

Pre-requisites

• The certificate with given alias is already added to the truststore

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to retrieve the certificate from the truststore by the alias.

• Input : truststore alias.

• Output : X509Certificate data.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ alias is not given in parameter

• Fault NotFoundFault - returned if

◦ alias is not present in truststore

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation DeleteTruststoreCertificate()

Pre-requisites

• The certificate with given alias is in the truststore

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to remove the certificate from the truststore by the alias.

• Input : truststore alias.

• Output : deleted X509Certificate data.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if

◦ alias is not given in parameter

• Fault NotFoundFault - returned if

◦ alias is not present in truststore

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation ListTruststoreCertificateAliases()

Pre-requisites

• The user has the role ROLE_ADMIN

33| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Description

This operation allows the admin team to retrieve all aliases for the certificates registered in the
truststore.

• Input: Optional: partial certificate alias.

• Output: List of registered aliases, which match the search criteria or all aliases if input value
is empty.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation GenerateInconsistencyReport ()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to trigger the generation of the inconsistency report by
demand. The report is generated asynchronously, and in large DNS zones/tables can take several
10 minutes.

• Input: email for receiving the report.

• Output: email with the report.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if email is invalid

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation GenerateReport()

Pre-requisites

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to trigger generation of any of the reports supported by
the BDMSL.

• Input: email for receiving the report. Report type

• Output: email with the report.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if email or report type are invalid

• Fault: InternalFaultError : Returned if the BDMSL service is unable to process the request for
any reason.

▼ Operation ManageServiceMetadataPublisher()

Pre-requisites

©2025 eDelivery Chapter 1. Architecture Description |34

• The user has the role ROLE_ADMIN

Description

This operation allows the admin team to manage (enable, disable, delete, and update) large
service metadata instances: the SMPs. The action is executed asynchronously and sends mail to
the receiver when it is completed. The method is suitable for managing SMPs with many
participants because it updates its participants in smaller batches.

• Input: email for receiving the action result, Action type: enable,disable, delete or update, SMP
instance data: ID, domain and owner certificate identifier. Logical and/or physical for
updating the message.

• Output: email with the result.

• Fault: UnauthorizedFault : Returned if the certificate provided is not a ADMIN certificate

• Fault: BadRequestFault - returned if email or other data are invalid

• Fault: InternalFaultError : Returned if the DomiSML service is unable to process the request
for any reason.

1.1.6. Business layer

The business layer manipulates only business objects and defines the business rules.

Business objects are POJO and implement the Singleton pattern. They are defined in the common
package described in the Business Objects (BO) section.

Naming convention

• Package: eu.europa.ec.bdmsl.business

• Interface: eu.europa.ec.bdmsl.business.I<InterfaceName>Business

• Implementation package: eu.europa.ec.bdmsl.business.impl

• Implementation: eu.europa.ec.bdmsl.business.impl.<InterfaceName>BusinessImpl

Dependencies

In this layer, only the following calls are allowed:

• Calls to technical components

• Calls to the persistence layer

• Calls to the common package

Frameworks

This layer handles most of the business logic processing. Therefore, there is no technical aspect. The
only framework used is Spring for the dependency injection.

Business Layer’s Development

▼ Interface

public interface IManageServiceMetadataBusiness \{

35| Chapter 1. Architecture Description DomiSML 4.3 Documentation

/**

• Retrieves the Service Metadata Publisher record for the service metadata.

• @param serviceMetadataPublisherID the unique ID

• of the Service Metadata Publisher for which the record is required

• @return ServiceMetadataPublisherBO the service metadata publisher record.

• @throws TechnicalException Technical exception.

• @throws BusinessException Business exception.

*/

ServiceMetadataPublisherBO read(String serviceMetadataPublisherID);

}

▼ Implementation classes

The implementation classes extend the parent-class «AbstractBusinessImpl» and implement their
dedicated interface (here «IManageServiceMetadataBusiness»). The AbstractBusinessImpl class
only contains the logging service but may be completed with new services if new common
requirements are identified for *BusinessImpl classes in future versions.

public class ManageServiceMetadataBusinessImpl extends AbstractBusinessImpl implements
IManageServiceMetadataBusiness \{

private IManageServiceMetadataDAO manageServiceMetadataDAO;

/*

• (non-Javadoc)

*

• @see eu.europa.ec.bdmsl.service.IManageServiceMetadataBusiness#read (String)

*/

@Override

public ServiceMetadataPublisherBO read(String serviceMetadataPublisherID)

throws TechnicalException, BusinessException \{

ServiceMetadataPublisherBO smpBO =
manageServiceMetadataServiceBusiness.read(serviceMetadataPublisherID);

return smpBO;

}

…

©2025 eDelivery Chapter 1. Architecture Description |36

}

1.1.7. Data Access Layer

This layer access to the data persisted in the database. The objects of this layer are POJO that
implement the Singleton and DAO pattern.

Naming convention

• Package: eu.europa.ec.bdmsl.dao

• Interface: eu.europa.ec.bdmsl.dao.I<InterfaceName>DAO

• Implementation package: eu.europa.ec.bdmsl.dao.impl

• Implementation: eu.europa.ec.bdmsl.dao.impl.<InterfaceName>DAOImpl

• Package Entity Object: eu.europa.ec.bdmsl.dao.entity

• Entity object: eu.europa.ec.bdmsl.dao.entity.<ObjectName>Entity

Dependencies

In this layer, only the following calls are allowed:

• Calls to technical components

• Calls to the common package

Frameworks

This layer is the only one to use the JPA framework because it is the only one that actually accesses
to the database.

The configuration is managed by Spring.

Data Access Layer’s Development

▼ Interface

public interface ISmpDAO \{

/**

• Retrieves the Service Metadata Publisher record for the service metadata.

• @param serviceMetadataPublisherID the unique ID

• of the Service Metadata Publisher for which the record is required

• @return ServiceMetadataPublisherBO the service metadata publisher

*/

ServiceMetadataPublisherBO findSMP(String serviceMetadataPublisherID) throws
TechnicalException;

}

37| Chapter 1. Architecture Description DomiSML 4.3 Documentation

▼ Implementation Classes

The implementation classes extend the parent-class «AbstractDAOImpl» and implement their
dedicated interface (here «IManageServiceMetadataDAO»).

public class ManageServiceMetadataDAOImpl extends AbstractDAOImpl implements ISmpDAO \{

/**

• @see eu.europa.ec.bdmsl.dao.ISmpDAO#findSMP(String)

*/

@Override

public ServiceMetadataPublisherBO findSMP(String serviceMetadataPublisherID)

throws TechnicalException \{

ServiceMetadataPublisherBO resultBO = null;

SmpEntity resultSmpEntity = getEntityManager().find(SmpEntity.class, id);

if (resultSmpEntity != null) \{

resultBO = mapperFactory.getMapperFacade().map(resultSmpEntity,
ServiceMetadataPublisherBO.class);

} else \{

loggingService.debug("No SMP found for id " + id);

}

return resultBO;

}

…

}

▼ Mapping BO/Entity

The data access layer internally uses JPA entities to perform the Object/Relational mapping with
the database. However, the methods exposed in the interfaces only expose Business Objects
because the Business objects are the only ones that can be used between the layers.

For more information on mapping BO/Entities, see Object Mapping.

Common Package

This package is particular because it can be called without restriction by all the layers of the
application: it is transversal.

©2025 eDelivery Chapter 1. Architecture Description |38

This common package provides:

• Business and technical Exceptions.

• Business objects (BOs) to be used in every layer

• Constants, error codes, utility classes

• Enums

Naming convention

• Package: eu.europa.ec.bdmsl.common

• Package Business Object: eu.europa.ec.bdmsl.common.bo

• Business Object: eu.europa.ec.bdmsl.common.<ObjectName>BO

Dependencies

In this layer, only the following calls are allowed:

• Calls to technical components

Business Objects (BO)

Business objects (BO) are developed in the common package because they are transversal to all
layers and are used in the service, business and persistence layer. They are POJO with no
dependency to any framework or database. They can walk through the layers. We use BO because
they are linked to the domain, and hide the implementation choices made for façade and for the
persistence. Thus, they are not directly linked to any database model, or any web service interface.

Each BO extends the abstract class AbstractBusinessObject provided by the common library. This
class implements java.io.Serializable and overrides equals, hashCode and toString as abstract
methods.

Each BO must define a serialVersionUID and implement the three previous methods.

1.1.8. Software Architecture

The development of DomiSML involves five different maven projects.

• bdmsl-api

• bdmsl-common

• bdmsl-webapp

• bdmsl-parent-pom

In this section we describe the content and the role of each project.

39| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Library "bdmsl-api"

Project name : bdmsl-api

It is a SOAP web service client (stub) that is generated from the WSDLs of the main project. The api
is a Maven project and the output is packaged as a jar file.

The WSDL files contain all the methods that are exposed, the objects and the exceptions.

The projects that call the web services of the eDelivery BDMSL application can use this web service
client.

Library "bdmsl-common"

Project name : bdmsl-common

Packages:

This library is used by all the modules of the eDelivery BDMSL solution. It provides services like:

• Cryptography

• Constants

• Configuration manager

• Utils (dates, encoding, etc.)

• Logging

• Abstract/parent classes common to all eDelivery BDMSL modules

bdmsl-webapp

Project name : bdmsl-webapp

©2025 eDelivery Chapter 1. Architecture Description |40

This is a Maven project that contains all the services, business logic and persistence code of the
application. It produces a war file that can be deployed in the supported application servers and
servlet containers.

Parent POM

Project name: bdmsl-parent-pom

It’s the parent pom of all the Maven module. It contains the version for the dependencies, default
configuration of plugins, etc.

Maven configuration

1.2. Logging

1.2.1. Implementation

The logs use the Log4j framework. The bdmsl-common library provides the logging manager
ILoggingService and its main implementation class LoggingServiceImpl. This logging manager must
be used for all the logs within the eDelivery BDMSL application.

41| Chapter 1. Architecture Description DomiSML 4.3 Documentation

There are 3 types of logs: security logs, business logs and miscellaneous logs. Each category of log
has its own appender defined in the log4j.xml file. By default, each category will log in a separate
file:

• bdmsl-security.log : This log file contains all the security related information. For example, you
can find information about the clients who connect to the application.

• bdmsl-business.log: This log file contains all the business related information. For example,
when a participat is created, when a SMP is deleted, etc.

• bdmsl.log : This log file contains both the security and business logs plus miscellaneous logs like
debug information, logs from one of the framework used by the application, etc.

The security and business logs require a code that is defined in the implementation of the
ILogEvent interface. In the eDelivery BDMSL application, all the security and business messages are
defined in the LogEvents class.

The pattern of the logs is defined in the log4j.xml file. The default pattern is:

%d{ISO8601}\{Europe/Brussels} [%X{user}] [%X{requestId}] %-5p %c{1}:%L - %m%n

• user: The client authenticated by its certificate.

• requestId: the UUID of the request (provided by the application server)

The values for the user and requestId properties can be set by calling the method
ILoggingService.putMDC(String key, String value).

1.2.2. Log event codes

Category Log event code Description

SECURITY SEC-001 The host %s attempted to access %s without any certificate

©2025 eDelivery Chapter 1. Architecture Description |42

Category Log event code Description

SECURITY SEC-002 The host %s has been granted access to %s with roles %s

SECURITY SEC-003 The host %s has been refused access to %s

SECURITY SEC-004 The certificate is revoked : %s

SECURITY SEC-005 The root certificate of the client certificate is unknown in the
database. It means that the certificate is accepted at transport
level (SSL) but refused at application level. %s

SECURITY SEC-006 Certificate is not valid at the current date %s. Certificate valid
from %s to %s

SECURITY SEC-007 Certificate is not yet valid at the current date %s. Certificate
valid from %s to %s

BUSINESS BUS-001 Technical error while authentication process

BUSINESS BUS-002 Error while configuring the application.

BUSINESS BUS-003 The SMP was successfully created: %s.

BUSINESS BUS-004 The SMP couldn’t be created: %s.

BUSINESS BUS-005 The following SMP was read: %s.

BUSINESS BUS-006 The SMP couldn’t be read: %s.

BUSINESS BUS-007 The SMP was successfully deleted: %s.

BUSINESS BUS-008 The SMP couldn’t be deleted: %s.

BUSINESS BUS-009 The SMP was successfully updated: %s.

BUSINESS BUS-010 The SMP couldn’t be updated: %s.

BUSINESS BUS-011 The participant was successfully created: %s.

BUSINESS BUS-012 The participant couldn’t be created: %s.

BUSINESS BUS-013 The list of participant couldn’t be created: %s.

BUSINESS BUS-014 The list of participants couldn’t be created: %s.

BUSINESS BUS-015 The participant was successfully deleted: %s.

BUSINESS BUS-016 The participant couldn’t be deleted: %s.

BUSINESS BUS-017 The list of participant couldn’t be deleted: %s.

BUSINESS BUS-018 The list of participants couldn’t be deleted: %s.

BUSINESS BUS-019 The participants of SMP %s have been successfully listed.

BUSINESS BUS-020 The participants of SMP %s couldn’t be listed.

BUSINESS BUS-021 The prepare to migrate service was successfully called for
participant: %s.

BUSINESS BUS-022 The prepare to migrate service failed for participant: %s.

BUSINESS BUS-023 The call to migrate service was successfully called for
participant: %s.

43| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Category Log event code Description

BUSINESS BUS-024 The call to migrate service failed for participant: %s.

BUSINESS BUS-025 The call to the list service succeeded

BUSINESS BUS-026 The call to the list service failed

BUSINESS BUS-027 The new certificate was successfully planned for change for
current certificate: %s

BUSINESS BUS-028 The certificate change failed for current certificate: %s

BUSINESS BUS-029 The following CNAME record has been added to the DNS for the
participant %s : %s

BUSINESS BUS-030 The following NAPTR record has been added to the DNS for the
participant %s : %s

BUSINESS BUS-031 The following CNAME record has been added to the DNS for the
SMP %s : %s

BUSINESS BUS-032 The following A record has been added to the DNS for the SMP
%s : %s

BUSINESS BUS-033 The CertificateChangeJob ran successfully. %s certificates have
been migrated

BUSINESS BUS-034 The CertificateChangeJob failed.

BUSINESS BUS-035 The ChangeCertificate service has been executed successfully

BUSINESS BUS-036 The ChangeCertificate service has failed

1.3. Caching
To enhance performance, in-memory caches are used in the application. They rely on the ehcache
implementation. To put objects in a cache, we use annotations:

@Override

@Cacheable(value = "crlByUrl", key = "#crlDistributionPointURL")

public void verifyCertificateCRLs(String serial, String crlDistributionPointURL)\{

[…]

}

The @Cacheable annotation triggers cache population. In the previous example, the name of the
cache is crlByUrl. The key attribute is one of the parameters of the method:
crlDistributionPointURL. The next time this method is called, if the cache is already populated with
a value for the given key, then the method won’t actually be called and the result will be returned
from the cache.

Sometimes, it is useful to clear the caches. This can be done by calling the method
IBDMSLService.clearCache().

©2025 eDelivery Chapter 1. Architecture Description |44

1.4. Exception handling

1.4.1. Exception types

When exceptions are thrown in the business, persistence and service layers, they are transformed
into technical or business exceptions to ensure to the client of the service that all the possible
exceptions are declared in the service signature.

All the methods of the exposed interfaces in the persistence, business and service layer can only
throw two kinds of exceptions:

• TechnicalException : Technical exceptions happen when a technical component of a business
process acts in an unexpected way. Examples of technical exceptions are: IO exception, timeout,
bad configuration, etc.

• BusinessException : Business Exceptions are exceptions that are designed and managed in the
specification of a business process. In other words, Business Exceptions are exceptions which
happen at the process or workflow level, and are not related to the technical components.

1.4.2. SOAP Faults

Because of the design of the WSDL in the SML specification, it is not possible to use an interceptor
to transform the exceptions into SOAP fault. Thus, it is the AbstractWSImpl class which handles
exceptions and convert any type of exception into appropriate SOAP faults. In the eDelivery
BDMSL, there are 4 types of SOAP faults, all mapped to TechnicalException:

• NotFoundFault

• UnauthorizedFault

• BadRequestFault

• InternalErrorFault

A typical SOAP fault example would be:

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>5378C6571DE2DD3FD026704338FF678B</faultstring>
 <detail>
 <NotFoundFault
 xmlns:ns2="http://busdox.org/transport/identifiers/1.0/"
 xmlns="http://busdox.org/serviceMetadata/locator/1.0/">
 <FaultMessage>[ERR-100] The SMP 'testSMLUpdate' doesn't
exist.</FaultMessage>
 </NotFoundFault>
 </detail>
 </soap:Fault>

45| Chapter 1. Architecture Description DomiSML 4.3 Documentation

 </soap:Body>
</soap:Envelope>

In the previous SOAP fault, the faultstring contains the request unique identifier provided by the
application server. This request unique identifier is traced in the logs to easily find the logs
associated to an exception:

2015-07-24 10:32:08,562 [unsecure-http-client]
[5378C6571DE2DD3FD026704338FF678B] ERROR LoggingServiceImpl:83 -
[ERR-100] The SMP 'testSMLUpdate' doesn't exist.

The error codes are all listed in the IErrorCodes interface (see the table below).

1.4.3. Error Codes

Error code Description Exception type

100 SMP not found error TechnicalException

101 Unauthorized error TechnicalException

102 Certificate authentication issue TechnicalException

103 The root alias is not found in the list of trusted
issuers in the database

TechnicalException

104 The certificate is revoked TechnicalException

105 Generic technical error TechnicalException

106 Bad request error TechnicalException

107 DNS communication problem TechnicalException

108 Problem with the SIG0 signature TechnicalException

109 Bad configuration TechnicalException

110 Participant not found error TechnicalException

111 Migration data not found TechnicalException

112 Duplicate participant error TechnicalException

113 Error when deleting a SMP TechnicalException

114 The deletion failed because a migration is
planned for the givenparticipant or SMP

TechnicalException

115 The certificate couldn’t be found TechnicalException

1.5. Object mapping
There are three types of objects used in the application:

• JAXB objects: Generated objects from the WSDL.

©2025 eDelivery Chapter 1. Architecture Description |46

• Business objects (BO): POJO used in the business logic in the service, business and persistence
layers.

• JPA entities: Persistence domain objects.

Two types of mapping are required:

• The first type of mapping converts JAXB objects to BO and vice-versa. The implementation class
is SoapMappingInitializer.

• The second type of mapping converts JPA entities to BO and vice-versa. The implementation
class is EntityMappingInitializer.

To avoid hand coding value object assemblers to copy data from one object type to another, we use
a generic framework named Orika. Orika is a Java Bean mapping framework that recursively
copies data from one object to another.

An example of mapping would be:

@Component
public class SoapMappingInitializer {

 @Autowired
 private MapperFactory mapperFactory;

 @PostConstruct
 public void init() {
 [...]
 mapperFactory.classMap(PageRequestType.class, PageRequestBO.class)
 .field("serviceMetadataPublisherID", "smpId")
 .byDefault()
 .register();
 [...]
 }
}

In the previous mapping, we map the field serviceMetadataPublisherID of the class PageRequestType
to the field smpId of the class PageRequestBO. The other fields have the same name so they are
automatically mapped thanks to the byDefault() method. This mapping is bidirectional.

To map an object, the singleton instance of the MapperFactory object can be used. For instance, in the
Façade layer (ws) :

[...]

47| Chapter 1. Architecture Description DomiSML 4.3 Documentation

https://code.google.com/p/orika/

public class BDMSLServiceWSImpl extends AbstractWSImpl implements IBDMSLServiceWS {
 [...]

 @Autowired
 private MapperFactory mapperFactory;
 [...]

 @Override
 @WebMethod([...])
 public void create(@WebParam ParticipantType participantType) {
 [...]
// Convert the ParticipantType JAXB object into a ParticipantBO object
 ParticipantBO participantBO =
mapperFactory.getMapperFacade().map(participantType, ParticipantBO.class);
[...]
 }
[...]
}

1.6. Database management

1.6.1. Auditing

To automatically audit the changes in the database, all the DAOs must extend the AbstractDAOImpl
class and use its persist() and merge() methods. This way, the date of the changes of any business
data is automatically logged.

For each table containing business data, these 2 following columns are present:

• created_on: date of creation of the row

• last_updated_on: date of the last update of the row

Data changes are also logged with hibernate envers. Each table has an audit table with the suffix
'_aud'.

1.6.2. Data model

Java entity classes are located in eu.europa.ec.bdmsl.dao.entity package. Entity annotations define
the Model with the use of JPA2 annotations. Database ddl scripts are generated automatically
during the build time by the maven plugin in the bdmsl-webapp subproject:

<plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <executions>
 <execution>
 <id>generate-ddl</id>
 <phase>process-classes</phase>
 <goals>

©2025 eDelivery Chapter 1. Architecture Description |48

https://hibernate.org/orm/envers/

 <goal>run</goal>
 </goals>
 <configuration>
 <target>
 <!-- ANT Task definition
 Class generates ddl scripts
 {empty}1. Parameter: comma separated hibernate database
dialects
 {empty}2. script version
 {empty}3. export scripts. -->
 <java

classname="eu.europa.ec.bdmsl.dao.utils.SMLSchemaGenerator"
 fork="true"
 failonerror="true">
 <arg
value="org.hibernate.dialect.Oracle10gDialect,org.hibernate.dialect.MySQL5InnoDBDialec
t"/>
 <arg value="$\{project.version}"/>
 <arg value="$\{project.basedir}/src/main/sml-setup/database-
scripts"/>
 <!-- reference to the passed-in classpath reference -->
 <classpath refid="maven.compile.classpath"/>
 </java>
 </target>
 </configuration>
 </execution>
 </executions>
</plugin>

By default, the ddl scripts for Oracle10gDialect and MySQL5InnoDBDialect database are generated.

Overview

49| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Global description of the tables

©2025 eDelivery Chapter 1. Architecture Description |50

Table Description

bdmsl_allowed_wildcard It is possible for a given Service Metadata Publisher to provide
the metadata for all participant identifiers belonging to a
particular participant identifier scheme. If this is the case,
then it corresponds to the concept of a wildcard CNAME
record in the DNS, along the lines:

.<schemeID>.<SML domain> CNAME <SMP domain><SMP domain> may
either be the domain name associated with the SMP, or an
alias for it. This implies that all participant identifiers
for that schemeID will have addresses that resolve to the
single address of that one SMP - and that as result only
one SMP can handle the metadata for all participant
identifiers of that scheme. Wildcard records are indicated
through the use of as the participant identifier in the
operations of the ManageParticipantIdentifier interface.

This table identifies the SMP with their certificates and map
them to schemes for which they can create wildcard records.

bdmsl_certificate List of SMPs identified with their certificates.

bdmsl_certificate_domain Associates the root certificates to the DNS domains

bdmsl_configuration Table containing all the configuration

bdmsl_migrate Contains the participants migrated or to be migrated

bdmsl_participant_identifier List of the participants

bdmsl_smp List of the SMPs

bdmsl_subdomain List of Subdomains

bdmsl_allowed_wildcard_aud Audit table for: bdmsl_allowed_wildcard

bdmsl_certificate_aud Audit table for: bdmsl_certificate

bdmsl_certificate_domain_aud Audit table for: bdmsl_certificate_domain

bdmsl_configuration_aud Audit table for: bdmsl_configuration

bdmsl_migrate_aud Audit table for: bdmsl_migrate

bdmsl_participant_identifier_aud Audit table for: bdmsl_participant_identifier

bdmsl_smp_aud Audit table for: bdmsl_smp

bdmsl_subdomain_aud Audit table for: bdmsl_subdomain

bdmsl_info_rev Audit table for: audit info table with date and user who
created the change.

Detailed description of the tables

Table Column Description

bdmsl_allowed_wildcard scheme The scheme on which the wildcard
applies

51| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Table Column Description

fk_certificate_id The foreign key to the certificate

created_on Date of creation

last_updated_on Date of the last update

bdmsl_certificate id The id is a primary key of the
certificate entry.

certificate_id The certificate_id is a natural key
composed of the subject and the
serial number of the certificate

valid_from Start validity date of the certificate

valid_until Expiry date of the certificate

pem_encoding PEM encoding for the certificate

new_cert_change_date The date of the change for the new
certificate

new_cert_id The new certificate id. Links to the
certificate that will be valid after
the current one is expired. At the
migration date, it aims to replace
the existing certificate

created_on Date of creation

last_updated_on Date of the last update

bdmsl_certificate_domain certificate Natural key for authorization
domain certificate. Value is
created from certificate Subject
value

id Domain certificate entry primary
key.

fk_subdomain_id The foreign key to the subdomain

truststore_alias Alias which correspond to
certificate truststore alias.

crl_url URL to the certificate revocation
list (CRL)

created_on Date of creation

valid_from Start validity date of the certificate

valid_until Expiry date of the certificate

us_admin If user identified by this certificate
has role ADMIN

pem_encoding PEM encoded certificate

©2025 eDelivery Chapter 1. Architecture Description |52

Table Column Description

is_root_ca If certificate is root CA or not

last_updated_on Date of the last update

bdmsl_configuration property Name of the property

value Value of the property

description Description of the property

created_on Date of creation

last_updated_on Date of the last update

bdmsl_migrate scheme The scheme of the participant
identifier to be migrated

participant_id The participant identifier to be
migrated

migration_key The migration key is a code that
must be passed out-of-band to the
SMP which is taking over the
publishing of the metadata for the
participant identifier.

This code must contain:

• 8 characters minimum

• 24 characters maximum

• 2 Special Characters
@#$%()[]\{}*^-!~|+=

• 2 Upper Case letters minimum

• 2 Lower Case letters minimum

• 2 Numbers minimum

• No white spaces

new_smp_id The id of the SMP after the
migration

old_smp_id The id of the old SMP (before the
migration)

migrated True if the migration is done

created_on Date of creation

last_updated_on Date of the last update

bdmsl_participant_identifier id Surrogate key of participant

participant_id The participant identifier

53| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Table Column Description

disabled Disabled status of the partipant:
true/false. Disabled participant
identifiers do not have DNS
records.

naptr_hash Hash of participant used for naptr
record

cname hash Hash of participant used for
cname record

scheme The scheme of the participant
identifier

bdmsl_smp fk_smp_id The foreign key to the SMP
identifier

created_on Date of creation

last_updated_on Date of the last update

id Surrogate key of smp

smp_id The SMP identifier

smp_disabled Disabled status of the smp:
true/false. Disabled SMPs do not
have DNS records.

fk_certificate_id The foreign key to the certificate

endpoint_physical_address The physical address of the
endpoint. This physical address is
used as the ALIAS on the CNAME
DNS record.

endpoint_logical_address The logical address of the
endpoint

created_on Date of creation

fk_subdomain_id The foreign key to the subdomain

last_updated_on Date of the last update

bdmsl_subdomain subdomain_id The subdomain identifier

subdomain_name The subdomain name

created_on Date of creation

last_updated_on Date of the last update

description Subdomain description

©2025 eDelivery Chapter 1. Architecture Description |54

Table Column Description

dns_record_type Type of DNS Record when
registering/updating participant,
“all” means that both DNS record
types are accepted as possible
values: [cname, naptr, all].

dns_zone Domain (dns zone) for subdomain.

participant_id_regexp Regex allows specific and
described ids only or * instead for
having wildcards.

smp_url_schemas Protocol that MUST be used for
LogicalAddress when registering
new SMP. “all” means both
protocols are accepted as possible
values: [http, https, all].

smp_ia_cert_regexp Regex for authorizing certificates
when using issuer based domain
authorization.

1.7. Scheduler
The Spring Framework provides abstractions for asynchronous execution and scheduling of tasks.

In the applicationContext.xml file, we can define the jobs to be scheduled:

<task:scheduler id="scheduler" pool-size="1"/>

<task:scheduled-tasks scheduler="scheduler">

<task:scheduled ref="manageCertificateService" method="changeCertificates"
cron="${certificateChangeCronExpression}"/>

</task:scheduled-tasks>

The previous example will execute every day at 2 am the method changeCertificate of the bean
name manageCertificateService.

In case of the execution of the application on a clustered environment, it is necessary to make sure
that multiple jobs do not perform the same task at the same time. The use of a pessimistic lock can
be useful:

@Override

public List<CertificateBO> findCertificatesToChange(Calendar currentDate) throws
TechnicalException \{

clustered environment. To avoid concurrency issues, we do here a SELECT FOR UPDATE

55| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Query query = getEntityManager().createQuery("SELECT cert from CertificateEntity cert where
cert.newCertificateChangeDate ⇐ :currentDate")

setParameter("currentDate",

currentDate).setLockMode(LockModeType.PESSIMISTIC_WRITE);

[…]

}

All cron expressions are initialized from values in the database. When a parameter is changed,
server needs to be restarted.

1.7.1. Change Certificate

This job changes the certificates that have a migration date in the past or at the present day and
deletes the older ones.

This task runs according to this parameter:

BDMSL_CONFIGURATION

PROPERTY VALUE DESCRIPTION

certificateChangeCronExpression 0 0 2 ? * * Cron expression for the
changeCertificate job.
Example: 0 0 2 ? * * (everyday
at 2:00 am)

This parameter can be updated manually on the database or by webservice SetProperty().When
parameter is changed, the server needs to be restarted.

1.7.2. Update database properties

If SML is set in “cluster mode” (property sml.cluster.enabled) then this job updates application
business properties from database. Cron task is used to ensure that all nodes in a cluster update
properties at the same time. Task first checks if there are changed properties according to
last_update_on values. If there is a last_update_on value newer then the one from the last property
update, the update of properties is triggered.

This task runs according to this parameter:

BDMSL_CONFIGURATION

PROPERTY VALUE DESCRIPTION

sml.property.refresh.cronJobExpression 0 53 */1 * * * Property refresh cron task
expression (every hour, 7
minutes before the hour)

sml.cluster.enabled false Property defines if SML is
running in cluster mode.

©2025 eDelivery Chapter 1. Architecture Description |56

This parameter can be updated manually on the database or by webservice SetProperty().

1.7.3. Data Inconsistency Analyzer

This job looks for inconsistencies between the database and the DNS. It first accesses the DNS to
retrieve all SMPs and Participants. It then compares DNS data against Database. All discrepancies in
entries are reported to the user by means of a report email.

As the previous job, this task will run according to the parameters below:

BDMSL_CONFIGURATION

PROPERTY VALUE DESCRIPTION

dataInconsistencyAnalyzer.cronJobExpression 0 0 3 ? * * Cron
expression: 0 0
3 ? * * (every
day at 3:00 am)

dataInconsistencyAnalyzer.recipientEmail email@example.com Email address
to receive Data
Inconsistency
Checker results

dataInconsistencyAnalyzer.senderEmail email@example.com Sender email
address for
reporting Data
Inconsistency
Analyzer.

dataInconsistencyAnalyzer.serverInstance localhost Server instance
(hostname) to
generate
report.
Property is
needed in
cluster where
we define
which instance
should
generate the
report.

These parameters can be updated manually on database or by webservice SetProperty().

1.7.4. SMP with expired certificates Analyzer

This job looks for SMPs with expired certificates. All SMPs with expired certificates are reported to
the user by means of a report email.

As the previous job, this task will run according to the parameters below:

57| Chapter 1. Architecture Description DomiSML 4.3 Documentation

mailto:email@example.com
mailto:email@example.com

BDMSL_CONFIGURATION

PROPERTY VALUE DESCRIPTION

report.expiredSMPCertificates.cron 0 22 6 ? * * Cron
expression for
triggering the
report
generation of
the expired
SMP certificates

report.expiredSMPCertificates.recipientEmail email@example.com Email address
to receive the
report

report.expiredSMPCertificates.senderEmail email@example.com Sender email
address of the
report.

report.expiredSMPCertificates.serverInstance localhost Server instance
(hostname) to
generate
report.
Property is
needed in
cluster where
we define
which instance
should
generate the
report.

These parameters can be updated manually on database or by webservice SetProperty().

1.8. Email SMTP configuration
An inconsistency report is sent by email. As a consequence a mail server needs to be configured in
the database. Below are smtp server configuration properties.

BDMSL_CONFIGURATI
ON

PROPERTY VALUE DESCRIPTION

mail.smtp.host smtp.server.com Smtp server host

mail.smtp.port 465 Smtp server port

mail.smtp.protocol smtp Protocol (smtp,
smtps)

©2025 eDelivery Chapter 1. Architecture Description |58

mailto:email@example.com
mailto:email@example.com

BDMSL_CONFIGURATI
ON

mail.smtp.username smtpuser Username for
authentication on
server

mail.smtp.password P/npBabppDazizAjWkNs6Q== Encrypted
password

mail.smtp.properties mail.smtp.ssl:true;
mail.smtp.auth:true;
mail.smtp.socketFactory.class:javax.net.ssl.SSLSocke
tFactory

NOTE
Set as semicolon(;) separated
list/one string.

Additional
properties

1.9. Validations

1.9.1. Participant ID validation per Domain

SML provides to each existent domain the possibility to validate its participant ids through Regular
Expression. The following property in the table BDMSL_SUBDOMAIN allows validating participant
ids:

Example - For subdomain with name: peppol.acc.edelivery.tech.ec.europa.eu

PARTICIPANT_ID_REGEXP = ^((((1234|45678|9584|9635):).*)|(*))$

1. Example - For subdomain with name: generalerds.acc.edelivery.tech.ec.europa.eu

PARTICIPANT_ID_REGEXP = ^.*$

1.9.2. Logical Address validation per Domain

Two addresses are needed to create a SMP: the Logical and the Physical Addresses. As from SML
version 3.1, the configuration allows to specify if the Logical Address may accept HTTP or HTTPS
protocol for the Create SMP Operation.

An additional property 'SMP_URL_SCHEMAS' has been introduced in the table BDMSL_ SUBDOMAN
in that purpose.

The possible values for this property are (all, http or https). The option 'all' means that both
protocols are accepted.

59| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Example for test.acc.edelivery.tech.ec.europa.eu

SMP_URL_SCHEMAS = all

1.10. Security

1.10.1. DNS

DNS specifications

The SML Specification states in its chapter 5. DNS spoof mitigation:

"The regular lookup of the address of the SMP for a given participant ID is performed using a
standard DNS lookup. There is a potential vulnerability of this process if there exists at least one
"rogue" certificate (e.g. stolen or otherwise illegally obtained). In this vulnerability, someone
possessing such a rogue certificate could perform a DNS poisoning or a man-in-the-middle attack to
fool senders of documents into making a lookup for a specific identifier in a malicious SMP (that uses
the rogue certificate), effectively routing all messages intended for one or more recipients to a
malicious access point. This attack could be used for disrupting message flow for those recipients, or
for gaining access to confidential information in these messages (if the messages were not separately
encrypted). One mitigation for this kind of attack on the DNS lookup process is to use DNSSEC rather
than plain DNS. DNSSEC allow the authenticity of the DNS resolutions to be checked by means of a
trust anchor in the domain chain. Therefore, it is recommended that an SML instance uses the
DNSSEC infrastructure."

Thus, to mitigate the risk of DNS spoofing, the DNSSEC can be used in the eDelivery BDMSL
application. The Domain Name System Security Extensions (DNSSEC) is a suite of Internet
Engineering Task Force (IETF) specifications for securing certain kinds of information provided by
the Domain Name System (DNS) as used on Internet Protocol (IP) networks.

Three properties allow the administrator to configure the DNSSEC:

Property Description

dnsClient.SIG0Enabled 'true' if the SIG0 signing is enabled. Required fr
DNSSEC. Possible values: true/false

dnsClient.SIG0PublicKeyName The public key name of the SIG0 key

dnsClient.SIG0KeyFileName The actual SIG0 key file. Should be just the
filename if the file is in the classpath or in the
'configurationDir'

NOTE
It’s important to be aware that the BDMSL deployed at the European Commission is
not configured to use DNSSEC on the actual public DNS server:

©2025 eDelivery Chapter 1. Architecture Description |60

https://github.com/OpenPEPPOL/edec-specifications/blob/master/releases/sml/ICT-Transport-SML_Service_Specification-101.pdf

DNS implementation

The BDMSL registers 1 CNAME record for each SMP. The BDMSL registers 2 types of DNS records for
each participant:

• 1 CNAME record with the prefix "B-"

• 1 U-NAPTR record without prefix "B-"

Thus, for each participant, 2 records exist at the same time in the DNS and don’t conflict because
they don’t use the same hash algorithm. For example, if a SMP registers the participant
0010:5798000000001 then:

• The MD5 hash is e49b223851f6e97cbfce4f72c3402aac

• The SHA-256 Base32 hash is
XUKHFQABQZIKI3YKVR2FHR4SNFA3PF5VPQ6K4TONV3LMVSY5ARVQ

As a result, the BDMSL registers two records in the DNS:

>dig CNAME B-e49b223851f6e97cbfce4f72c3402aac.iso6523-actorid-
upis.acc.edelivery.tech.ec.europa.eu @ddnsext.tech.ec.europa.eu

B-e49b223851f6e97cbfce4f72c3402aac.iso6523-actorid-upis.edelivery.eu. 60 IN CNAME
smp.edelivery.tech.ec.europa.eu

>dig NAPTR XUKHFQABQZIKI3YKVR2FHR4SNFA3PF5VPQ6K4TONV3LMVSY5ARVQ.iso6523-actorid-
upis.edelivery.eu @ddnsext.tech.ec.europa.eu

XUKHFQABQZIKI3YKVR2FHR4SNFA3PF5VPQ6K4TONV3LMVSY5ARVQ.iso6523-actorid-
upis.edelivery.eu. 60 IN NAPTR 100 10 "U" "Meta:SMP" "!.*!http://smp.edelivery.eu/iso6523-actorid-
upis::0010:5798000000001!" .

61| Chapter 1. Architecture Description DomiSML 4.3 Documentation

To mitigate the risk of DNS spoofing, the BDMSL can use the DNSSEC infrastructure. The
deployment infrastructure is described in the DNS section.

1.10.2. Encryption Key

SML uses a private key to encrypt and decrypt the keystore password used by SML to sign any
response and the proxy password.

How to generate a private key

• Download one of the latest BDMSL .war files from the repository on the Digital site

• Extract the .war file using any extracting tool

• Run the following commands to create a private key

1. cd bdmsl-webapp-XXX-weblogic-oracle (XXX being the SML version number you are intalling)

2. java -cp "WEB-INF/lib/*" eu.europa.ec.bdmsl.common.util.PrivateKeyGenerator
c:\temp\encriptionPrivateKey.private

Required parameter = Full directory path where the private key will be created

Example:

Printed result: Private key created at c:\temp\encriptionPrivateKey.private

NOTE: Once the private key is generated, please copy the private key file name "Ex:
encriptionPrivateKey.private" to the value of the property encriptionPrivateKey in the table
BDMSL_Configuration, and copy the private file to the path configured in the property
configurationDir.

How to encrypt a password

After generating a private key at the section 12.2.1, please configure the proxy or keystore (used to
sign response) password if needed as follows:

• Inside the folder already extracted from the BDMSL .war file, please run below command:

java -cp "WEB-INF/lib/*" eu.europa.ec.bdmsl.common.util.EncryptPassword
c:\temp\privateKey.private Password123 ①②

① 1st parameter is the private key location.

② 2nd parameter is the password in plain text.

• To configure the proxy password, please copy the printed encrypted and base64 encoded
password to the value of the property httpProxyPassword in the table
BDMSL_CONFIGURATION.

Example:

©2025 eDelivery Chapter 1. Architecture Description |62

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML+software

Property Description

httpProxyPassword vXA7JjCy0iDQmX1UEN1Qwg==

• To configure keystore password, please copy the printed encrypted and base64 encoded
password to the value of the property keystorePassword in the table BDMSL_CONFIGURATION

Example:

Property Description

keystorePassword vXA7JjCy0iDQmX1UEN1Qwg==

1.10.3. Authentication

The authentication relies on the use of a Public Key Infrastructure (PKI). The services are all
secured at the transport level with a two-way SSL / TLS connection. The requestor must
authenticate using a client certificate issued for use in the infrastructure by a trusted third-party.
The server will reject SSL clients that do not authenticate with a certificate issued under a trusted
root.

WS-Security is only used for signing the response from the BDMSL to the SMP. It allows the SMP to
validate that the request was correctly processed and acknowledged by the BDMSL.

The authentication for the user and admin interface is also performed with 2-way SSL and the user
must provide the SMP’s certificate.

The authentication is performed through a custom interceptor named
CertificateAuthenticationInterceptor. This interceptor is configured to intercept any incoming
request in the cxf-servlet.xml configuration file:

<cxf:bus>
 <cxf:inInterceptors>
 <ref bean="certificateAuthenticationInterceptor"/>
 </cxf:inInterceptors>
 [...]
</cxf:bus>

The interceptor extracts the certificate information from the request and then validates it.

A certificate is valid if:

• The direct issuer or certificate itself is trusted in the bdmsl_certificate_domain table and
truststore.

• If certificate is trusted by direct issuer and subject matches the regular expression

• If the whole certificate chain is registered in truststore and is valid:

◦ It is not revoked according to its certificate revocation list (CRL)

◦ It is valid for the current date

63| Chapter 1. Architecture Description DomiSML 4.3 Documentation

This certificate is then automatically used to authenticate the client using the Spring security
framework. If the certificate is valid, then the client is authenticated and the certificate details are
stored in the security context. Otherwise, a UnauthorizedFault is thrown.

SSL configured on the application server

The 2-way SSL configuration can be directly set up on the application server hosting the
application:

In this type of configuration, the client certificate is passed in the request and can be intercepted in
the javax.servlet.request.X509Certificate attribute.

Reverse proxy with SSL

The server can be behind a reverse proxy. In this case, 2-way SSL is set up on the reverse proxy and
the application server hosting the application can use the HTTP protocol:

In this configuration, the certificate information is stored in the HTTP header, in the Client-Cert
attribute. From BDMSL 4.1 version on, BDMSL supports HTTP header SSLClientCert with base64
encoded Client X509Certificate.

Admin Access

The system administrators can access the services like ChangeCertificate by using certificate
authentication. The domain certificate in the bdmsl_certificate_domain must have flag Is_Admin_
set to true. Admin certificate can only be NonRootPKI certificate.

Monitor Access

The Monitor user can only access service isAlive(). User is authenticated by security token included
in the HTTP Header in the following way:

• The HTTP header needs to have the following attributes: Monitor-Token, Admin-Pwd (obsolete)

• The password needs to be hashed with BCrypt algorithm

©2025 eDelivery Chapter 1. Architecture Description |64

• The password will be stored in the configuration table under the key adminPassword

Enable/disable BlueCoat Authentication flag

To authenticate into SML using the header Client-Cert attribute, the flag
authentication.bluecoat.enabled and authorization.domain.legacy.enabled must be enabled in the
table BDMSL_CONFIGURATION (BlueCoat Authentications are rejected otherwise).

1.10.4. Authorizations

Roles

There are three roles defined in the application:

Property Description Current condition

ROLE_SMP The role specific to SMP
clients

The CN (Common Name) must start
with "SMP_" or "DN" (Distinguished
name) and must match regular
expression from configuration
property:
authorization.smp.certSubjectRege
x.
See Technical Requirements.

For a Non Root Certificate
Authority, the CN (Common Name)
must contain SMP. See Granting the
ROLE_SMP role for more information.

ROLE_MONITOR The role only for invoking
isAlive function

No certificate needed, the right
credentials must be sent via the
HTTP header attribute Admin-Pwd
or Monitor-Token

ROLE_ADMIN The role for the
administrator of the BDMSL

Admin is authenticated by Non
Root Certificate Authority in
domain certificate table. Certificate
must have flag is_admin set to true.

The authorizations are set using the Spring security framework using the @PreAuthorize
annotation on the methods of the service layer:

@Override
@PreAuthorize("hasAnyRole('ROLE_SMP', 'ROLE_ADMIN')")
@Transactional(readOnly = false, rollbackFor = Exception.class)
public void prepareChangeCertificate(PrepareChangeCertificateBO
prepareChangeCertificateBO) throws BusinessException, TechnicalException {
 [...]
}

65| Chapter 1. Architecture Description DomiSML 4.3 Documentation

In the previous example, the method can only be called if the current client has any of the roles
ROLE_SMP or ROLE_ADMIN. Otherwise, a UnauthorizedFault SOAP fault is thrown.

Granting ROLE_SMP

The BDMSL application can perform 2 different types of SMP domain authorizations:

• One is the Domain certificate-issuer-based* authorization* (also known as Root Certificate
Authority) method that would automatically authorize all the certificate-issuer trusted
certificates.

• The other is the certificate-based authorization (also known as *NON Root Certificate
Authority)*method to authorize an individual SMP X.509 certificate.

Certificate-issuer-based authorization

The authorization is suitable for business domains with a high number of SMP service providers.
The SML domain owner must provide a dedicated issuer certificate for issuing all SMP service
providers certificates in a particular domain. When the business owner issues a certificate to the
SMP service provider, it automatically authorizes the certificate to access the BDMSL business
domain. The SMP service provider can then create and manage an SMP entry and its Participant
list. At the SMP entry creation, the SMP’s Certificate is automatically registered to the SMP entry.
After the SMP entry registration, the SMP entry itselfand its participant listcan be modified only by
the SMP entry’s registered certificate.

BDMSL introduces the ability to define regular expressions on the SMP X509 Certificate’s subject DN
to filter the SMP authorization to specific certificates issued by the registered domain issuer. The
functionality also enables business owners to use certificate issued for other purposes, as the case
for also issuing the AP certificates. The regular expression is defined by the BDMSL configuration
property, authorization.smp.certSubjectRegex or in the the domain table column:
SMP_IA_CERT_REGEXP.

Below is an example of a regular expression where the only SMP certificates allowed have subject
CN starting with “SMP_“ or the subject DN containing organization unit (OU) with value:
“PRODUCTION SMP:

Regular expression: ^.(CN=SMP_|OU=PRODUCTION SMP).$

NOTE
The system administrator must register and authorize the issuer certificate in the
BDMSL and associate it to the domain.

For granting a certificate to the domain, BDMSL checks the issuer of the certificate against the
trusted RootCA list provided by the SML database certificate domain table and (optionally) SML
truststore. The database flag isRootCA for the issuer certificate must be set to true.

A Root Certificate Authority owns a PKI (Public Key Infrastructure) to manage certificates.

Certificate-based authorization

This authorization is suitable for business domains with fewer SMP service providers and in cases
where maintaining a dedicated certificate issuer for the domain’s SMP certificates is not an option.

©2025 eDelivery Chapter 1. Architecture Description |66

In this case, each SMP certificate must be added and authorized in the BDMSL business domain by
the administrator.

For granting a certificate as trusted, BDMSL checks the certificate itself against the trusted NON-
RootCA provided by the SML database. The database flag isRootCA must be set false.

A Non Root Certificate Authority does not own any PKI (Public Key Infrastructure) to manage
certificates, a third party entity is responsible for managing certificates for such case.

Non Root and Root Certificate Priority

Apart from the aforementioned cases, SML allows certificates that are configured with Root and
Non Root CA simultaneously. In such cases, SML gives priority to the Non Root CA, meaning that if a
certificate matches Non Root CA, the SML ignores Root CA.

1.10.5. WS-Security

If the property signResponse is set to true, then the responses are signed using the WS-Security
framework.

The response signature is performed through a custom interceptor named SignResponseInterceptor.
This interceptor is configured to intercept any outgoing request in the cxf-servlet.xml configuration
file:

<cxf:bus>
 [...]
 <cxf:outInterceptors>
 <ref bean="signResponseInterceptor" />
 </cxf:outInterceptors>
</cxf:bus>

1.11. Technical requirements
This chapter describes the minimum and recommended system requirements to operate a BDMSL
component.

1.11.1. Hardware

Type Minimum Recommended

Processor 1 CPU core 4 CPU core

Memory (RAM) 2GB 8GB or more

Disk space 5GB Depends on usage

1.11.2. Software

Recommended stack

67| Chapter 1. Architecture Description DomiSML 4.3 Documentation

• Ubuntu 18.04 LTS 64 bits

• Oracle Java SE 8

• Oracle WebLogic Server 12c (12.2.1.4+)

• Oracle Database 11g (11.2.0.4.0)

Operating Systems

Any operating system that is compliant with one of the supported JVM.

Java Virtual Machines

• Oracle Java SE JRE 8

• OpenJDK 8

Java Application Servers

• Apache Tomcat 9

• Oracle WebLogic Server 12c (12.2.1.4+)

Databases

• MySQL 8

• Oracle Database 11g (11.2.0.4.0)

Web Browsers

• Internet Explorer 8 or newer

• Mozilla Firefox

• Google Chrome == Configuration

1.11.3. Application Configuration

Property Description Enc.

Properties listed with (*) are mandatory

adminPassword BCrypt Hashed password to
access admin services

Example:
$2a$10$…Bi

FALSE

©2025 eDelivery Chapter 1. Architecture Description |68

Property Description Enc.

(*)
authentication.bluecoat.enable
d

Is blue coat enabled.

Possible values: TRUE/FALSE.
Example: FALSE

NOTE

The property
should be
enabled only if
is protected by
the reverse
proxy.

FALSE

(*)
authentication.sslclientcert.e
nabled

Enable/Disable SSLClientCert
header authentication.

Possible values: TRUE/FALSE.
Example: FALSE

NOTE

The property
should be
enabled only if
is protected by
the reverse
proxy.

FALSE

(*)
authorization.smp.certSubjectR
egex

User with ROOT-CA is granted
SMP_ROLE only if its
certificates Subject matches
configured regexp.

Example: ^.(CN=SMP_|OU=PEPPOL
TEST SMP).$

FALSE

(*)
authorization.domain.legacy.en
abled

If legacy authorization is
enabled, then domain
authorization is done based
only on domain certificate table
data comparing certificate
Subject or Issuer Values. In case
of false: BDMSL must have SML
truststore configured. And the
Domain Trust is verified also by
the BDMSL truststore. In case of
false
value Clien-Cert header cannot
be used.

Example: TRUE

FALSE

69| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Property Description Enc.

(*)
cert.revocation.validation.gra
ceful

In case of
authorization.domain.legacy.en
abled is ser to false. All
certificate in truststore chain
are validated and CRL url is
retrieved from the certificates
directly.
+ Graceful validation of
certificate revocation. If URL
retrieving does not succeed, do
not throw error!.

Example: TRUE

FALSE

(*)
cert.revocation.validation.crl
.protocols

In case of
authorization.domain.legacy.en
abled is set to false. All
certificate in truststore chain
are validated and CRL url is
retrieved from the certificates
directly.

+ Comma separated list of
allowed CRL and/or OCSP
transport protocols for fetching
the CRL list or OCSP validation.

Example: http://,https://

FALSE

cert.revocation.validation.str
ategy

Certificate validation strategy.

Possible Values: OCSP_CRL,
CRL_OCSP,
OCSP_ONLY,CRL_ONLY,NO_VA
LIDATION.
Default: OCSP_CRL (OCSP first,
CRL second if OCSP fails).
Example: CRL_ONLY

-

(*) unsecureLoginAllowed True if the use of HTTPS is not
required. If the VALUES is set to
true, then the user unsecure-
http-client is automatically
created.

Possible Values: TRUE/FALSE.
Example: FALSE

FALSE

©2025 eDelivery Chapter 1. Architecture Description |70

http://,https://

Property Description Enc.

(*) configurationDir The path to the folder
containing all the configuration
files (keystore and sig0 key).

Example: ./

FALSE

(*)
sml.property.refresh.cronJobEx
pression

Property refresh CRON
expression (def 7 minutes to
each hour)!

Example: 0 53 */1 * * *

FALSE

(*)
certificateChangeCronExpressio
n

CRON expression for the
changeCertificate job.

Example: 0 0 2 ? * *
.Expression which expresses
the schedule: everyday at 2:00
am.

FALSE

smp.update.max.part.size Maximum number of
participants on SMP which are
automatically updated/deleted
when calling services:

+
ManageServiceMetadataService
/Update
ManageServiceMetadataService
/Delete

+ If SMP has more participants
then for
delete: the participants must be
deleted first using delete
participant service.
update (only for SMP logical
address when using NAPTR
records): the creation of new
SMP ID and migration
participant to new SMP is only
option.

Example: 1000

FALSE

Properties listed with (*) are mandatory

71| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Property Description Enc.

(*)
dataInconsistencyAnalyzer.cron
JobExpression

CRON expression for
dataInconsistencyChecker job.

Example: 0 0 3 ? * *,
which expresses the following
schedule: every day at 3:00 am.

FALSE

(*)
dataInconsistencyAnalyzer.reci
pientEmail

Email address to receive Data
Inconsistency Checker results.

Example: email@domain.com

FALSE

(*)
dataInconsistencyAnalyzer.send
erEmail

Sender email address for
reporting Data Inconsistency
Analyzer. Example: automated-
notifications@nsome-mail.eu

FALSE

(*)
dataInconsistencyAnalyzer.serv
erInstance

Server instance (hostname) to
generate report.

Example: localhost

FALSE

Properties listed with (*) are mandatory

(*) mail.smtp.host Email server - configuration for
submitting the emails.

Example: mail.server.com

FALSE

(*) mail.smtp.port Smtp mail port - configuration
for submitting the emails.

Example: 25

FALSE

(*)mail.smtp.protocol smtp mail protocol-
configuration for submitting
the emails.

Example: smtp

FALSE

mail.smtp.username smtp mail protocol- username
for submitting the emails.

FALSE

mail.smtp.password smtp mail protocol - encrypted
password for submitting the
emails.

TRUE

©2025 eDelivery Chapter 1. Architecture Description |72

mailto:email@domain.com

Property Description Enc.

mail.smtp.properties smtp mail semicolon (;)
separated properties.

Example:
mail.smtp.auth:true;mail.smtp.
starttls.enable:true;mail.smtp
.quitwait:false

FALSE

Properties listed with (*) are mandatory

(*) dnsClient.SIG0Enabled true if the SIG0 signing is
enabled. Required for DNSSEC.

Possible values: TRUE/FALSE.
Example: FALSE

FALSE

dnsClient.show.entries If true than service ListDNS
transfer and show the DNS
entries (not recommended for
large zones).

Possible values: TRUE/FALSE.
Example: TRUE

FALSE

dnsClient.tcp.timeout DNS TCP timeout in seconds. If
the value is not given then tcp
timeout is set to default value
60 seconds.

Example: TRUE

FALSE

(*)
dnsClient.use.legacy.regexp

If value is 'true', then
OASIS_BDXL regexp '^.$' is
used for NAPTR value
generation else it is used the
regular expression '.' as
defined in IETF RFC 4848.

Example: FALSE

FALSE

(*) dnsClient.SIG0KeyFileName The actual SIG0 key file. Should
be just the filename if the file is
in the classpath or in the
configurationDir.

Example: SIG0.private

FALSE

(*)
dnsClient.SIG0PublicKeyName

The public key name of the
SIG0 key.

Example: sig0.acc…ec.test.eu

FALSE

73| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Property Description Enc.

(*) dnsClient.enabled True if registration of DNS
records is required. Must be
true in production.

Possible values: TRUE/FALSE.
Example: FALSE

FALSE

(*) dnsClient.publisherPrefix This is the prefix for the
publishers (SMP). This is to be
concatenated with the
associated DNS domain in the
table bdmsl_certificate_domain.

Example: publisher

FALSE

(*) dnsClient.server The DNS server.

Example:
ddnsext.tech.ec.europa.eu

FALSE

(*) encriptionPrivateKey Name of the 256 bit AES secret
key to encrypt or decrypt
passwords.

Example:
encriptionPrivateKey.private

FALSE

signResponseAlgorithm The signature algorithm to use
when signing responses.

Examples:
http://www.w3.org/2001/04/
xmldsig-more#rsa-sha256
http://www.w3.org/2021/04/
xmldsig-more#eddsa-ed25519

FALSE

signResponseDigestAlgorithm The signature digest algorithm
to use when signing responses.

Examples:
http://www.w3.org/2001/04/
xmlenc#sha256
http://www.w3.org/2001/04/
xmlenc#sha512

FALSE

(*) useProxy True if a proxy is required to
connect to the internet.

Possible values: TRUE/FALSE.
Example: FALSE

FALSE

©2025 eDelivery Chapter 1. Architecture Description |74

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2001/04/xmldsig-more#rsa-sha256
http://www.w3.org/2021/04/xmldsig-more#eddsa-ed25519
http://www.w3.org/2021/04/xmldsig-more#eddsa-ed25519
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmlenc#sha256
http://www.w3.org/2001/04/xmlenc#sha512
http://www.w3.org/2001/04/xmlenc#sha512

Property Description Enc.

(*) httpProxyHost The http proxy host.

Example: localhost

FALSE

(*) httpProxyPassword Base64 encrypted password for
Proxy.

Example: vXA7JjCyEN1Qwg==

TRUE

(*) httpProxyPort The http proxy port.

Example: 8012

FALSE

(*) httpProxyUser The proxy user.

Example: user

FALSE

Properties listed with (*) are mandatory

(*) signResponse True if the responses must be
signed.

Possible values: TRUE/FALSE.
Example: FALSE

FALSE

keystoreType The keystore type.

Possible values: JKS/PKCS12.
Example: JKS

FALSE

(*) keystoreAlias The alias in the keystore for
signing responses. Example:
senderalias

FALSE

(*) keystoreFileName The (JKS or P12) keystore file.
Should be just the filename if
the file is in the classpath or in
the configurationDir.

Example: keystore.jks

FALSE

Properties listed with (*) are mandatory

(*) keystorePassword Base64 encrypted password for
Keystore.

Example: vXA7JjCy0EN1Qwg==

TRUE

(*) truststoreFileName The truststore file (JKS or p12)
should be just the filename if
the file is in the classpath or in
the configurationDir.

Example: truststore.p12

FALSE

75| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Property Description Enc.

truststoreType The truststore type.

Possible values: JKS/PKCS12.
Example: PCKS12

FALSE

(*) truststorePassword Base64 encrypted password for
Truststore. Example:
vXA7JjCy0EN1Qwg==

TRUE

partyIdentifier.splitPattern Regular expression with groups
<scheme> and <identifier> for
splitting the URN identifiers to
scheme and identifier part as
example:
'^(?i)\\s*?(?<scheme>urn:eheal
th:partyid-
type)::?(?<identifier>.+)?\\s*
$'!

FALSE

partyIdentifier.scheme.mandato
ry

Property defines if scheme for
participant identifier is
mandatory.

Example: FALSE

FALSE

partyIdentifier.scheme.caseSen
sitive

Specifies separated scheme list
of participant identifiers that
must be considered case-
sensitive.

Example:
sensitive-participant-
sc1|sensitive-participant-sc2

FALSE

(*)
report.expiredSMPCertificates.
cron

CRON expression for triggering
the report generation of
expired SMP certificates job.

Example: 0 22 6 ? * * .
Expression defining the
schedule: every day at 3:00 am.

FALSE

eport.expiredSMPCertificates.r
ecipientEmail

Email address to receive
expired SMP certificates report.

Example: email@domain.com

FALSE

report.expiredSMPCertificates.
senderEmail

Sender email address for
expired SMP certificates report.

Example: notifications@nsome-
mail.eu

FALSE

©2025 eDelivery Chapter 1. Architecture Description |76

Property Description Enc.

report.expiredSMPCertificates.
serverInstance

If sml.cluster.enabled is set to
true then then instance
(hostname) to generate report.

Example: localhost

FALSE

1.11.4. Multiple Domains

SML is able to manage DNS records per domain. Any domain must be linked to only one certificate
in the database.

Domain

It is used by the SML to authenticate to the DNS server and gain update privileges.

Example:

acc.edelivery.tech.ec.europa.eu or edelivery.tech.ec.europa.eu

Subdomain

It belongs to a domain and must be provided to create DNS entries.

Example:

mycompany.acc.edelivery.tech.ec.europa.eu

To configure a subdomain please follow the steps below:

1. Create a subdomain in the table BDMSL_Subdomain:

Figure 1. Example

NOTE
It’s mandatory to define the new subdomain as NON ROOT CA or ROOT CA in the
column IS_ROOT_CA.
See Granting the ROLE_SMP role.

2. Define the subdomain configurations in the table BDMSL_SUBDOMAIN:

DNS_ZON = specify for every domain the name of the domain in the DNS server responsible for
the subdomains.

77| Chapter 1. Architecture Description DomiSML 4.3 Documentation

DNS_RECORD_TYPES = specify for every domain the type of DNS Record accepted when
registering/updating participant, 'all' means that both DNS record CNAME and NAPTR are
accepted, possible values are [cname, naptr, all].

SMP_URL_SCHEMAS = specify for every domain the protocol that must be used for LogicalAddress
when registering new SMP, 'all' means that both protocols HTTP and HTTPS are accepted,
possible values are [http, https, all].

PARTICIPANT_ID_REGEXP = specify for every domain the regular expression that validates the
participant ID. By default the regular expression "^.*$" is used.

NOTE The values of the properties aforementioned are case insensitive.

1.11.5. Application Server Configuration

To ensure compatibility with all the supported application servers, some configuration is required.

• For technical reasons, these parameters are not in database but in property file:
sml.config.properties. Property file must be located in classpath of application server.

• The sml.config.properties property file contains the following properties:

Error Codes

Property Example Description

sml.hibernate.dialect org.hibernate.dialect.Oracle10gDialect Hibernate database dialect
for accessing the database.

sml.datasource.jndi jdbc/cipaeDeliveryDs Datasource JNDI name
configured on application
server.

sml.jsp.servlet.class weblogic.servlet.JSPServlet Application server
implementation of JSP
framework

sml.log.folder =./logs/ Logging folder.

©2025 eDelivery Chapter 1. Architecture Description |78

Example:

Name for this Code Sample

Hibernate dialect configuration

Oracle hibernate example
#sml.hibernate.dialect=org.hibernate.dialect.Oracle10gDialect

Mysql dialect
sml.hibernate.dialect=org.hibernate.dialect.MySQLDialect

Datasource JNDI configuration

weblogic datasource JNDI example
#sml.datasource.jndi=jdbc/cipaeDeliveryDs

tomcat datasource JNDI example
sml.datasource.jndi=java:comp/env/jdbc/edelivery

JSP implementation configuration

Weblogic
#sml.jsp.servlet.class=weblogic.servlet.JSPServlet

tomcat, jboss
sml.jsp.servlet.class=org.apache.jasper.servlet.JspServlet

Logging implementation

sml.log.folder=./logs/

Weblogic

The file src/main/webapp/WEB-INF/weblogic.xml has three purposes in the context of the BDMSL:

• Defining the context root of the application.

• Specifying the class loading preferences for some package names (from the weblogic libraries
or from the war).

• Configuring the work manager to optimize the performance of the application.

79| Chapter 1. Architecture Description DomiSML 4.3 Documentation

Tomcat

Tomcat is not an application server because it only supports the servlet API (including JSP, JSTL). An
application server supports the whole JavaEE stack.

The file src/main/webapp/META-INF/context.xml has two purposes:

• Defining the context root of the application;

• Linking the datasource to the globally defined JNDI datasource.

©2025 eDelivery Chapter 1. Architecture Description |80

Chapter 2. Quick Start Guide
DomiSML was previously named BDMSL, which stands for Business Document Metadata Service
Location.
DomiSML is the sample implementation of the SML maintained by DG DIGIT.

This guide refers to DomiSML/BDMSL 4.x versions.

Version 4 implements the eDelivery BDXL profile.

2.1. Guide Overview
In this guide you can find a the different steps to install the DomiSML on a:

• Tomcat server with a MySQL database;

• Weblogic 12.2.1.4 server with an Oracle database.

2.1.1. Software Requirements

Install the following supported software on the target system:

Java Runtime
Environment (JRE)

Database

One of the supported Database Management Systems

Server

One of the supported Application Servers

• JRE 8

• JRE 11

Java Downloads

• MySQL 8.0.x

◦ tested version, future
versions might also work

• Tomcat 9.x

◦ tested with Adoptium JDK 11

• Oracle 11g XE and Oracle 19c

◦ tested versions, future
versions might also work

• WebLogic 12.2

◦ tested with Oracle JDK 8

2.1.2. Binaries Repository

The eDelivery DomiSML artefacts can be downloaded from the Digital portal.

2.1.3. Source Code Repository

The source code of eDelivery DomiSML is available from the following Git repository →
https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/bdmsl/browse .

IMPORTANT
Note as stated in the software requirements, SML deployments has only been
tested on Tomcat 9 and WebLogic 12.2.1.4 application servers.

2.2. Installation

81| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+BDXL/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML+service
https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/bdmsl/browse

Installation Overview

• DomiSML 4.x does not use Liquibase as a database management tool, contrary to the
previous version.

• Before installing, you need to create a database using the SQL scripts bundled in the sml-
4.x-setup.zip archive file.

• Bussiness properties are stored in the database table BDMSL_CONFIGURATION.

• Properties such as datasource JNDI, log folder, etc., are located in the
smp.config.properties file which must be located in the server’s classpath.

The deployment of the eDelivery DomiSML is made of the following mandatory steps:

• Database configuration

• Application Server preparation

• DomiSML initial configuration

• DomiSML file deployment

NOTE
The environment variable, edelivery_path, is a placeholder for your system’s
location, you have installed the DomiSML package, i.e. CATALINA_HOME for Tomcat or
DOMAIN_HOME for Weblogic.

2.2.1. Database

Database Scripts

The scripts to create (or migrate) the Oracle or MySQL databases are included in the sml-4.x-
setup.zip available for download from the Digital portal.

Database Creation

Here you can find the necessary steps to create the database, the tables and the DomiSML database
user (dbuser, used for database connection purposes).

©2025 eDelivery Chapter 2. Quick Start Guide |82

This step is performed using the script included in the sml-4.x-setup.zip archive mentioned in the
previous section (Database Scripts).

MySQL database

1. Download and copy the mysql5innoDb.ddl script to edelivery_path/database-scripts.

2. Open a command prompt and navigate to the edelivery_path/database-scripts folder.

3. Execute the following MySQL commands.

WARNING this step will delete the user schema if it already exists in the database.

mysql -h localhost -u <root_user> –-password=<root_password> -e \
"DROP SCHEMA IF EXISTS bdmsl_schema; CREATE SCHEMA
bdmsl_schema; ALTER DATABASE bdmsl_schema charset=utf8; CREATE
USER sml_dbuser IDENTIFIED BY 'sml_password'; GRANT ALL ON
bdmsl_schema.* TO sml_dbuser;"

This creates the bdmsl_schema and a bdmsl database user sml_dbuser with all privileges on this
schema.

4. Create the required objects (tables, etc.) in the database, by executing:

mysql -h localhost -u <root_user> -p<root_password> bdmsl_schema <
https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/smp/browse/smp-
webapp/src/main/smp-setup/database-scripts/mysql5innoDb-
4.1.0.ddl?at=refs%2Fheads%2Fdevelopment[mysql5innoDb.ddl]

5. Set up the initial data, by executing:

mysql -h localhost -u root_user -p<root_password> bdmsl_schema <
mysql5innoDb-data.sql

Oracle database

1. Download and copy the oracle10g.ddl script to edelivery_path/sql-scripts.

2. Navigate to edelivery_path/sql-scripts directory and execute:

sqlplus sys as sysdba

Where:

◦ The expected password is the one assigned during Oracle’s installation.

3. Once logged in Oracle:

83| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/smp/browse/smp-webapp/src/main/smp-setup/database-scripts/mysql5innoDb-4.1.0.ddl?at=refs%2Fheads%2Fdevelopment

CREATE USER sml_dbuser IDENTIFIED BY sml_dbpassword;
GRANT ALL PRIVILEGES TO sml_dbuser;
CONNECT sml_dbuser;
SHOW USER

4. Run the scripts with the @ sign from their location:

@oracle10g.ddl ①
@oracle10g-data.sql ②

exit

① Script for Oracle’s database creation.

② Script for Oracle’s database initialization.

2.3. Configuration

2.3.1. Tomcat Configuration

To deploy the DomiSML on Tomcat, complete the steps in the next sections.

Configuring the Extra CLASSPATH for Tomcat

In the root path of the Tomcat’s installation (CATALINA_HOME), the following directories:

• keystores - all security artifacts such as Keystore, Truststore, and encryption key.

• logs

• classes - the DomiSML configuration file sml.config.properties.

are created in this Tomcat deployment example.

NOTE
The classes folder must be added to a CLASSPATH variable in the Tomcat batch file,
CATALINA_HOME/bin/setenv.sh (or CATALINA_HOME/bin/setenv.bat).

▼ For Linux

• Open (or create) and edit the $CATALINA_HOME/bin/setenv.sh file as in the example below:

#!/bin/sh

Set CLASSPATH to include sml environment property file:
sml.config.properties

export CLASSPATH=$CATALINA_HOME/classes

▼ For Windows

©2025 eDelivery Chapter 2. Quick Start Guide |84

1. Open (or create) and edit the %CATALINA_HOME%/bin/setenv.bat file.

REM Set CLASSPATH to include sml environment property file:

REM sml.config.properties

set classpath=%classpath%;%catalina_home%\classes

2. Place the sml.config.properties (DomiSML’s environment property file) in the classes folder.

3. Download an example, sml-4.x-setup.zip, from the Digital portal.
For a description of environment properties see Environment Parameters.

For tomcat/mysql configuration the file must have following properties and values:

sml.hibernate.dialect=org.hibernate.dialect.MySQLDialect
sml.datasource.jndi=java:comp/env/jdbc/edelivery
sml.jsp.servlet.class=org.apache.jasper.servlet.JspServlet

(Absolute/Relative) path to logs folder. Update the value!
sml.log.folder=/opt/tomcat/logs/

Optional parameter(s) to set the init data at first startup

The properties are copied to database table BDMSL_CONFIGURATION
configurationDir: set the absolute path to the “keystores” folder
configurationDir=/opt/tomcat/keystores/

Configuring the Datasource for Tomcat

1. Create a new data source in Tomcat named: java:comp/env/jdbc/edelivery.

2. Go to TOMCAT_HOME/conf/context.xml and add the block:

JDBC Driver

The JDBC driver needs to be downloaded from the manufacturer website:

• For Mysql: https://www.mysql.com/products/connector/

The JDBC driver (.jar file) must be copied to the following directory: edelivery_path/lib.

2.4. Deployment
Copy the cef_bdmsl-webapp-4.X.war file to the Tomcat edelivery/webapps.

85| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML+service
https://tomcat.apache.org/tomcat-8.0-doc/jndi-datasource-examples-howto.html#MySQL_DBCP_Example
https://www.mysql.com/products/connector/

2.4.1. Verification of the Installation

1. In a browser, to go to the following address:
http:// <hostname>: <port>/bdmsl-webapp-4.3/ .

NOTE
URL context path must match the war file’s name. If the deployment filename is
edelivery-sml.war, then the DomisSML URL is:

http:// <hostname>: <port>/edelivery-sml/

If the deployment is successful, the following page is displayed:

IMPORTANT
The context path (see example above: /edelivery-sml/) needs to be the same
as is deployment war file. If the war file’s name is sml.war, then the
application’s URL will be http:// <hostname>: <port>/sml/.

2.4.2. Weblogic’s Configuration

This guide assumes:

• WebLogic Server is already installed;

• WebLogic’s domain is created with an administration server;

• and a managed server on which the DomiSML is to be deployed.

NOTE
In this guide we refer to this WebLogic’s domain (user-defined name) as
DOMAIN_HOME.

In the examples below, we use the following Domain and Server names:

• Domain Name: SMLDOMAIN

• Administration Server: AdminServer

• SMP Managed Server: SML_ManagedServer

As seen in the image below:

©2025 eDelivery Chapter 2. Quick Start Guide |86

To deploy the SMP in the WebLogic Application Server platform, you need to complete two
preliminary steps:

• Configure the extra CLASSPATH for WebLogic

• Configure a datasource

This is described in the following two sections.

Configuring the extra CLASSPATH for WebLogic

1. Under the DOMAIN_HOME directory, create the following sub-directories:

◦ keystores

◦ logs

◦ classes

2. Edit the WebLogic DOMAIN_HOME/bin/setDomainEnv.sh.

For Linux:

Add the EXPORT CLASSPATH=${CLASSPATH}:${DOMAIN_HOME}/classes/ statement at the
end of the CLASSPATH definition as shown below:

../
if ["$\{PRE_CLASSPATH}" != ""] ; then
CLASSPATH="$\{PRE_CLASSPATH}$\{CLASSPATHSEP}$\{CLASSPATH}"
export CLASSPATH
fi
CLASSPATH=$\{CLASSPATH}:$\{DOMAIN_HOME}/classes
export CLASSPATH

87| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

/..

For Windows:

../
If NOT "%PRE_CLASSPATH%"=="" (
set CLASSPATH=%PRE_CLASSPATH%;%CLASSPATH%
)
set CLASSPATH=%CLASSPATH%;%DOMAIN_HOME%\classes
/..

3. Place the sml.config.properties, DOMISML’s environment property file, in the /classes folder.

You can download an example, sml-4.x-setup.zip, from the Digital portal. A detailed description
of environment properties is provided in the Binaries Repository section.

For weblogic/oracle configuration, the file need the following properties configured as below:

sml.hibernate.dialect=org.hibernate.dialect.Oracle10gDialect
sml.datasource.jndi=jdbc/cipaeDeliveryDs
sml.jsp.servlet.class=weblogic.servlet.JSPServlet

(Absolute/Relative) path to logs folder. Update the value!
sml.log.folder=/opt/tomcat/logs/

Optional parameter(s) to set the init data at first startup_
The properties are copied to database table BDMSL_CONFIGURATION_configurationDir:
set the absolute path to the “keystores” folder
configurationDir=/opt/tomcat/keystores/

Configuring Datasource for WebLogic

1. Click on Services/Data sources on left Domain structure panel.

2. On the Configuration tab click on New and select Generic data source.

©2025 eDelivery Chapter 2. Quick Start Guide |88

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML+service

This tiggers the New datasource wizard that guides you through the creation of a datasource.

3. On the first wizard page, enter the following values:

Set Name value: cipaeDeliveryDS
JNDI name: jdbc/_cipaeDeliveryDS
Database Type: oracle

Click Next.

4. Next select the Database driver Oracle’s Driver (Thin). Click next twice.

5. On the next wizard page, enter the datasource values. The values below are just an example.
Use the values in accordance with your oracle configuration.

Database Name: xe
Port: 1521
Database user sml_dbUser
Pasword: sml_dbPassword
Confirm password: sml_dbPassword

89| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

6. Click Next and then Finish.

As a result a new datasource configuration is visible in the datasource table:

2.4.3. War Deployment

1. Deploy the .war file within WebLogic using the Oracle Weblogic deployer feature or using the
Weblogic Administration Console.

The example below uses the Oracle’s weblogic.deployer.

java weblogic.Deployer -adminurl

©2025 eDelivery Chapter 2. Quick Start Guide |90

t3://$\{WebLogicAdminServerListenAddress}:$\{WebLogicAdminServerPort} \
-username $\{WebLogicAdminUserName} \
-password $\{WebLogicAdminUserPassword} \
-deploy -name edelivery-sml.war \
-targets $\{SMP_ManagedServer} \
-source $TEMP_DIR/edelivery-sml.war

2.4.4. Installation Verification

Use your browser to navigate to the following address:
http:// <hostname>: <port>/edelivery-sml/

If the following page is displayed, deployment was successful.

2.4.5. General Configuration

Environment Parameters

The DomiSML application’s environment parameters are stored in the properties file
sml.config.properties. This configuration is in a properties file because these parameters are
required before database connection.

You can find a configuration preset for the Tomcat/MySql installation scenario in the setup
bundle,sml-4.x-setup.zip (see preset for the Tomcat/MySql installation scenario Database Scripts).

Hibernate dialect configuration

Oracle hibernate example
#sml.hibernate.dialect=org.hibernate.dialect.Oracle10gDialect

Mysql dialect
sml.hibernate.dialect=org.hibernate.dialect.MySQLDialect

Datasource JNDI configuration

91| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

weblogic datasource JNDI example
#sml.datasource.jndi=jdbc/cipaeDeliveryDs

tomcat datasource JNDI example
sml.datasource.jndi=java:comp/env/jdbc/edelivery

JSP implementation configuration

Weblogic
#sml.jsp.servlet.class=weblogic.servlet.JSPServlet

tomcat, jboss
sml.jsp.servlet.class=org.apache.jasper.servlet.JspServlet

Logging implementation

sml.log.folder=./logs/

The configuration file has the following parameters:

• sml.hibernate.dialect - Hibernate dialect used for accessing the database.

• sml.datasource.jndi - JNDI Datasource’s name configured in Configuring the Datasource for
Tomcat and Configuring the Datasource for WebLogic.

• sml.jsp.servlet.class - Application server implementation of the JSP framework.

• sml.log.folder - Logs folder.

DomiSML Parameters

The DomiSML application contains its parameters in the database table BDMSL_CONFIGURATION.

Parameters can be updated:

• using the sql script

• by calling a webservice operation

Updating parameters using a sql script:

mysql -h localhost -u <root_user> -p<root_password> bdmsl_schema -e \
"UPDATE bdmsl_configuration SET value='true', last_updated_on=NOW()
WHERE property='unsecureLoginAllowed'";

Updating parameters by calling a webservice operation

Call BDMSLAdminServices/SetProperty().
For more details, see the Interface Description.

©2025 eDelivery Chapter 2. Quick Start Guide |92

Property refresh

All properties are refreshed without server restart, except the CRON schedule definitions:

• sml.property.refresh.cronJobExpression

• certificateChangeCronExpression

• dataInconsistencyAnalyzer.cronJobExpression

The properties mentiones above are refreshed as defined in the cron property
sml.property.refresh.cronJobExpression.

By default, properties are refreshed (if updated) every hour.

IMPORTANT
If a property is changed using the SQL script, make sure that the value
last_updated is also changed, otherwise the properties are not updated.

For the list of properties and their description, see the DomiSML’s Architecture Overview.

Generating a Private Key File

DomiSML uses a private key for encrypting/decrypting passwords.

If the key is not present in the folder defined in property configurationDir at startup, it will
automatically create and store it.

When deploying DomiSML (especially in Production), make sure its unique encryption key is
generated for the deployment.

Below is an example of how to manually create the key.

Creating an encryption key

1. To create a private key, please follow the steps below:

2. Download one of the latest DomiSML war files (eg: bdmsl-webapp-4.0.x.war) from the
repository https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML

3. Extract the war file using any extracting tool

4. Run the following commands to create a private key:

Example - Generating a private key

cd bdmsl-webapp-4.3
java -cp "WEB-INF/lib/*" eu.europa.ec.bdmsl.common.util.PrivateKeyGenerator
c:\temp\encriptionPrivateKey.private

The <key_path> is a required parameter and stands for the full directory path where the
generated private key is to be stored.

In the example above <key_path> = c:\temp\encriptionPrivateKey.private.

5. Once the private key is generated,

93| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/SML+service

◦ Set the encriptionPrivateKey property’s value (located in the BDMSL_Configuration table) as
the name of the private key file you have just generated.

◦ Copy the private file into the location configured in the property configurationDir.

Encrypting a password

DomiSML encrypts passwords automatically when setting the password property using the
WebService SetProperty.

Setting a password

After generating a private key at item, if needed, configure the proxy or keystore (used to sign
responses) password as follows:

Inside the folder already extracted from BDMSL .war file, run the command:

java -cp "WEB-INF/lib/*" eu.europa.ec.bdmsl.common.util.EncryptPassword
c:\temp\privateKey.private Password123

Where two parameters are expected:
1) private key location, in this example: c:\temp\privateKey.private
2) plain text password, in this example: Password123 .

Proxy password

To configure the proxy password, set the printed encrypted and base64 encoded password as the
value of the httpProxyPassword property (found in the BDMSL_CONFIGURATION table).

httpProxyPassword= vXA7JjCy0iDQmX1UEN1Qwg==

Keystore password

To configure the keystore password, copy the printed encrypted and base64 encoded password as
the value of the keystorePassword property (found in the BDMSL_CONFIGURATION table).

keystorePassword= vXA7JjCy0iDQmX1UEN1Qwg==

Certificate revocation list (CRL) Truststore

Truststore for the certificate revocation list (CRL) download over the HTTPS

The DomiSML establishes the HTTPS trust to the server hosting the CLR list by using the application
server system truststore, which is defined by system variables, such as: javax.net.ssl.trustStrore,
javax.net.ssl.trustStoreType, etc.

If the truststore is not set, the default java truststore is used in the following location:
${JAVA_HOME}/jre/lib/security/cacerts

To enable the download of the CRL files over HTTPS, ensure the appropriate certificates are
registered in the application server truststore.

©2025 eDelivery Chapter 2. Quick Start Guide |94

Example of how to add/register the crl-server certificate to default java cacerts truststore:

$JAVA_HOME/bin/keytool -importcert -alias crl-server -keystore
$JAVA_HOME/jre/lib/security/cacerts -storepass changeit -file
/opt/smlconf/init-configuration/sml_crl_crl-server.cer -noprompt

Sign Responses Certificate

If the flag signResponse is TRUE in the BDMSL_CONFIGURATION table, a keystore file name, its alias and
password must be provided in the same table.

For testing purposes only, the provided keystore.p12 (with password: test123) can be used. The
keystore contains RSA, EC,ED25519 and ED448 key examples.

The keystore is located in the configuration bundle sml-setup-${VERSION}.zip. ===== Add files to
Application Server

In the configuration directory that you specified in the configurationDir property, you need to add
the following files:

• keystore.p12 - this keystore must contain your private key with the alias and password defined
in the keystoreAlias and keystorePassword properties.

NOTE This name can be customized in the keystoreFileName property.

• sig0.private - this file is only required if you use DNSSEC (i.e. property dnsClient.SIG0Enabled
set to true).

NOTE This name can be changed in the dnsClient.SIG0KeyFileName property.

• encriptionPrivateKey.private - This private key file is only required if you use Proxy or Sign
Response.

NOTE This name can be changed in the encriptionPrivateKey property.

Once the needed files have been copied, restart the server(s).

2.5. DNS integration
DomiSML was developed and tested with using a BIND9 DNS server. The DNS integration can be
switched on/off by setting attribute dnsClient.enabled to TRUE or FALSE.

If the property is set to TRUE, the parameter dnsClient.server must contain the hostname/IP
address of the DNS server.

To secure the DNS integration, DomiSML has implemented SIG(0). This option can be
enabled/disabled by the following parameter:

95| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

dnsClient.SIG0Enabled, with values TRUE or FALSE.

If the option is set to FALSE, the DNS should allow updates to any IP address

+ IMPORTANT: This is NOT advised in production environments.

or restrict the update permission to the requester IP address.

Below is example of configuration for BIND9 zone example.edelivery.eu.local without the use of
SIG(0) (in this case the DomiSML should have dnsClient.SIG0Enabled= false):

zone "example.edelivery.eu.local" \{
 type master;
 file "/var/lib/bind/db.example.edelivery.eu.local ";
 allow-update \{ 10.22.1.3;}
 allow-transfer \{ 10.22.0.0/16; };
};

2.5.1. Securing DNS integration with SIG(0)

SIG0 are asymmetric key-pairs, usually with a filename ending with .key for a public key, and a
filename ending with .private for a private key.

SIG(0) key pair can be created with dnssec-keygen utility (the tool is provided as part of a BIND9
DNS server)

Examples of commands for generating keys:

DSA key

dnssec-keygen -a DSA -b 1024 -n HOST -T KEY sig0.example.edelivery.eu.local

RSA key - Example 1

dnssec-keygen -a RSASHA256 -b 4096 -T KEY -n HOST domisml-
rsasha256.test.edelivery.local

RSA key - Example 2

dnssec-keygen -a RSASHA512 -b 4096 -T KEY -n HOST domisml-
rsasha512.test.edelivery.local

EC key - Example 1

dnssec-keygen -a ECDSAP256SHA256 -T KEY -n HOST domisml-
ecdsap256sha256.test.edelivery.local

©2025 eDelivery Chapter 2. Quick Start Guide |96

EC key - Example 2

dnssec-keygen -a ECDSAP384SHA384 -T KEY -n HOST domisml-
ecdsap384sha384.test.edelivery.local

Edward curve key - Example 1

dnssec-keygen -a ED25519 -T KEY -n HOST domisml-ed25519.test.edelivery.local

Edward curve key - Example 1

dnssec-keygen -a ED448 -T KEY -n HOST domisml-ed448.test.edelivery.local

NOTE
DSA algorithm is obsolete on the newer version of the Bind9 server. Older versions
of Bind9 do not support ed25519 and ed448 keys.

The command produces the following files:

• Ksig0.example.edelivery.eu.local.+003+03054.key

• Ksig0.example.edelivery.eu.local.+003+03054.private

The content of the file is as follows:

Ksig0.example.edelivery.eu.+003+03054.key

It is the DNS Key entry, that should be put in the DNS zone as in the example below:

sig0.example.edelivery.eu.local. 604800 IN KEY 512 3 3
CLC4l6DtbztWAIJIMkYrv4MClWvj2BUclxqCd86vzX/f0ka+oS73dFCp
tb9Yv9oYjGmG1JLNv4EKuPiGPa8O/CQWrbJ5I7Yts3GDMgZNRswxMije
H6OoYkZ6ywRpjv8nommw6JMzDaDhcU5/tLQXhvz3U/c7W5QepAXfHb6Z
gGwL4TkqR/RGp5xcxayID4b/+DJvqi04BjNO9WR3XGRHWZ5aO0pRcRjx
imDtlnIjpsykE59o03UyQ+YT1CYNPjNlmOoT1JVgBEFGgouAm7yEZq3A
HWsqZEHCeucvQKBADmIk5rHwfZJwv7dzXrZR2U5AqE/AxqhrWyTpItRg
oGEkc+piGciuPRtwRZPkD6+GcFn/2knJ3YuRBOiog0+5mtbqaIPOew+B
+BtQk6X5E5tNnEuQJeRjjxznGYdzN7hTDFPvtwGEQvDUoU4SP/6YHoAd
AaH5Vs+YTRHjdISvnJIV6VRxIbQFJWaf3Z+UT4ns0+4pIGXm7C0ADA2a
1wGpj4QF8A37VAofcFWlUErtNv9YmVHQcA2l

When the public key is correctly registered on the DNS server, it can be tested with the dig util as in
the example below:

$dig sig0.example.edelivery.eu.local @localhost KEY

ANSWER
; <<>> DiG 9.10.3-P4-Ubuntu <<>> sig0.example.edelivery.eu.local
@localhost KEY
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 36443

97| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

;; flags: qr aa rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 1, ADDITIONAL:
2
 +
;; OPT PSEUDOSECTION:
; EDNS: version: 0, flags:; udp: 4096
;; QUESTION SECTION:
; sig0.example.edelivery.eu.local. IN KEY
 +
;; ANSWER SECTION:
sig0.example.edelivery.eu.local. 604800 IN KEY 512 3 3
CLC4l6DtbztWAIJIMkYrv4MClWvj2BUclxqCd86vzX/f0ka+oS73dFCp
tb9Yv9oYjGmG1JLNv4EKuPiGPa8O/CQWrbJ5I7Yts3GDMgZNRswxMije
H6OoYkZ6ywRpjv8nommw6JMzDaDhcU5/tLQXhvz3U/c7W5QepAXfHb6Z
gGwL4TkqR/RGp5xcxayID4b/+DJvqi04BjNO9WR3XGRHWZ5aO0pRcRjx
imDtlnIjpsykE59o03UyQ+YT1CYNPjNlmOoT1JVgBEFGgouAm7yEZq3A
HWsqZEHCeucvQKBADmIk5rHwfZJwv7dzXrZR2U5AqE/AxqhrWyTpItRg
oGEkc+piGciuPRtwRZPkD6+GcFn/2knJ3YuRBOiog0+5mtbqaIPOew+B
+BtQk6X5E5tNnEuQJeRjjxznGYdzN7hTDFPvtwGEQvDUoU4SP/6YHoAd
AaH5Vs+YTRHjdISvnJIV6VRxIbQFJWaf3Z+UT4ns0+4pIGXm7C0ADA2a
1wGpj4QF8A37VAofcFWlUErtNv9YmVHQcA2l
 +
;; AUTHORITY SECTION:
example.edelivery.eu.local. 604800 IN NS ns.
example.edelivery.eu.local.
 +
;; ADDITIONAL SECTION:
ns.example.com.local. 604800 IN A 192.168.56.3

If we want to allow DNS updates on the zone `example.edelivery.eu.local`
only by requests signed by private key of the `sig0.example.edelivery.eu.local`,
we have to update the DNS zone configuration as below:

zone "example.edelivery.eu.local" \{
 type master;
 file "/var/lib/bind/db.example.edelivery.eu.local ";
 allow-update \{ key "sig0.example.edelivery.eu.local.";}
 allow-transfer \{ 10.22.0.0/16; };
};

2.5.2. Configuration of the SIG(0) in DomiSML

To configure DomiSML to use SIG(0), the following parameters must be set:

• dnsClient.SIG0PublicKeyName: must be DNS name of the DNS KEY entry. In the example above
this value is:
dnsClient.SIG0PublicKeyName= sig0.example.edelivery.eu.local

• dnsClient.SIG0KeyFileName: the private key must be put into to the BDMS configuration folder
and Value of the parameter dnsClient.SIG0KeyFileName must be the name of the SIG(0) private
key filename.

©2025 eDelivery Chapter 2. Quick Start Guide |98

As example: dnsClient.SIG0KeyFileName= Ksig0.example.edelivery.eu.local.+003+03054.private

• dnsClient.SIG0Enabled: to enable SIG(0) the configuration parameter must be set to true:
dnsClient.SIG0Enabled= true.

NOTE

The DomiSML does not use the SIG(0) to transfer the DNS records. The DNS records
are retrieved from DBS server when generating inconsistency reports and when
calling the resource web /listDNS. Above is an example of how to secure a transfer
to a network: 10.22.0.0/16.

99| Chapter 2. Quick Start Guide DomiSML 4.3 Documentation

Chapter 3. Interface Description
BDMSL stands for Business Document Metadata Service Location. DomiSML is the sample
implementation of the SML maintained by DG DIGIT. The DomiSML version described in this
document implements the eDelivery BDXL profile.

▼ About this Guide

This guides defines the:

• participant’s interface to the BDMSL.

• WSDL and the observable behaviour of the interface(s).

In this guide we describe the following interfaces:

Interface Description V. Use
Cases
Link

ManageServiceMetadataService-1.0.wsdl Definition of the service to Manage
Service Metadata.
→ See also, this page. +
ManageServiceMetadataService-
1.0.wsdl

1.0 Use
Cases

ManageBusinessIdentifierService-1.0.wsdl Definition of the service to Manage
Participant Identifier’s.
→See also this page.

1.0 Use
Cases

BDMSLService-1.0.wsdl Definition of the services to Manage
Service Metadata and to monitor SML
specific to this implementation.
→ See also this page.

1.0 Use
Cases

BDMSLAdminService-1.0.wsdl Definition of the services for
administration of the SML
application. Services are specific to
this implementation.
→ See also this page.

1.0 Use
Cases

▼ Scope of the document

This document covers the service interface of the BDMSL. It includes information regarding the
description of the services available, the list of use cases, the information model and the
sequence of message exchanges for the services provided. This specification is limited to the
service interface of the BDMSL. All other aspects of its implementation are not covered by this
document. The ICD specification provides both the provider (i.e. the implementer) of the services
and their consumers with a complete specification of the following aspects:

• Interface Functional Specification, this specifies the set of services and the operations
provided by each service and this is represented by the flows explained in the use cases.

©2025 eDelivery Chapter 3. Interface Description |100

https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-api/src/main/resources/ManageServiceMetadataService-1.0.wsdl
https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-webapp/src/main/webapp/WEB-INF/wsdl/ManageServiceMetadataService-1.0.wsdl
https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-webapp/src/main/webapp/WEB-INF/wsdl/ManageServiceMetadataService-1.0.wsdl
https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-api/src/main/resources/ManageBusinessIdentifierService-1.0.wsdl
https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-api/src/main/resources/BDMSLService-1.0.wsdl
https://ec.europa.eu/cefdigital/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-api/src/main/resources/BDMSLService-1.0

• Interface Behavioural Specification, this specifies the expected sequence of steps to be
respected by the participants in the implementation when calling a service or a set of services
and this is represented by the sequence diagrams presented in the use cases.

• Interface Message standards, this specifies the syntax and semantics of the data.

▼ Target Audience

This document is intended for the Directorate Generals and Services of the European
Commission, Member States (MS) and also companies of the private sector wanting access
DomiSML services.
In particular:

• Architects - useful for determining how to best exploit BDMSL services to create a fully-
fledged solution integrating other components like the SMP, the DNS and the administration
application;

• Analysts - useful to understand the communication between the BDMSL and its major peer
component the SMP which will enable them to have an holistic and detailed view of the
operations and data involved in the use cases;

• Developers - essential as a basis of their development concerning the interaction mainly
between the DOMISML and the SMP, and also with the DNS and the administration
application;

• Testers - useful as a basis to test the interface by following the use cases described; in
particular the communications of the BDMSL with the SMP.

▼ Relevant Resources

Here are some relevant sources for further reading:

• Business Document Metadata Service Location Version 1.0
This specification defines service discovery methods. A method is first specified to query and
retrieve an URL for metadata services. Two metadata service types are then defined. Also an
auxiliary method pattern for discovering a registration service to enable access to metadata
services is described. The methods defined here are instances of the generic pattern defined
within IETF RFCs for Dynamic Delegation Discovery Services (DDDS). This specification then
defines DDDS applications for metadata and metadata-registration services.

• PEPPOL
The OpenPEPPOL Association is responsible for the governance and maintenance of the
PEPPOL specifications that enable European businesses to easily deal electronically with any
European public sector buyer in their procurement processes.

• PEPPOL Transport Infrastructure

• Service Metadata Locator (SML)
This document defines the profiles for the discovery and management interfaces for the
Business Document Exchange Network (BUSDOX) Service Metadata Locator service.

The Service Metadata Locator service exposes three interfaces: Service Metadata discovery,
Manage participant identifiers and Manage service metadata interfaces.

• Service Metadata Publishing (SMP) Version 1.0

101| Chapter 3. Interface Description DomiSML 4.3 Documentation

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/csprd01/BDX-Location-v1.0-csprd01.html
http://www.peppol.eu/
https://joinup.ec.europa.eu/svn/peppol/PEPPOL_EIA/1-ICT_Architecture/1-ICT-Transport_Infrastructure/13-ICT-Models/ICT-Transport-SML_Service_Specification-101.pdf
https://joinup.ec.europa.eu/svn/peppol/PEPPOL_EIA/1-ICT_Architecture/1-ICT-Transport_Infrastructure/13-ICT-Models/ICT-Transport-SML_Service_Specification-101.pdf
http://docs.oasis-open.org/bdxr/bdx-smp/v1.0/csprd02/bdx-smp-v1.0-csprd02.html#_Toc449350112

This document describes a protocol for publishing service metadata within a 4-corner
network. In a 4-corner network, entities are exchanging business documents through
intermediary gateway services (sometimes called Access Points). To successfully send a
business document in a 4-corner network, an entity must be able to discover critical
metadata about the recipient (endpoint) of the business document, such as types of
documents the endpoint is capable of receiving and methods of transport supported. The
recipient makes this metadata available to other entities in the network through a Service
Metadata Publisher service. This specification describes the request/response exchanges
between a Service Metadata Publisher and a client wishing to discover endpoint information.
A client can either be an end-user business application or a gateway/access point in the 4-
corner network. It also defines the request processing that must happen at the client side.

• eDelivery BDXL profile
Specifications of eDelivery BDXL profile.

• Policy for use of Identifiers (PEPPOL Transport Infrastructure)
This document describes a PEPPOL policy and guidelines for use of identifiers within the
PEPPOL network.

3.1. Functional Specification

3.1.1. Purpose of the DomiSML Component

The DomiSML component enables Access Points to dynamically discover the IP address of the
destination Access Point. Instead of looking at a static list of IP addresses, the Access Point consults
a Service Metadata Publisher (SMP) where information about every participant in the
document/data exchange network is kept up to date, including the IP addresses of their Access
Point. As at any point in time there can be one or several active SMPs in a same network.

For dynamic discovery to work, every participant must be given a unique ID in the form of a
website’s URL which must be known on the internet’s Domain Name System (DNS) thanks to the
Service Metadata Locator (SML).

By knowing this URL, the Access Point is able to dynamically locate the right SMP and therefore the
right Access Point.

▼ More…

By combining the SMP services with a Service Location solution building block like the DomiSML
component, the participants of a document/data exchange network can benefit from dynamic
discovery. In such a configuration, a participant about to send a document or data will first use
the service location service (e.g. the DomiSML) to retrieve the endpoint address of the SMP. As a
second step, he will query the SMP to obtain "Metadata"of the receiving participant, i.e. its
capabilities and settings, which includes the endpoint address of the receiver’s access point. The
sender has then enough information and can send the message to the receiver using the
adequate transport protocol, security settings, etc.

The eDelivery Service Metadata Locator (SML) enables Access Points to dynamically discover the
IP address of the destination Access Point. Instead of looking at a static list of IP addresses, the
Access Point consults a Service Metadata Publisher (SMP) where information about every

©2025 eDelivery Chapter 3. Interface Description |102

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/eDelivery+BDXL
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/SML+software
https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/SML+software

participant in the document/ data exchange network is kept up to date, including the IP
addresses of their Access Point. As at any point in time there can be one or several active SMPs in
a same network. For dynamic discovery to work, every participant must be given a unique ID in
the form of a website’s URL which must be known on the internet’s Domain Name System (DNS)
thanks to the Service Metadata Locator (SML). By knowing this URL, the Access Point is able to
dynamically locate the right SMP and therefore the right Access Point.

The current SML software component maintained by the European Commission implements the
PEPPOL Transport Infrastructure SML specifications.

3.1.2. Use Cases Overview

103| Chapter 3. Interface Description DomiSML 4.3 Documentation

Figure. Use Cases Diagram

Actors

Actor Definition

SMP Holds the service metadata information about participants in the
network.

SML Provides controlled access to the creation and updating of entries in the
DNS.

ADMIN Application user with administrative privileges.

©2025 eDelivery Chapter 3. Interface Description |104

Actor Definition

Monitor user The Monitor user who is allowed to call the isAlive service for monitoring
health of SML application.

List of Use Cases per Interface

▼ ManageServiceMetadataService-1.0.wsdl

ManageServiceMetadataService-1.0.wsdl use cases

Use Case Actors Description

UC1 Create SMP Establishes a Service Metadata Publisher metadata record,
containing the metadata about the Service Metadata Publisher-
information as outlined in the ServiceMetadataPublisherService
data type.

UC2 Read SMP Retrieves the Service Metadata Publisher record for the service
metadata publisher.

UC3 Update SMP Updates the Service Metadata Publisher record for the service
metadata publisher.

UC4 Delete SMP Deletes the Service Metadata Publisher record for the service
metadata publisher.

▼ ManageBusinessIdentifierService-1.0.wsdl

ManageBusinessIdentifierService-1.0.wsdl use cases

Use Case Actors Description

UC5 Create SMP Creates an entry in the Service Metadata Locator
service for information relating to a specific
participant identifier. Regardless of the number of
services a recipient exposes, only one record
corresponding to the participant identifier is
created in the Service Metadata Locator service by
the Service Metadata Publisher which exposes the
services for that participant.

UC6 CreateList SMP Creates a set of entries in the Service Metadata
Locator service for information relating to a list of
participant identifiers. Regardless of the number
of services, a recipient exposes, only one record
corresponding to each participant identifier is
created in the Service Metadata Locator service by
the Service Metadata Publisher which exposes the
services for that participant.

UC7 Delete SMP Deletes the information that the Service Metadata
Locator service holds for a specific Participant
Identifier.

105| Chapter 3. Interface Description DomiSML 4.3 Documentation

Use Case Actors Description

UC8 DeleteList SMP Deletes the information that the Service Metadata
Locator service holds for a list of Participant
Identifiers.

UC9 PrepareToMigrate SMP Prepares a Participant Identifier for migration to a
new Service Metadata Publisher. This operation is
called by the Service Metadata Publisher which
currently publishes the metadata for the
Participant Identifier.

The Service Metadata Publisher supplies a
Migration Code which is used to control the
migration process.

The Migration Code must be passed (out of band)
to the Service Metadata Publisher which is taking
over the publishing of the metadata for the
Participant Identifier and which MUST be used on
the invocation of the Migrate() operation.

This operation can only be invoked by the Service
Metadata Publisher which currently publishes the
metadata for the specified Participant Identifier.

UC10 Migrate SMP Migrates a Participant Identifier already held by
the Service Metadata Locator service to target a
new Service Metadata Publisher. This operation is
called by the Service Metadata Publisher which is
taking over the publishing for the Participant
Identifier. The operation requires the new Service
Metadata Publisher to provide a migration code
which was originally obtained from the replaced
Service Metadata Publisher.

The PrepareToMigrate operation MUST have been
previously invoked for the supplied Participant
Identifier, using the same MigrationCode,
otherwise the Migrate() operation fails.

Following the successful invocation of this
operation, the lookup of the metadata for the
service endpoints relating to a particular
Participant Identifier will resolve (via DNS) to the
new Service Metadata Publisher.

©2025 eDelivery Chapter 3. Interface Description |106

Use Case Actors Description

UC11 List SMP Used to retrieve a list of all participant identifiers
associated with a single Service Metadata
Publisher for synchronization purposes. Since this
list may be large, it is returned as pages of data,
with each page being linked from the previous
page.

▼ BDMSLService-1.0.wsdl

BDMSLService-1.0.wsdl use cases

Use Case Actors Description

UC12 PrepareChangeCertificate SMP Allows a SMP to prepare a change of its certificate
when the current one is about to expire, and the
future one is available.

UC13 CreateParticipantIdentifier SMP This service has the same behaviour as the Create()
operation in the ManageParticipantIdentifier (UC5)
interface but it has one additional and optional()
Input: the serviceName element.

UC14 ExistsParticipantIdentifier SMP The method enables an SMP to verify if the SMP was
already registered the participant into the
DomiSML.

UC15 IsAlive SMP,
ADMIN,
Monitor
user

Confirms that the application is up and running
(monitoring purposes)

▼ BDMSLAdminService-1.0.wsdl

BDMSLAdminService-1.0.wsdl use cases

Use Case Actors Description

UC16 ClearCache ADMIN Clears all the caches managed by the application.

UC17 ChangeCertificate ADMIN This operation allows the admin team to change the
SMP certificate. It is called by the admin team in
case the SMP certificate has expired and the new
one needs to be applied.

UC18 SetProperty ADMIN This operation allows the admin team to change
DomiSML property in database. New property is
taken into account when CRON task refresh the
properties

UC19 GetProperty ADMIN This operation allows the admin team to verify
DomiSML property in database.

UC20 DeleteProperty ADMIN This operation allows the admin team to delete
DomiSML property from database.

107| Chapter 3. Interface Description DomiSML 4.3 Documentation

Use Case Actors Description

UC21 CreateSubDomain ADMIN This operation allows the admin team to create new
DomiSML SubDomain.

UC22 UpdateSubDomain ADMIN This operation allows the admin team to update
DomiSML SubDomain properties.

UC23 GetSubDomain ADMIN This operation allows the admin team to read
DomiSML SubDomain properties.

UC24 DeleteSubDomain ADMIN This operation allows the admin team to delete
empty DomiSML SubDomain.

UC25 AddSubDomainCertificate ADMIN This operation allows the admin team to add new
Domain certificate to DomiSML SubDomain.

UC26
UpdateSubDomainCertificate

ADMIN This operation allows the admin team to update
Domain certificate properties.

UC27 ListSubDomainCertificates ADMIN This operation allows the admin team to search for
domain certificate by partial certificate DN and by
the Subdomain.

UC28 AddDNSRecord ADMIN This operation allows the admin team to add new
record to DNS for DNS RecordType: A, CNAME and
NAPTR.

UC29 DeleteDNSRecord ADMIN This operation allows the admin team to delete
record from DNS by the DNS name.

UC30 AddTruststoreCertificate ADMIN This operation allows the admin team to add
certificate to the truststore. Service is needed for
adding complete certificate chain to the truststore.

UC31 GetTruststoreCertificate ADMIN This operation allows the admin team to retrieve
the certificate from the truststore by the alias.

UC32 DeleteTruststoreCertificate ADMIN This operation allows the admin team to delete the
certificate from the truststore by the alias.

UC33
ListTruststoreCertificateAliases

ADMIN This operation allows the admin team to retrieve all
aliases for the certificates registered in the
truststore.

UC34
ManageServiceMetadataPublish
er

ADMIN This operation allows the admin team to Enable,
Disable, Delete or Update ServiceMetadataPublisher
instances.

3.1.3. Use Cases Detail

Jump to Use Case Details

©2025 eDelivery Chapter 3. Interface Description |108

UC1 Create
UC2 Read
UC3 Update
UC4 Delete
UC5 Create
UC6 CreateList
UC7 Delete
UC8 DeleteList
UC9 PrepareToMigrate
UC10 Migrate
UC11 List
UC12
PrepareChangeCertificate
UC13
CreateParticipantIdentifier

UC14
ExistsParticipantIdentifier
UC15 IsAlive
UC16 ClearCache
UC17 ChangeCertificate
UC18 SetProperty
UC19 GetProperty
UC20 DeleteProperty
UC21 CreateSubDomain
UC22 UpdateSubDomain
UC23 GetSubDomain
UC24 DeleteSubDomain
UC25
AddSubDomainCertificate
UC26
UpdateSubDomainCertificate

UC27 ListSubDomainCertificates
UC28 AddDNSRecord
UC29 DeleteDNSRecord
UC30 AddTruststoreCertificate
UC31 GetTruststoreCertificate
UC32
DeleteTruststoreCertificate
UC33
ListTruststoreCertificateAliases
UC34
ManageServiceMetadataPublish
er

Sample Requests and Responses

Besides in the use cases detailed description found in this guide, you can find sample requests and
responses in the SoapUI project.

These examples are additional to the ones structure found in the interface’s definition (see Data
Model (WSDL)) based on their WSDL files and related XSDs.

ManageServiceMetadataService Use Cases

The ManageServiceMetadataService interface allows Service Metadata Publishers to manage the
metadata held in the Service Metadata Locator service about their service metadata publisher
services, such as binding, interface profile and key information.

This interface requires user authentication.
The user’s identity is derived from the authentication process and identifies the Service Metadata
Publisher associated with the service metadata which is managed via this interface.

Nav to:

→UC1 Create →UC2 Read →UC3 Update →UC4 Delete

▼ UC1 Create

UC1 Create

Description

Establishes a Service Metadata Publisher metadata record, containing the metadata about the
Service Metadata Publisher (SMP), as outlined in the ServiceMetadataPublisherService data
type.

Actors

SMP

109| Chapter 3. Interface Description DomiSML 4.3 Documentation

https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-soapui-tests/src/test/resources/SML-soapui-project-TEST.xml

Preconditions

Precon
dition

Description

C1 The user has a valid certificate

C2 The role associated to the user is ROLE_SMP

C3 The SMP does not already exist in the SML

C4 Input: CreateServiceMetadataPublisherService: ServiceMetadataPublisherService -
contains the service metadata publisher information, which includes the logical and
physical addresses for the SMP (Domain name and IP address). It is assumed that the
ServiceMetadataPublisherID has been assigned to the calling user out-of-bands.

Basic Flow

Actor Step Description

SMP 1 Invokes the Create() operation.

SML 2 Authenticates the user, validates the request, and adds the metadata record
into its configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the creation confirmation.

SMP 5 Use case ends

Alternative Flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester

2.1.2 SMP Receives the error response

2.1.3 - Use case ends

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 Any other error occurred that prevented the SML to process the request

2.3.1 SML Returns an HTTP error 500 as response to the requester

2.3.2 SMP Receives the error response

2.3.3 - Use case ends

©2025 eDelivery Chapter 3. Interface Description |110

Post conditions

-

Successful conditions

The Metadata record has been created into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation (E1)

badRequestFault (400) Returned when the supplied
CreateServiceMetadataPublisherService does not contain
consistent data (E2)

internalErrorFault (500) Returned when the SML service is unable to process the
request for any reason (E3)

▼ UC2 Read

UC2 Read

Description

Retrieves the Service Metadata Publisher record for the service metadata publisher.

Actors

SMP

Preconditions

Precon
dition

Description

C1 The user has a valid certificate

C2 The role associated to the user is ROLE_SMP

C3 The SMP already exists in the SML

C4 Input ReadServiceMetadataPublisherService,
ServiceMetadataPublisherID: the unique ID of the Service Metadata Publisher for
which the record is required.

Basic Flow

Actor Step Description

SMP 1 Invokes the Read() operation.

SML 2 Authenticates the user, validates the request, and reads the requested SMP
metadata from its configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the metadata.

111| Chapter 3. Interface Description DomiSML 4.3 Documentation

Actor Step Description

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester

2.1.2 SMP Receives the error response

2.1.3 Use case ends

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 Any other occurred error preventing SML from processing the request

2.3.1 SML Returns an HTTP error 500 as response to the requester

2.3.2 SMP Receives the error response

2.3.3 - Use case ends

E4 The identifier of the SMP could not be found

2.4.1 SML Returns an HTTP error 404 as response to the requester

2.4.2 SMP Receives the error response

2.4.3 - Use case ends

Post conditions

-

Successful conditions

The Metadata has been provided to the requester.
Output: ServiceMetadataPublisherService, the service metadata publisher record, in the form
of a ServiceMetadataPublisherService data type.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
Create operation(E1).

badRequestFault (400) Returned when the supplied parameter does not contain
consistent data(E2).

©2025 eDelivery Chapter 3. Interface Description |112

Error Description

internalErrorFault (500) Returned when the SML service was unable to process the
request(E3).

notFoundFault (404) Returned when SMP’s identifier was not found(E4).

▼ UC3 Update

UC3 Update

Description

Updates the Service Metadata Publisher record for the service metadata publisher.

Actors

SMP

Preconditions

Precon
dition

Description

C1 The user has a valid certificate

C2 The role associated to the user is ROLE_SMP

C3 The SMP already exists in the SML

C4 Input UpdateServiceMetadataPublisheServicer,
ServiceMetadataPublisherService - contains the service metadata for the service
metadata publisher, which includes the logical and physical addresses for the SMP
(Domain name and IP address).

Basic Flow

Actor Step Description

SMP 1 Invokes the Update() operation

SML 2 Authenticates the user, validates the request, and updates the requested
metadata record from its configuration database.

SML 3 Returns a positive response to the requester

SMP 4 Receives the update confirmation

- 5 Use case ends

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester

2.1.2 SMP Receives the error response

113| Chapter 3. Interface Description DomiSML 4.3 Documentation

Flow Actor Description

2.1.3 - Use case ends

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 The identifier of the SMP could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester

2.3.2 SMP Receives the error response

2.2.3 - Use case ends

E4 Any other error occurred that prevented the SML to process the request

2.4.1 SML Returns an HTTP error 500 as response to the requester

2.4.2 SMP Receives the error response

2.4.3 - Use case ends

Post conditions

None

Successful conditions

The SMP record has been created into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation (E1).

badRequestFault (400) Returned when the supplied
UpdateServiceMetadataPublisheServicer does not contain
consistent data (E2).

notFoundFault (404) Returned when SMP’s identifier was not found (E3).

internalErrorFault (500) Returned when the SML service is unable to process the
request(E4).

▼ UC4 Delete

UC4 Delete

Description UC04 Delete

Deletes the Service Metadata Publisher record for the service metadata publisher.

Actors

SMP

©2025 eDelivery Chapter 3. Interface Description |114

Preconditions

Precon
dition

Description

C1 The user has a valid certificate

C2 The role associated to the user is ROLE_SMP

C3 The SMP already exists in the SML

C4 Input DeleteServiceMetadataPublisherService,
ServiceMetadataPublisherID: the unique ID of the Service Metadata Publisher to delete

Basic Flow

Actor Step Description

SMP 1 Invokes the Delete() operation

SML 2 Authenticates the user, validates the request, and deletes the requested
metadata record from its configuration database.

SML 3 Returns a positive response to the requester

SMP 4 Receives the deletion confirmation

- 5 Use case ends

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester

2.1.2 SMP Receives the error response

2.1.3 Use case ends

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 Use case ends

E3 The identifier of the SMP could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester

2.3.2 SMP Receives the error response

2.3.3 - Use case ends

E4 Any other occurred error preventing SML from processing the request

2.4.1 SML Returns an HTTP error 500 as response to the requester

115| Chapter 3. Interface Description DomiSML 4.3 Documentation

Flow Actor Description

2.4.2 SMP Receives the error response

2.4.3 - Use case ends

Post conditions

None

Successful conditions

The SMP record has been created into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation (E1).

badRequestFault (400) Returned when the DeleteServiceMetadataPublisherService
supplied does not contain consistent data(E2).

notFoundFault (404) Returned when the identifier of the SMP was not found(E3).

internalErrorFault (500) Returned when the SML service is unable to process the
request for any reason(E4).

ManageBusinessIdentifierService Use Cases

The ManageParticipantIdentifier interface allows Service Metadata Publishers to manage the
information in the Service Metadata Locator service relating to individual participant identifiers
for which they hold metadata.

This interface requires authentication of the Service Metadata Publisher. The identity of the Service
Metadata Publisher derived from the authentication process identifies the Service Metadata
Publisher associated with the Participant Identifier(s) which is (are) managed via this interface.

Nav to:

→ UC5 Create → UC6 CreateList → UC7 Delete → UC8 DeleteList → UC9 PrepareToMigrate → UC10
Migrate → UC11 List

▼ UC5 Create

UC5 Create

Description

Creates an entry in the Service Metadata Locator service for information relating to a specific
participant identifier. Regardless of the number of services a recipient exposes, only one
record corresponding to the participant identifier is created in the Service Metadata Locator
Service by the Service Metadata Publisher which exposes the services for that participant.

Actors

SMP

©2025 eDelivery Chapter 3. Interface Description |116

Preconditions

Precon
dition

Description

C1 The user has a valid certificate

C2 The role associated to the user is ROLE_SMP

C3 The SMP does already exist in the SML

C4 The participant does not already exist

C5 Input CreateParticipantIdentifier, +
ServiceMetadataPublisherServiceForParticipantType - contains the Participant
Identifier for a given participant and the identifier of the SMP which holds its data.

Basic Flow

Actor Step Description

SMP 1 Invokes the Create() operation

SML 2 Authenticates the user, validates the request, and adds the SMP record into its
configuration database.

SML 3 Returns a positive response to the requester

SMP 4 Receives the creation confirmation

- 5 Use case ends

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester

2.1.2 SMP Receives the error response

2.1.3 - Use case ends

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 The SMP could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester

2.3.2 SMP Receives the error response

2.3.3 - Use case ends

E4 Any other error occurred that prevented the SML to process the request

117| Chapter 3. Interface Description DomiSML 4.3 Documentation

Flow Actor Description

2.4.1 SML Returns an HTTP error 500 as response to the requester

2.4.2 SMP Receives the error response

2.4.3 - Use case ends

Post conditions

None

Successful conditions

The SMP record has been created into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

badRequestFault (400) Returned when the supplied CreateParticipantIdentifier does
not contain consistent data (E2).

notFoundFault (404) Returned when the identifier of the SMP could not be found
(E3).

internalErrorFault (500) Returned when the SML service is unable to process the
request for any reason(E4).

▼ UC6 CreateList

UC6 CreateList

Description::Creates a set of entries in the Service Metadata Locator service for information
relating to a list of participant identifiers. Regardless of the number of services a recipient
exposes, only one record corresponding to each participant identifier is created in the Service
Metadata Locator service by the Service Metadata Publisher which exposes the services for that
participant.

Actors

SMP

Preconditions

Precon
dition

Description

C1 The user has a valid certificate.

C2 The role associated to the user is ROLE_SMP.

C3 SMP already exists in the SML.

C4 The participants don’t already exist.

©2025 eDelivery Chapter 3. Interface Description |118

Precon
dition

Description

C5 Input CreateList: ParticipantIdentifierPage,
contains the list of Participant Identifiers for the participants which are added to the
Service Metadata Locator service. The NextPageIdentifier is absent.

Basic Flow

Actor Step Description

SMP 1 Invokes the CreateList() operation

SML 2 Authenticates the user, validates the request, and adds the SMP records into its
configuration database.

SML 3 Returns a positive response to the requester

SMP 4 Receives the creation confirmation

- 5 Use case ends

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester

2.1.2 SMP Receives the error response

2.1.3 - Use case ends

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 One or several SMP or participants could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester

2.3.2 SMP Receives the error response

2.3.3 - Use case ends

E4 Any other error occurred that prevented the SML to process the request

2.4.1 SML Returns an HTTP error 500 as response to the requester

2.4.2 SMP Receives the error response

2.4.3 - Use case ends

119| Chapter 3. Interface Description DomiSML 4.3 Documentation

Post conditions

None

Successful conditions

The SMP records have been created into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the:

• supplied CreateList does not contain consistent data;

• number of participants in the list is greater than 100(E2).

notFoundFault (404) Returned when SMP’s or a participants' identifier was not
found(E3).

internalErrorFault (500) Returned when the SML service is unable to process the
request(E4).

▼ UC7 Delete

UC7 Delete

Description

Deletes the information that the SML Service holds for a specific Participant Identifier.

Actors

SMP

Preconditions

Precon
dition

Description

C1 The user has a valid certificate

C2 The role associated to the user is ROLE_SMP.

C3 SMP already exists in the SML.

C4 The participant already exists.

C5 Input DeleteParticipantIdentifier,
ServiceMetadataPublisherServiceForParticipantType - contains the Participant
Identifier for a given participant and the identifier of the SMP that publishes its
metadata.

Basic Flow

Actor Step Description

SMP 1 Invokes the Delete() operation

©2025 eDelivery Chapter 3. Interface Description |120

Actor Step Description

SML 2 Authenticates the user, validates the request, and adds the SMP records into its
configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the deletion confirmation.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 SMP or participant could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester.

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

E4 Any other occurred error preventing SML from processing the request

2.4.1 SML Returns an HTTP error 500 as response to the requester.

2.4.2 SMP Receives the error response.

2.4.3 - Use case ends.

Post conditions

None

Successful conditions

The SMP record has been deleted from the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

121| Chapter 3. Interface Description DomiSML 4.3 Documentation

Error Description

badRequestFault (400) Returned when the supplied DeleteParticipantIdentifier does
not contain consistent data (E2).

notFoundFault (404) Returned when SMP’s or a participants' identifier was not
found(E3).

internalErrorFault (500) Returned when the SML service is unable to process the
request for any reason(E4).

▼ UC8 DeleteList

UC8 DeleteList

Description

Deletes the information that the SML Service holds for a list of Participant Identifiers.

Actors

SMP

Preconditions

Precon
dition

Description

C1 The user has a valid certificate

C2 The role associated to the user is ROLE_SMP.

C3 SMP already exists in the SML.

C4 The participant already exists.

C5 Input DeleteList,
ParticipantIdentifier: contains the list of Participant Identifiers for the participants
which are removed from the Service Metadata Locator service. The
NextPageIdentifier element is absent.

C6 The number of participants in the list is less than 100.

Basic Flow

Actor Step Description

SMP 1 Invokes the DeleteList() operation

SML 2 Authenticates the user, validates the request, and adds the SMP records into its
configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the deletion confirmation.

- 5 Use case ends.

Alternative flows

None

©2025 eDelivery Chapter 3. Interface Description |122

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 SMP or participant could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester.

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

E4 Any other occurred error preventing SML from processing the request

2.4.1 SML Returns an HTTP error 500 as response to the requester.

2.4.2 SMP Receives the error response.

2.4.3 - Use case ends.

Post conditions

None

Successful conditions

The SMP records have been deleted from the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the:

* supplied DeleteList does not contain consistent data; *
number of participants in the list is greater than 100(E2).

notFoundFault (404) Returned when SMP’s or a participants' identifier was not
found(E3).

internalErrorFault (500) Returned when the SML service is unable to process the
request(E4).

▼ UC9 PrepareToMigrate

123| Chapter 3. Interface Description DomiSML 4.3 Documentation

UC9 PrepareToMigrate

Description

Prepares a Participant Identifier for migration to a new Service Metadata Publisher. This
operation is called by the Service Metadata Publisher which currently publishes the metadata
for the Participant Identifier. The Service Metadata Publisher supplies a Migration Code which
is used to control the migration process. The Migration Code must be passed (out of band) to
the Service Metadata Publisher which is taking over the publishing of the metadata for the
Participant Identifier and which MUST be used on the invocation of the Migrate() operation.
This operation can only be invoked by the Service Metadata Publisher which currently
publishes the metadata for the specified Participant Identifier.

Actors

SMP

Preconditions

Precon
dition

Description

C1 The user has a valid certificate.

C2 The role associated to the user is ROLE_SMP.

C3 SMP already exists in the SML.

C4 The participant already exists.

C5 Input PrepareMigrationRecord,
MigrationRecordType: contains the Migration Key and the Participant Identifier which
is about to be migrated from one Service Metadata Publisher to another.

Basic Flow

Actor Step Description

SMP 1 Invokes the PrepareToMigrate() operation

SML 2 Authenticates the user, validates the request, and adds the SMP records into its
configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the prepared to migrate confirmation.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

©2025 eDelivery Chapter 3. Interface Description |124

Flow Actor Description

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 SMP or participant could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester.

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

E4 Any other occurred error preventing SML from processing the request

2.4.1 SML Returns an HTTP error 500 as response to the requester.

2.4.2 SMP Receives the error response.

2.4.3 - Use case ends.

Post conditions

None

Successful conditions

The SMP record is ready to be migrated into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the supplied PrepateMigrationRecord does not
contain consistent data (E2).

notFoundFault (404) Returned when SMP’s or a participants' identifier was not
found(E3).

internalErrorFault (500) Returned when the SML service is unable to process the
request(E4).

▼ UC10 Migrate

UC10 Migrate

Description

Migrates a Participant Identifier already held by the Service Metadata Locator service to
target a new Service Metadata Publisher. This operation is called by the Service Metadata
Publisher which is taking over the publishing for the Participant Identifier. The operation
requires the new Service Metadata Publisher to provide a migration code which was

125| Chapter 3. Interface Description DomiSML 4.3 Documentation

originally obtained from the old Service Metadata Publisher.

The PrepareToMigrate operation MUST have been previously invoked for the supplied
Participant Identifier, using the same MigrationCode, otherwise the Migrate() operation fails.
Following the successful invocation of this operation, the lookup of the metadata for the
service endpoints relating to a particular Participant Identifier will resolve (via DNS) to the
new Service Metadata Publisher.

Actors

SMP

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The role associated to the user is ROLE_SMP.

C3 SMP already exists in the SML.

C4 Participant already exists.

C5 The operation was previously invoked for the supplied Participant Identifier using the
same MigrationCode.

C6 Input CompleteMigrationRecord,
MigrationRecordType: contains the Migration Key and the Participant Identifier which
is to be migrated from one Service Metadata Publisher to another.

Basic Flow

Actor Step Description

SMP 1 Invokes the Migrate() operation

SML 2 Authenticates the user, validates the request, and migrates the SMP record into
its configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the migration confirmation.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

©2025 eDelivery Chapter 3. Interface Description |126

Flow Actor Description

2.1.3 - Use case ends.

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 The SMP or migration key could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester.

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

E4 Any other occurred error preventing SML from processing the request

2.4.1 SML Returns an HTTP error 500 as response to the requester.

2.4.2 SMP Receives the error response.

2.4.3 - Use case ends.

Post conditions

None

Successful conditions

The participant identifier has been migrated into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the supplied CompleteMigrationRecord does not
contain consistent data (E2).

notFoundFault (404) Returned when the migration key or the identifier of the SMP
could not be found (E3).

internalErrorFault (500) Returned when the SML service was unable to process the
request(E4).

▼ UC11 List

UC11 List

Description

List() is used to retrieve a list of all participant identifiers associated with a single Service
Metadata Publisher, for synchronization purposes. Since this list may be large, it is returned
as pages of data, with each page being linked from the previous page.

127| Chapter 3. Interface Description DomiSML 4.3 Documentation

Actors

SMP

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The role associated to the user is ROLE_SMP.

C3 SMP already exists in the SML.

C4 Participant already exists.

C5 Input Page, PageRequest: contains a PageRequest containing the
ServiceMetadataPublisherID of the SMP and (if required) an identifier representing the
next page of data to retrieve.
If the NextPageIdentifier is absent, the first page is returned.

Basic Flow

Actor Step Description

SMP 1 Invokes the List() operation

SML 2 Authenticates the user, validates the request, and builds the list of SMP from
its configuration database.

SML 3 Returns the requested list to the requester.

SMP 4 Receives the requested list.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 The SMP or migration key could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester.

©2025 eDelivery Chapter 3. Interface Description |128

Flow Actor Description

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

E4 Any other occurred error preventing SML from processing the request

2.4.1 SML Returns an HTTP error 500 as response to the requester.

2.4.2 SMP Receives the error response.

2.4.3 - Use case ends.

Post conditions

None

Successful conditions

Output,
ParticipantIdentifierPage: a page of Participant Identifier entries associated with the Service
Metadata Publisher, also containing a <Page/> element containing the identifier that
represents the next page, if any.

NOTE
The underlying data may be updated between two sequential invocations of
List(), this means the pages of participant identifiers retrieved can result in a
inconsistent set of data.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the supplied NextPage does not contain
consistent data (E2).

notFoundFault (404) Returned when the NextPage or the SMP’s identifiers were not
found(E3).

internalErrorFault (500) Returned when the SML service was unable to process the
request(E4).

BDMSLService Use Cases

This interface describes non-core services which are not defined both in the SML and BDX
specifications.

The following paragraphs define the use cases related to the BDMSLService service.

Nav to:

→UC12 PrepareChangeCertificate →UC13 CreateParticipantIdentifier →UC14
ExistsParticipantIdentifier → UC15 IsAlive

▼ UC12 PrepareChangeCertificate

129| Chapter 3. Interface Description DomiSML 4.3 Documentation

UC12 PrepareChangeCertificate

Description

This operation allows an SMP to prepare a change of its certificate. It is typically called when
an SMP has a certificate that is about to expire and already has the new one. This operation
MUST be called while the certificate that is already registered in the DomiSML is still valid. If
the migrationDate is not empty, then the new certificate MUST be valid at the date provided in
the migrationDate element. If the migrationDate element is empty, then the "Valid From" date
is extracted from the certificate and is used as the migrationDate. In this case, the "Not Before"
date of the certificate must be in the future.

Actors

SMP

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The role associated to the user is ROLE_SMP.

C3 The user has the new certificate for the SMP(s).

C4 Input: PrepareChangeCertificate containing the new certificate and the validity start
date.

Basic Flow

Actor Step Description

SMP 1 Invokes the PrepareChangeCertificate() operation.

SML 2 Authenticates the user, validates the request, and stores the future certificate
into its configuration database.

SML 3 Returns the requested list to the requester.

SMP 4 Receives the creation confirmation.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

©2025 eDelivery Chapter 3. Interface Description |130

Flow Actor Description

2.2.1 SML Returns an HTTP error 400 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

E3 The SMP or migration key could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester.

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

Post conditions

None

Successful conditions

The Metadata record has been created into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the:

• supplied request does not contain consistent data

• new certificate is not valid at the date provided in the
migrationDate element

• migrationDate is not in the future.

• migrationDate is not provided and the "Not Before" date
of the new certificate is not in the future

• migrationDate is not provided and the "Valid From" is in
the past(E2).

internalErrorFault (500) Returned when the SML service was unable to process the
request(E3).

▼ UC13 CreateParticipantIdentifier

UC13 CreateParticipantIdentifier

Description

This service has the same behaviour as the Create() operation in the
ManageParticipantIdentifier interface but it has one additional and optional() Input: the
serviceName element.

In the:

• Create() operation, the service name is Meta:SMP by default.

131| Chapter 3. Interface Description DomiSML 4.3 Documentation

• CreateParticipantIdentifier() operation, this service name can be customized.

serviceName: the name of the service for the NAPTR record.

Actors

SMP

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The role associated to the user is ROLE_SMP.

C3 SMP already exists in the SML.

C4 Participant doesn’t exist yet.

C5 Input CreateParticipantIdentifier,
ServiceMetadataPublisherServiceForParticipantType: contains the participant’s
identifier for a given participant and the identifier of the SMP which holds its data.
Additional parameter: serviceName.

Basic Flow

Actor Step Description

SMP 1 Invokes the CreateParticipantIdentifier() operation.

SML 2 Authenticates the user, validates the request, and adds the SMP record into its
configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the creation confirmation.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester.

2.2.2 SMP Receives the error response.

©2025 eDelivery Chapter 3. Interface Description |132

Flow Actor Description

2.2.3 - Use case ends.

E3 The SMP could not be found

2.3.1 SML Returns an HTTP error 404 as response to the requester.

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

E4 Any other occurred error preventing SML from processing the request

2.4.1 SML Returns an HTTP error 500 as response to the requester.

2.4.2 SMP Receives the error response.

2.4.3 - Use case ends.

Post conditions

None

Successful conditions

The SMP record has been created into the SML.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the supplied CreateParticipantIdentifier
does not contain consistent data (E2).

notFoundFault (404) Returned when the SMP’s identifier was not found(E3).

internalErrorFault (500) Returned when the SML service was unable to process the
request(E4).

▼ UC14 ExistsParticipantIdentifier

UC14 ExistsParticipantIdentifier

Description

The method enables an SMP to verify if it was already registered the participant into the
DomiSML.

Actors

SMP

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The role associated to the user is ROLE_SMP.

133| Chapter 3. Interface Description DomiSML 4.3 Documentation

Precon
dition

Description

C3 SMP already exists in the SML.

C4 Participant doesn’t exist yet.

C5 Input,
ServiceMetadataPublisherServiceForParticipantType: contains the Participant
Identifier for a given participant and the identifier of the SMP which holds its data.

Basic Flow

Actor Step Description

SMP 1 Invokes the ExistsParticipantIdentifier() operation.

SML 2 Authenticates the user, validates the request, and adds the SMP record into its
configuration database.

SML 3 Returns participant’s query data and exists parameter set to:

• TRUE if the entry already exists;

• FALSE if the entry doesn’t exist.

SMP 4 Receives the response.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

2.2.1 SML Returns an HTTP error 400 as response to the requester.

2.2.2 SMP Receives the error response.

2.2.3 - Use case ends.

E3 Any other occurring error preventing SML from processing the request

2.3.1 SML Returns an HTTP error 500 as response to the requester.

2.3.2 SMP Receives the error response.

2.3.3 - Use case ends.

©2025 eDelivery Chapter 3. Interface Description |134

Post conditions

None

Successful conditions

The SML successfully read the database status for the participant.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when the supplied CreateParticipantIdentifier
does not contain consistent data (E2).

internalErrorFault (500) Returned when the SML service was unable to process the
request(E3).

▼ UC15 IsAlive

UC15 IsAlive

Description::This service has only a monitoring purpose. It can be called to check if the
application is up and running. This service checks if the database and the DNS are accessible by
trying to read from the database and to write to and read from DNS.

Actors

SMP
ADMIN
Monitor user

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_SMP, ROLE_ADMIN OR ROLE_MONITOR.

C4 Input: None.

Basic Flow

Actor Step Description

SMP 1 Invokes the ExistsParticipantIdentifier() operation.

SML 2 Authenticates the user.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the alive confirmation.

- 5 Use case ends.

135| Chapter 3. Interface Description DomiSML 4.3 Documentation

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns no response to the requester

2.1.3 - Use case ends.

E2 Any other occurring error preventing SML from processing the request

2.2.1 SML Returns no response to the requester.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

HTTP 200 OK response sent to the requester.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation (E1).

internalErrorFault (500) Returned when the SML service was unable to process the
request(E2).

BDMSLService Use Cases

This interface describes non-core services that are not defined in the SML or BDX specifications.

The following paragraphs define the use cases related to the BDMSLAdminService service.

Nav to:

→UC16 ClearCache
→UC17
ChangeCertificate
→UC18 SetProperty

→UC19 GetProperty
→UC20
DeleteProperty
→UC21
CreateSubDomain

→UC22
UpdateSubDomain
→UC23
GetSubDomain

→UC24 DeleteSubDomain
→UC25
AddSubDomainCertificate

▼ UC16 ClearCache

UC16 ClearCache

Description

The in-memory caches are used for:

• The list of trusted aliases and their corresponding domains, because these data are not

©2025 eDelivery Chapter 3. Interface Description |136

supposed to be changed frequently.

• The content of the Certificate Revocation List, to avoid the cost of downloading each time
the CRLM for each certificate.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: None.

Basic Flow

Actor Step Description

SMP 1 Invokes the ClearCache() operation.

SML 2 Authenticates the user, validates the request, and clears the in-memory cache.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the alive confirmation.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Any other occurring error preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester

2.2.2 SMP Receives the error response

2.2.3 - Use case ends

Post conditions

None

Successful conditions

The cache is reset. HTTP 200 OK response sent to the requester.

137| Chapter 3. Interface Description DomiSML 4.3 Documentation

Failure Conditions (HTTP errors)

No or unspecified type of response (E1, E2).

▼ UC17 ChangeCertificate

UC17 ChangeCertificate

Description

This operation allows the admin team to change the SMP certificate. It is called by the admin
team in case the SMP certificate has expired and the new one needs to be applied. The new
certificate MUST be valid at the date time the request is sent.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 The user has the new certificate for the SMP(s).

C4 Input : SMP ID, New certificate public key.

Basic Flow

Actor Step Description

SMP 1 Invokes the ChangeCertificate() operation.

SML 2 Authenticates the user, validates the request, and stores the new certificate
into its configuration database.

SML 3 Returns a positive response to the requester.

SMP 4 Receives the alive confirmation.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 SMP Receives the error response.

2.1.3 - Use case ends.

E2 Request is not valid

©2025 eDelivery Chapter 3. Interface Description |138

Flow Actor Description

2.2.1 SML Returns an HTTP error 400 as response to the requester.

2.2.2 SMP Receives the error response.

2.2.3 Use case ends.

E3 Any other occurring error preventing SML from processing the request

2.3.1 SML Returns an HTTP error 500 as response to the requester

2.3.2 SMP Receives the error response

2.3.3 - Use case ends

Post conditions

None

Successful conditions

New Certificate is stored.

• Output: none.

• HTTP 200 OK expected.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

badRequestFault (400) Returned when(E2):

* supplied request does not contain consistent data
* new certificate is not valid at the date provided in the
migrationDate element
* migrationDate is not in the future.
* migrationDate is not provided and the "Not Before" date of
the new certificate is not in the future
* migrationDate is not provided and the "Valid From" is in the
past.

internalErrorFault (500) Returned when the SML service is unable to process the
request(E3).

▼ UC18 SetProperty

UC18 SetProperty

Description

This operation allows the admin team to change DomiSML property in database: as
passwords, DNS URL, etc. New property is taken into account when CRON task refresh the
properties at the same time on all nodes in cluster. CRON tab properties are refreshed only
with restart of DomiSML server.

139| Chapter 3. Interface Description DomiSML 4.3 Documentation

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Property name and property value.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the SetProperty () operation.

SML 2 Authenticates the user, validates the request, and ,if property is password, the
password is encrypted and stored.

SML 3 Returns returns stored property from database. In case of password property
the '**' is returned.

ADMIN 4 Receives the stored property.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 Use case ends.

Post conditions

None

Successful conditions

• Output, PropertyType: the property stored in DomiSML.

Failure Conditions (HTTP errors)

©2025 eDelivery Chapter 3. Interface Description |140

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke the
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC19 GetProperty

UC19 GetProperty

Description

This operation allows the admin team to retrieve DomiSML property from database, DNS URL,
smtp configuration, etc.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Property name.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the GetProperty () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Returns returns stored property from database. In case of password property,
the '**' is returned.

ADMIN 4 Receives the stored property.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

141| Chapter 3. Interface Description DomiSML 4.3 Documentation

Flow Actor Description

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output, PropertyType: the property from DomiSML database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC20 DeleteProperty

UC20 DeleteProperty

Description::This operation allows the admin team to delete DomiSML non mandatory properties
from database.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Property name.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the DeleteProperty () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Returns returns stored property from database. In case of password property,
the '**' is returned.

ADMIN 4 Receives the stored property.

©2025 eDelivery Chapter 3. Interface Description |142

Actor Step Description

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other occurring error preventing the SML to process the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: PropertyType : the deleted property from DomiSML database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1)

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2)

▼ UC21 CreateSubDomain

UC21 CreateSubDomain

Description

This operation allows the admin team to create new DomiSML SubDomain. When creating
subdomain, the DNS types, SMP URL scheme restriction, Participant regular expression must
be defined.

Actors

ADMIN

Preconditions

143| Chapter 3. Interface Description DomiSML 4.3 Documentation

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Domain name, DNS Zone, DNS Record type, allowed SMP Url scheme,
Participant regular expression. Regular expression for validating the Certificate
Subject DN, List of allowed Certificate Policy OIDs, Max. allowed number of
participants for the domain and for the SMP.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the CreateSubDomain () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Stores the domain in the database.

ADMIN 4 Receives the stored and normalized values for the SubDomain.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester

2.2.2 ADMIN Receives the error response

2.2.3 - Use case ends

Post conditions

None

Successful conditions

• Output: SubDomainType: the stored SubDomainData from DomiSML database.

Failure Conditions (HTTP errors)

©2025 eDelivery Chapter 3. Interface Description |144

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation (E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC22 UpdateSubDomain

UC22 UpdateSubDomain

Description

This operation allows the admin team to update DomiSML SubDomain properties. In case of
changing DNS Record Type and with DNS integration ON - the records are not updated
automatically. Records must be updated manually using operations: AddDNSRecord,
DeleteDNSRecord.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Domain name (optional): DNS Record type, allowed SMP Url scheme,
Participant regular expression. Regular expression for validationg the Certificate
Subject DN, List of allowed Certificate Policy OIDs, Max. allowed number of
participants for the domain and for the SMP.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the UpdateSubDomain () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Updates the subdomain data in the database.

ADMIN 4 Receives the stored and normalized values for the SubDomain.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

145| Chapter 3. Interface Description DomiSML 4.3 Documentation

Flow Actor Description

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: SubDomainType : the stored SubDomainData from DomiSML database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC23 GetSubDomain

UC23 GetSubDomain

Description

This operation allows the admin team to read DomiSML SubDomain properties.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Domain name.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the GetSubDomain() operation.

SML 2 Authenticates the user, validates the request.

©2025 eDelivery Chapter 3. Interface Description |146

Actor Step Description

SML 3 Gets the subdomain data from the database.

ADMIN 4 Receives the stored values for the SubDomain.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 Use case ends.

Post conditions

None

Successful conditions

• Output, SubDomainType: the stored SubDomainData from DomiSML database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC24 DeleteSubDomain

UC24 DeleteSubDomain

Description

This operation allows the admin team to delete empty DomiSML SubDomain.

Actors

ADMIN

Preconditions

147| Chapter 3. Interface Description DomiSML 4.3 Documentation

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Domain name.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the DeleteSubDomain () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Delete the subdomain data from database.

ADMIN 4 Receives the deleted SubDomain data.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurred that prevented the SML to process the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output, SubDomainType: the deleted SubDomainData from DomiSML database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

©2025 eDelivery Chapter 3. Interface Description |148

Error Description

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC25 AddSubDomainCertificate

UC25 AddSubDomainCertificate

Description

This operation allows the admin team to add new Domain certificate to DomiSML SubDomain.
Certificate can be flagged as RootPKI certificate and as Admin certificate. Admin certificate
can be only the certificate which is not flaged as RootPKI certificate. If truststore
authentication is enabled, then the certificate is automatically added to the truststore. For the
certificate to be fully trusted, the whole PKI chain also has to be added to the truststore using
the operation: AddTrustsstoreCertificate.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Certificate (PEM/DER), SubDomain name, IsRootPKI certificate, Is Admin
certificate, CRL distribution URL.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the AddSubDomainCertificate () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Adds the new SubDomain certificate to the subdomain.

ADMIN 4 Receives added Certificate SubDomain data.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

149| Chapter 3. Interface Description DomiSML 4.3 Documentation

Flow Actor Description

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: SubDomainCertificateType: the new SubDomain Certificate Data stored to
DomiSML database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation (E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC26 UpdateSubDomainCertificate

UC26 UpdateSubDomainCertificate

Description

This operation allows the admin team to update SubDomain certificate data. Admin can set or
clear CRL distribution point, IsAdmin flag and SubDomain name.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Certificate ID, Optional: SubDomain name, Is Admin certificate, CRL
distribution URL.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the UpdateSubDomainCertificate () operation.

©2025 eDelivery Chapter 3. Interface Description |150

Actor Step Description

SML 2 Authenticates the user, validates the request.

SML 3 Update data to SubDomain certificate.

ADMIN 4 Receives stored Certificate SubDomain data.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: SubDomainCertificateType : the new SubDomain Certificate Data stored to
DomiSML database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC27 ListSubDomainCertificates

UC27 ListSubDomainCertificates

Description

This operation allows the admin team to search for domain certificate by partial certificate
DN value and/or by the Subdomain.

151| Chapter 3. Interface Description DomiSML 4.3 Documentation

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: Optional: Partial Certificate ID, SubDomain name.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the ListSubDomainCertificates () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Returns list of SubDomain certificate data accordint to search paremeters.

ADMIN 4 Receives list of SubDomain certificate data.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: List of SubDomainCertificateTypes which match search criteria.

Failure Conditions (HTTP errors)

©2025 eDelivery Chapter 3. Interface Description |152

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC28 AddDNSRecord

UC28 AddDNSRecord

Description

This operation allows the admin team to add new record to DNS for DNS RecordType: A,
CNAME and NAPTR.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: DNS Record Type, DNS Record Name, DNS Zone, Value and service name for
NAPTR Type.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the AddDNSRecordType () operation.

SML 2 Authenticates the user, validates the request.

SML 3 Stores DNS record to SML database and if DNS integration is on inserts record
to DNS server.

ADMIN 4 Receives stored DNS data.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

153| Chapter 3. Interface Description DomiSML 4.3 Documentation

Flow Actor Description

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: DNSRecord data which are stored to database and optionally to DNS.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation (E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC29 DeleteDNSRecord

UC29 DeleteDNSRecord

Description

This operation allows the admin team to delete record from DNS by the DNS name. If there
are multiple DNS records with the same name in database and DNS server, all of them are
deleted.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: DNS Record Name, DNS Zone.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the DeleteDNSRecordType () operation.

SML 2 Authenticates the user, validates the request.

©2025 eDelivery Chapter 3. Interface Description |154

Actor Step Description

SML 3 Deleted DNS records from SML database and DNS server if DNS integration is
on.

ADMIN 4 Receives list of deleted DNS data from database.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: List of DNSRecord data, which are deleted from database.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC30 AddTruststoreCertificate

UC30 AddTruststoreCertificate

Description

This operation allows the admin team to add X509 certificate to the truststore.

Actors

ADMIN

Preconditions

155| Chapter 3. Interface Description DomiSML 4.3 Documentation

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: X509Certificate.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the AddTruststoreCertificate operation.

SML 2 Authenticates the user, validates the request.

SML 3 Adds the certificate in the Truststore and generates a new alias if not provided
in the request.

ADMIN 4 Receives inserted certificate with alias.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: Certificate with alias.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

©2025 eDelivery Chapter 3. Interface Description |156

▼ UC31 GetTruststoreCertificate

UC31 GetTruststoreCertificate

Description

This operation allows the admin team to retrieve X509 certificate from the truststore by the
certificate alias.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: certificate alias.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the GetTruststoreCertificate operation.

SML 2 Authenticates the user, validates the request.

SML 3 Retrieve certificate from Truststore.

ADMIN 4 Receives certificate with alias.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

157| Chapter 3. Interface Description DomiSML 4.3 Documentation

Successful conditions

• Output: certificate with alias.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC32 DeleteTruststoreCertificate

UC32 DeleteTruststoreCertificate

Description

This operation allows the admin team to delete X509 certificate from the truststore.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: certificate alias.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the DeleteTruststoreCertificate operation.

SML 2 Authenticates the user, validates the request.

SML 3 Deletes the certificate from the truststore.

ADMIN 4 Receives deleted certificate with alias.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

©2025 eDelivery Chapter 3. Interface Description |158

Flow Actor Description

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: Deleted X509 Certificate and alias.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC33 ListTruststoreCertificateAliases

UC33 ListTruststoreCertificateAliases

Description

This operation allows the admin team to list all X509 certificates in the truststore.

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

C2 The user has the role ROLE_ADMIN.

C3 Input: search parameter: null or partial certificate alias.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the ListTruststoreCertificate operation.

SML 2 Authenticates the user, validates the request.

SML 3 Retrieves the aliases which match the search parameter. If the search
parameter is not given, then the operation returns all certificates.

159| Chapter 3. Interface Description DomiSML 4.3 Documentation

Actor Step Description

ADMIN 4 Receives truststore aliases which matched search parameter.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: List of truststore aliases.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation(E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

▼ UC34 ManageServiceMetadataPublisher

UC34 ManageServiceMetadataPublisher

Description

Actors

ADMIN

Preconditions

Precon
dition

Description

C1 User has a valid certificate.

©2025 eDelivery Chapter 3. Interface Description |160

Precon
dition

Description

C2 The user has the role ROLE_ADMIN.

C3 Input: Action, SMP Id, Email address, Domain Zone, Certificate Id of the owner,
Optional: Physical address a Logical address of SMP in case of Update action.

Basic Flow

Actor Step Description

ADMIN 1 Invokes the ManageServiceMetadataPublisher operation.

SML 2 Authenticates the user, validates the request.

SML 3 Creates task in new Thread and executes action.

ADMIN 4 Receives email when the task is completed.

- 5 Use case ends.

Alternative flows

None

Exception flows

Flow Actor Description

E1 The user is not authorized

2.1.1 SML Returns an HTTP error 401 as response to the requester.

2.1.2 ADMIN Receives the error response.

2.1.3 - Use case ends.

E2 Any other error occurring preventing SML from processing the request

2.2.1 SML Returns an HTTP error 500 as response to the requester.

2.2.2 ADMIN Receives the error response.

2.2.3 - Use case ends.

Post conditions

None

Successful conditions

• Output: The SMP is enabled/disabled/deleted/updated.

Failure Conditions (HTTP errors)

Error Description

unauthorizedFault (401) Returned when the caller is not authorized to invoke this
operation (E1).

internalErrorFault (500) Returned when the DomiSML service is unable to process the
request(E2).

161| Chapter 3. Interface Description DomiSML 4.3 Documentation

3.2. Interface Behavioural Specification

3.2.1. Sequence diagrams

ManageServiceMetadataService

The ManageServiceMetadata interface allows Service Metadata Publishers to manage the metadata
held in the Service Metadata Locator service about their service metadata publisher services, e.g.,
binding, interface profile and key information. This interface requires authentication of the user.
The identity of the user derived from the authentication process identifies the Service Metadata
Publisher associated with the service metadata which is managed via this interface. The
ManageServiceMetadata interface has the following operations:

• Create

• Read

• Update

• Delete

SEE ALSO

PEPPOL Transport Infrastructure - Service Metadata Locator (SML)

This document defines the profiles for the discovery and management
interfaces for the Business Document Exchange Network (BUSDOX) Service
Metadata Locator service. The Service Metadata Locator service exposes three
interfaces: Service Metadata discovery, Manage participant identifiers and
Manage service metadata interfaces.

©2025 eDelivery Chapter 3. Interface Description |162

https://joinup.ec.europa.eu/svn/peppol/PEPPOL_EIA/1-ICT_Architecture/1-ICT-Transport_Infrastructure/13-ICT-Models/ICT-Transport-SML_Service_Specification-101.pdf

ManageBusinessIdentifierService

The ManageParticipantIdentifier interface has the following operations:

• Create

• CreateList

• Delete

• DeleteList

• PrepareToMigrate

• Migrate

• List

These services are listed in the sequence diagram below:

The usage of the services related to the SMP migration process – involving more than a single step
like the others above – are shown in the sequence diagram below:

163| Chapter 3. Interface Description DomiSML 4.3 Documentation

BDMSLService

This interface describes non-core services that are not defined in the SML or BDX specifications.

BDMSLAdminService

This interface describes non-core administration services that are not defined in the SML or BDX
specifications.

©2025 eDelivery Chapter 3. Interface Description |164

3.2.2. Data Model (WSDL)

The interface data model of the DomiSML is described using some conventions.

▼ Model Description Conventions

1

One paragraph for each of the 3 web services will introduce all their operations.

2

One paragraph for each operation will specify their Input and Output structures and the fault

165| Chapter 3. Interface Description DomiSML 4.3 Documentation

that these operations may return.
In some cases, there is no argument, in which case there is no related structure (the text
below will mention "none" in those cases).

3

For each input or output structure, the related XSD structure is detailed in a graphically,
specifying:

• The arborescence structure;

• The mandatory (solid lines) and optional (dashed line) fields.

Example:

•
The repeated fields and their cardinality (icon with min/max indication on the
bottom right).

Example:

• The sequences (icon).

Example:

• The leave attributes as defined in the first paragraph.

Examples (*):

ManageServiceMetadataService WSDL Model

Operations Signatures

▼ Create() Signature

©2025 eDelivery Chapter 3. Interface Description |166

▼ Create() Input

Argument: PublisherEndpoint.LogicalAddress

Description
The logical address of the endpoint (Domain name).

Format/XSD/Xpath Constraint

xs:anyURI
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//[local-
name()='sequence']/[local-name()='element'
and @name='LogicalAddress']

• Must not be null or empty.

• Must be valid and well formatted.

Argument: PublisherEndpoint.PhysicalAddress

Description
IP Address of the endpoint.

Format/XSD/Xpath Constraint

167| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: PublisherEndpoint.PhysicalAddress

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//[local-
name()='sequence']/[local-name()='element'
and @name='PhysicalAddress']

This physical address is used as the ALIAS on
the CNAME DNS record by default. However a
NAPTR DNS record is also provided in order to
give the possibility to process regular
expressions for accessing the domain if
necessary.
NAPTR records are based on a different type of
DNS resource records called "URI-enabled
Naming Authority Pointer records" (U-NAPTR),
which are defined to support Dynamic
Delegation Discovery Service (DDDS). The
result of a query is a full URI, which can use
HTTPS and supports server and optionally
client authentication.

• Must not be null or empty.

• Must be valid according to IPv4 and well
formatted.

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/ [local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']// [local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

▼ Create() Output

None

▼ Read() Signature

©2025 eDelivery Chapter 3. Interface Description |168

▼ Read() Input

Argument: PublisherEndpoint.LogicalAddress

Description
The logical address of the endpoint(Domain name).

Format/XSD/Xpath Constraint

xs:anyURI
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//*[local-
name()='sequence']/ *[local-
name()='element’and @name='LogicalAddress']

• Must not be null or empty.

• Must be valid and well formatted.

Argument: PublisherEndpoint.PhysicalAddress

Description
IP Address of the endpoint

Format/XSD/Xpath Constraint

169| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: PublisherEndpoint.PhysicalAddress

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//*[local-
name()='sequence']/ *[local-name()='element'
and @name='PhysicalAddress']

This physical address is used as the ALIAS on
the CNAME DNS record by default. However a
NAPTR DNS record is also provided in order to
give the possibility to process regular
expressions for accessing the domain if
necessary.
NAPTR records are based on a different type of
DNS resource records called "URI-enabled
Naming Authority Pointer records" (U-NAPTR),
which are defined to support Dynamic
Delegation Discovery Service (DDDS). The
result of a query is a full URI, which can use
HTTPS and supports server and optionally
client authentication.

• Must not be null or empty.

• Must be valid according to IPv4 and well
formatted.

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

▼ Read() Output

©2025 eDelivery Chapter 3. Interface Description |170

Argument: PublisherEndpoint.LogicalAddress

Description
The logical address of the endpoint (Domain name).

Format/XSD/Xpath Constraint

xs:anyURI
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//[local-
name()='sequence']/[local-name()='element'
and @name='LogicalAddress']

Must not be null or empty.
Must be valid and well formatted.

Argument: PublisherEndpoint.PhysicalAddress

Description
IP Address of the endpoint.

Format/XSD/Xpath Constraint

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//*[local-
name()='sequence']/ *[local-name()='element'
and @name='PhysicalAddress']

This physical address is used as the ALIAS on
the CNAME DNS record by default. However a
NAPTR DNS record is also provided in order to
give the possibility to process regular
expressions for accessing the domain if
necessary.
NAPTR records are based on a different type of
DNS resource records called "URI-enabled
Naming Authority Pointer records" (U-NAPTR),
which are defined to support Dynamic
Delegation Discovery Service (DDDS). The
result of a query is a full URI, which can use
HTTPS and supports server and optionally
client authentication.

• Must not be null or empty.

• Must be valid according to IPv4 and well
formatted.

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

171| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: ServiceMetadataPublisherID

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']// [local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

▼ Update() Signature

▼ Update() Input

Argument: ServiceMetadataPublisherID

Description
The logical address of the endpoint (Domain name).

Format/XSD/Xpath Constraint

xs:anyURI
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//[local-
name()='sequence']/

• Must not be null or empty.

• Must be valid and well formatted.

©2025 eDelivery Chapter 3. Interface Description |172

Argument: PublisherEndpoint.PhysicalAddress

Description
IP Address of the endpoint.

Format/XSD/Xpath Constraint

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PublisherEndpointType']//*[local-
name()='sequence']/ *[local-name()='element'
and @name='PhysicalAddress']

This physical address is used as the ALIAS on
the CNAME DNS record by default. However a
NAPTR DNS record is also provided in order to
give the possibility to process regular
expressions for accessing the domain if
necessary.
NAPTR records are based on a different type of
DNS resource records called "URI-enabled
Naming Authority Pointer records" (U-NAPTR),
which are defined to support Dynamic
Delegation Discovery Service (DDDS). The
result of a query is a full URI, which can use
HTTPS and supports server and optionally
client authentication.

• Must not be null or empty.

• Must be valid according to IPv4 and well
formatted.

Argument: ServiceMetadataPublisherID

Description:Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

▼ Update() Output

None

▼ Delete() Signature

173| Chapter 3. Interface Description DomiSML 4.3 Documentation

▼ Delete() Input

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

▼ Delete() Output

None

ManageBusinessIdentifierService WSDL Model

Operations Signatures

▼ Create() Signature

©2025 eDelivery Chapter 3. Interface Description |174

▼ Create() Input

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: ParticipantIdentifier

Description
Business unique identifier of the Participant.

Format/XSD/Xpath Constraint

175| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: ParticipantIdentifier

Represents a business level endpoint key that
uniquely identifies an end-user entity in the
network. Examples of identifiers are company
registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc…

The format must comply with ISO 15459
constraints as defined in Policy for the use of
Identifiers in PEPPOL Transport Infrastructure.

Example: 0088:4035811991014

Identifiers-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ParticipantIdentifierType']

Argument: ParticipantIdentifier.scheme

Description
The scheme of the participant identifier.

Format/XSD/Xpath Constraint

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification. Any instance of a 4-cornered
infrastructure may choose to define identifier
schemes that match the type of documents,
participants or profiles that are relevant to
support in that instance.

+ Examples: iso6523-actorid-upis, busdox-
actorid-upis
Identifiers-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ProcessIdentifierType']/xs:simpleCont
ent/xs:extension/xs:attribute

• May not exceed 25 characters.

• Must match the two following pattern:

-[a-zA-Z0-9]-[a-zA-Z0-9]

Which defines the following parts:
<domain>-<identifier_area>-
<identifier_type>

▼ Create() Output

None

▼ CreateList() Signature

©2025 eDelivery Chapter 3. Interface Description |176

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

▼ CreateList() Input

NOTE the NextPageIndentifier is absent.

Argument: ParticipantIdentifier (0..n)

Business unique identifier of the Participant. Represents a business level endpoint key that
uniquely identifies an end-user entity in the network. Examples of identifiers are company
registration and VAT numbers, DUNS numbers, GLN numbers, email addresses, etc.

Format/XSD/Xpath Constraint

177| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: ParticipantIdentifier (0..n)

• The format must comply with ISO 15459
constraints as defined in Policy for the use
of Identifiers in PEPPOL Transport
Infrastructure.

Example: 0088:4035811991014

Identifiers-1.0.xsd

/[local-name()='schema']/ [local-
name()='complexType' and
@name='ParticipantIdentifierType']

• Must be unique.

• May not exceed 50 characters and must be
at least 1 character long.

• May only contain ASCII characters.

• Participant identifier must be trimmed.

If the scheme refers to the (default) PEPPOL
participant identifier scheme (iso6523-
actorid-upis) and the participant identifier
is not a wildcard ('*'), then the issuing
agency specified in the
ParticipantIdentifier (as its leading part
before ':') must be included in the official
list (see List of Valid PEPPOL Issuing
Agencies).

NOTE
The participant identifier is
case insensitive.

Argument: ParticipantIdentifier.scheme (0..n)

The scheme of the participant identifier.

Format/XSD/Xpath Constraints

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification.
Any instance of a 4-cornered infrastructure
may choose to define identifier schemes that
match the type of documents, participants or
profiles that are relevant to support in that
instance.
Examples: iso6523-actorid-upis, busdox-
actorid-upis
Identifiers-1.0.xsd
/[local-name()='schema']/ [local-
name()='complexType' and
@name='ProcessIdentifierType']
/xs:simpleContent/xs:extension/xs:attribute

May not exceed 25 characters.
Must match the two following pattern:
-[a-zA-Z0-9]-[a-zA-Z0-9]
Which defines the following parts:
<domain>-<identifier_area>-<identifier_type>.

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

©2025 eDelivery Chapter 3. Interface Description |178

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

Argument: ServiceMetadataPublisherID

Format/XSD/Xpath Constraints

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/ [local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']// [local-name()='sequence']/
[local-name()='element' and
@ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: NextPageIdentifier

Description
This argument is not used in this context.

Format/XSD/Xpath Constraints

n/aa * Must be null.

▼ CreateList() Output

None

▼ Delete() Signature

▼ Delete() Input

179| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string
ServiceMetadataLocatorTypes-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: ParticipantIdentifier

Description
Business unique identifier of the Participant.

Format/XSD/Xpath Constraint

Represents a business level endpoint key that
uniquely identifies an end-user entity in the
network. Examples of identifiers are company
registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc.

The format must comply with ISO 15459
constraints as defined in Policy for the use of
Identifiers in PEPPOL Transport Infrastructure.

Example: 0088:4035811991014
Identifiers-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ParticipantIdentifierType']

Argument: ParticipantIdentifier.scheme

Description
The scheme of the participant identifier.

©2025 eDelivery Chapter 3. Interface Description |180

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

Argument: ParticipantIdentifier.scheme

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification. Any instance of a 4-cornered
infrastructure may choose to define identifier
schemes that match the type of documents,
participants or profiles that are relevant to
support in that instance.
Examples: iso6523-actorid-upis, busdox-
actorid-upis
Identifiers-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='ProcessIdentifierType']/xs:simpleCont
ent/xs:extension/xs:attribute

May not exceed 25 characters.
Must match the two following pattern:
-[a-zA-Z0-9]-[a-zA-Z0-9]
+ Which defines the following parts:
<domain>-<identifier_area>-<identifier_type>

▼ Delete() Output

None

▼ DeleteList() Signature

▼ DeleteList() Input

NOTE the NextPageIndentifier is absent.

181| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument Descript
ion

Format/XSD/Xpath Constraint

ParticipantIdentifi
er (0..n)

Business
unique
identifier
of the
Participa
nt.
Represen
ts a
business
level
endpoint
key that
uniquely
identifies
an end-
user
entity in
the
network.
Examples
of
identifier
s are
company
registrati
on and
VAT
numbers,
DUNS
numbers,
GLN
numbers,
email
addresse
s, etc.

The format must comply with ISO 15459
constraints as defined in Policy for the use of
Identifiers in PEPPOL Transport Infrastructure.

Example: 0088:4035811991014

Identifiers-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ParticipantIdentifierType']

Must be unique.
May not exceed
50 characters
and must be at
least 1 character
long.
+ May only
contain ASCII
characters.
+ Participant
identifier must
be trimmed.
+ If the scheme
refers to the
(default)
PEPPOL
participant
identifier
scheme
(iso6523-
actorid-upis)
and the
participant
identifier is not
a wildcard ('*'),
then the issuing
agency specified
in the
ParticipantIdent
ifier (as its
leading part
before ':') must
be included in
the official list
(see List of Valid
PEPPOL Issuing
Agencies).

NOTE: The
participant
identifier is case
insensitive.

©2025 eDelivery Chapter 3. Interface Description |182

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

Argument Descript
ion

Format/XSD/Xpath Constraint

ParticipantIdentifi
er.scheme (0..n)

The
scheme
of the
participa
nt
identifier

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification. Any instance of a 4-cornered
infrastructure may choose to define identifier
schemes that match the type of documents,
participants or profiles that are relevant to
support in that instance.

Examples: iso6523-actorid-upis, busdox-
actorid-upis

+ Identifiers-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ProcessIdentifierType']/xs:simpleCont
ent/xs:extension/xs:attribute

May not exceed
25 characters.
Must match the
two following
pattern:
-[a-zA-Z0-9]-[a
-zA-Z0-9]
+ Which defines
the following
parts:
<domain>-
<identifier
Area>-
<identifier
type>

ServiceMetadataPu
blisherID

Unique
identifier
of the
SMP

xs:string
+ ServiceMetadataLocatorTypes-1.0.xsd
+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceForP
articipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In
ManageService
Metadata
service, this
establishes the
link with the
managing SMP
of the
participant as
defined by in
the
ManageBusines
sIdentifier
service.

NextPageIdentifier This
argumen
t is not
used in
this
context.

n/a Must be null

▼ DeleteList() Output

None

▼ PrepareToMigrate() Signature

183| Chapter 3. Interface Description DomiSML 4.3 Documentation

▼ PrepareToMigrate() Input

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string

+ ServiceMetadataLocatorTypes-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']// [local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: ParticipantIdentifier

Description
Business unique identifier of the Participant.
Represents a business level endpoint key that uniquely identifies an end-user entity in the
network. Examples of identifiers are company registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc…

Format/XSD/Xpath Constraint

©2025 eDelivery Chapter 3. Interface Description |184

Argument: ParticipantIdentifier

The format must comply with ISO 15459
constraints as defined in Policy for the use of
Identifiers in PEPPOL Transport Infrastructure.

Example: 0088:4035811991014

Identifiers-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType'
and @name='ParticipantIdentifierType']

• Must be unique.

• Must be at least 1 character long

• Must not exceed 50 characters.

• May only contain ASCII characters.

• Participant identifier must be trimmed.

• If the scheme refers to the (default) PEPPOL
participant identifier scheme (iso6523-
actorid-upis) and the participant identifier
is not a wildcard ('*'), then the issuing
agency specified in the
ParticipantIdentifier (as its leading part
before ':') must be included in the official
list (see List of Valid PEPPOL Issuing
Agencies).

NOTE
The participant identifier is
case insensitive.

Argument: ParticipantIdentifier.scheme

Description
The scheme of the participant identifier.

Format/XSD/Xpath Constraint

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification. Any instance of a 4-cornered
infrastructure may choose to define identifier
schemes that match the type of documents,
participants or profiles that are relevant to
support in that instance.

+ Examples: iso6523-actorid-upis, busdox-
actorid-upis

+ Identifiers-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ProcessIdentifierType']/xs:simpleCont
ent/xs:extension/xs:attribute

• May not exceed 25 characters.

• Must match the two following pattern:
Which defines the following parts:
<domain>-<identifier_area>-
<identifier_type>

185| Chapter 3. Interface Description DomiSML 4.3 Documentation

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

Argument: MigrationKey

Description
String which is a unique key controlling the migration of the metadata for a given
ParticipantIdentifier from one Service Metadata Publisher to another.

Format/XSD/Xpath Constraint

xs:string

+ ServiceMetadataLocatorTypes-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType'
and @name='MigrationRecordType']/[local-
name()='sequence'] /[local-name()='element'
and @name='MigrationKey']

The migration key is a code that must be
passed out-of-band to the SMP which is taking
over the publishing of the metadata for the
participant identifier.

This code:

• must be unique;

• must not be null nor empty;

• must contain:

◦ 8 characters minimum

◦ 24 characters maximum

◦ 2 Special Characters @#$%()[]\{}*^-
!~|+=

◦ 2 Upper Case letters minimum

◦ 2 Lower Case letters minimum

◦ 2 Numbers minimum

◦ No white spaces

▼ PrepareToMigrate() Output

None

▼ Migrate() Signature

▼ Migrate() Input

©2025 eDelivery Chapter 3. Interface Description |186

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string

+ ServiceMetadataLocatorTypes-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: ParticipantIdentifier

Description
Business unique identifier of the Participant.
Represents a business level endpoint key that uniquely identifies an end-user entity in the
network. Examples of identifiers are company registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc.

Format/XSD/Xpath Constraint

187| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: ParticipantIdentifier

The format must comply with ISO 15459
constraints as defined in Policy for the use of
Identifiers in PEPPOL Transport Infrastructure.

Example: 0088:4035811991014

Identifiers-1.0.xsd /[local-
name()='schema']/[local-
name()='complexType' and
@name='ParticipantIdentifierType']

• Must be unique.

• Must be at least 1 character long.

• May not exceed 50 characters.

• May only contain ASCII characters.

• Participant identifier must be trimmed.

• If the scheme refers to the (default) PEPPOL
participant identifier scheme (iso6523-
actorid-upis) and the participant identifier
is not a wildcard ('*'), then the issuing
agency specified in the
ParticipantIdentifier (as its leading part
before ':') must be included in the official
list (see List of Valid PEPPOL Issuing
Agencies).

NOTE
The participant identifier is
case insensitive.

Argument: ParticipantIdentifier.scheme

Description
The scheme of the participant identifier.

Format/XSD/Xpath Constraint

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification. Any instance of a 4-cornered
infrastructure may choose to define identifier
schemes that match the type of documents,
participants or profiles that are relevant to
support in that instance.

+ Examples: iso6523-actorid-upis, busdox-
actorid-upis

+ Identifiers-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ProcessIdentifierType']/xs:simpleCont
ent/xs:extension/xs:attribute

• May not exceed 25 characters.

• Must match the two following pattern:

-[a-zA-Z0-9]-[a-zA-Z0-9]

Which defines the following parts:
<domain>-<identifier Area>-<identifier
type>

©2025 eDelivery Chapter 3. Interface Description |188

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

Argument: MigrationKey

Description
The scheme of the participant identifier.
String which is a unique key controlling the migration of the metadata for a given
ParticipantIdentifier from one Service Metadata Publisher to another.

Format/XSD/Xpath Constraint

xs:string

+ ServiceMetadataLocatorTypes-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType'
and @name='MigrationRecordType']/[local-
name()='sequence']/[local-name()='element'

+ and @name='MigrationKey']

The migration key is a code that must be
passed out-of-band to the SMP which is taking
over the publishing of the metadata for the
participant identifier.

This code:

• must be unique;

• must not be null nor empty;

• must contain:

◦ 8 characters minimum

◦ 24 characters maximum

◦ 2 Special Characters @#$%()[]\{}*^-
!~|+=

◦ 2 Upper Case letters minimum

◦ 2 Lower Case letters minimum

◦ 2 Numbers minimum

◦ No white spaces

▼ Migrate() Output

None

▼ List() Signature

▼ List() Input

189| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP

Format/XSD/Xpath Constraint

xs:string

ServiceMetadataLocatorTypes-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: NextPageIdentifier

Description
Identifier that controls the navigation between pages of a long list.

As Input parameter this identifier represents the page of data to retrieve. If the
NextPageIdentifier is absent, the first page is returned.
As Output parameter, this value can be used as() Input at the next call to the same operation to
retrieve the next page of data (to navigate forward).
This parameter is used only for 'read' operations returning list of values.

Format/XSD/Xpath Constraint

xs:string

ServiceMetadataLocatorTypes-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='PageRequestType']/[local-
name()='sequence']/[local-name()='element'
and @name='NextPageIdentifier']

Must be a positive number.
Must be null or empty for create or update
operations (since the full list of values has to be
provided at once).

▼ List() Output

©2025 eDelivery Chapter 3. Interface Description |190

Argument: ParticipantIdentifier (0..n)

Description
Business unique identifier of the Participant.

Represents a business level endpoint key that uniquely identifies an end-user entity in the
network. Examples of identifiers are company registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc.

Format/XSD/Xpath Constraint

The format must comply with ISO 15459
constraints as defined in Policy for the use of
Identifiers in PEPPOL Transport Infrastructure.

Example: 0088:4035811991014

Identifiers-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ParticipantIdentifierType']

• Must be unique.

• Must be at least 1 character long.

• May not exceed 50 characters.

• May only contain ASCII characters.

• Participant identifier must be trimmed.

• If the scheme refers to the (default) PEPPOL
participant identifier scheme (iso6523-
actorid-upis) and the participant identifier
is not a wildcard ('*'), then the issuing
agency specified in the
ParticipantIdentifier (as its leading part
before ':') must be included in the official
list (see List of Valid PEPPOL Issuing
Agencies).

NOTE
The participant identifier is
case insensitive.

191| Chapter 3. Interface Description DomiSML 4.3 Documentation

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

Argument: ParticipantIdentifier.scheme (0..n)

Description
The scheme of the participant identifier.

+ Represents a business level endpoint key that uniquely identifies an end-user entity in the
network. Examples of identifiers are company registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc.

Format/XSD/Xpath Constraint

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification. Any instance of a 4-cornered
infrastructure may choose to define identifier
schemes that match the type of documents,
participants or profiles that are relevant to
support in that instance.

+ Examples: iso6523-actorid-upis, busdox-
actorid-upis

+ Identifiers-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ProcessIdentifierType']/xs:simpleCont
ent/xs:extension/xs:attribute

• May not exceed 25 characters.

• Must match the two following pattern:

Which defines the following parts:

<domain>-<identifier Area>-<identifier
type>

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

+ Represents a business level endpoint key that uniquely identifies an end-user entity in the
network. Examples of identifiers are company registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc.

Format/XSD/Xpath Constraint

xs:string

+ ServiceMetadataLocatorTypes-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

©2025 eDelivery Chapter 3. Interface Description |192

Argument: NextPageIdentifier

Description
Identifier that controls the navigation between pages of a long list.

+ As Input parameter this identifier represents the page of data to retrieve. If the
NextPageIdentifier is absent, the first page is returned.

+ As Output parameter, this value can be used as() Input at the next call to the same operation to
retrieve the next page of data (to navigate forward).

+ This parameter is used only for 'read' operations returning list of values.

Format/XSD/Xpath Constraint

xs:string

+ ServiceMetadataLocatorTypes-1.0.xsd

+ /[local-name()='schema']/[local-
name()='complexType' and
@name='PageRequestType']/[local-
name()='sequence']/[local-name()='element'
and @name='NextPageIdentifier']

Must be a positive number.
Must be null or empty for create or update
operations (since the full list of values has to be
provided at once).

WSDL model for BDMSLService

Operations Signatures

▼ PrepareChangeCertificate() Signature

▼ PrepareChangeCertificate() Input

193| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: newCertificatePublicKey

Description
The new public key contained in the certificate

Format/XSD/Xpath Constraint

base64Binary
BDMSLService-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='PrepareChangeCertificateType']/[loca
l-name()='sequence']/[local-name()='element'
and @name='newCertificatePublicKey']

Must be valid and belong to the list of
authorized root certificate aliases.

Argument: migrationDate

Description
The migration date for the new certificate.

xs:date

BDMSLService-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='PrepareChangeCertificateType']/[loca
l-name()='sequence']/[local-name()='element'
and @name='migrationDate']

• May not be in the past.

• Must be in the validity period of the related
new certificate (i.e. within
NotBeforeCertificateDate and
NotAfterCertificateDate attribute of the
certificate).
If migrationDate is empty, then the "Valid
From" date is extracted from the certificate
and is used as the migrationDate.

▼ PrepareChangeCertificate() Output

None

▼ CreateParticipantIdentifier() Signature

©2025 eDelivery Chapter 3. Interface Description |194

▼ CreateParticipantIdentifier() Input

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP

Format/XSD/Xpath Constraint

xs:string

ServiceMetadataLocatorTypes-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'
and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: ParticipantIdentifier

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

195| Chapter 3. Interface Description DomiSML 4.3 Documentation

Argument: ParticipantIdentifier

Business unique identifier of the Participant.
Represents a business level endpoint key that
uniquely identifies an end-user entity in the
network. Examples of identifiers are company
registration and VAT numbers, DUNS numbers,
GLN numbers, email addresses, etc.

• The format must comply with ISO 15459
constraints as defined in Policy for the use
of Identifiers in PEPPOL Transport
Infrastructure.

Example: 0088:4035811991014

Identifiers-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ParticipantIdentifierType']

Argument: ParticipantIdentifier.scheme

Description
The scheme of the participant identifier.

Format/XSD/Xpath Constraint

Identifier schemes for all schemed identifier
types (participants, documents, profiles,
transports) may be defined outside of this
specification. Any instance of a 4-cornered
infrastructure may choose to define identifier
schemes that match the type of documents,
participants or profiles that are relevant to
support in that instance.

Examples: iso6523-actorid-upis, busdox-
actorid-upis

Identifiers-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ProcessIdentifierType']/xs:simpleCont
ent/xs:extension/xs:attribute

• May not exceed 25 characters.

• Must match the two following pattern:
Which defines the following parts:
<domain>-<identifier_area>-
<identifier_type>

Argument: serviceName

Description
The name of the service for the NAPTR record.

Format/XSD/Xpath Constraint

©2025 eDelivery Chapter 3. Interface Description |196

http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405
http://docs.oasis-open.org/bdxr/BDX-Location/v1.0/cs01/BDX-Location-v1.0-cs01.html#rfc3405

Argument: serviceName

xs:string
BDMSLService-1.0.xsd
/[local-name()='schema']/[local-
name()='complexType' and
@name='SMPAdvancedServiceForParticipantT
ype']/[local-name()='sequence']/[local-
name()='element’and @name='serviceName']

No constraint is enforced by the DomiSML

▼ CreateParticipantIdentifier() Output

None

▼ IsAlive() Signature

▼ IsAlive() Input

(empty)

▼ IsAlive() Output

None

▼ ClearCache() Signature

▼ ClearCache() Input

none

▼ ClearCache() Output

none

▼ ChangeCertificate() Signature

197| Chapter 3. Interface Description DomiSML 4.3 Documentation

▼ ChangeCertificate() Input

Argument: ServiceMetadataPublisherID

Description
Unique identifier of the SMP.

Format/XSD/Xpath Constraint

xs:string

ServiceMetadataLocatorTypes-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='ServiceMetadataPublisherServiceFor
ParticipantType']//[local-
name()='sequence']/[local-name()='element'

+ and @ref='ServiceMetadataPublisherID']

In ManageServiceMetadata service, this
establishes the link with the managing SMP of
the participant as defined by in the
ManageBusinessIdentifier service.

Argument: newCertificatePublicKey

Description
The new public key contained in the certificate.

Format/XSD/Xpath Constraint

base64Binary

BDMSLService-1.0.xsd

/[local-name()='schema']/[local-
name()='complexType' and
@name='PrepareChangeCertificateType']/[loca
l-name()='sequence']/[local-name()='element'
and @name='newCertificatePublicKey']

Must be valid and belong to the list of
authorized root certificate aliases.

©2025 eDelivery Chapter 3. Interface Description |198

▼ ChangeCertificate() Output

None

Faults

Faults generic specifications

All operations above may return all or some of the possible following faults:

• notFoundFault: the target element(s) (MetadataPublisher, Participant …) on which the operation
must be performed is not present into the configuration.

• unauthorizedFault: the user does not have the permission to execute that operation

• badRequestFault: the structure of the request is not well-formed

• internaltFault: any other error occurred during the processing of the request

Error Codes

Whenever a fault occurs, more details on the source of the error will provided in the SOAP fault
with the applicable error code as listed in the table below:

Error
code

Description

100 SMP not found error

101 Unauthorized error

102 Certificate authentication issue

103 The root alias is not found in the list of trusted issuers in the database

104 The certificate is revoked

105 Generic technical error

106 Bad request error

107 DNS communication problem

108 Problem with the SIG0 Signature

109 Bad configuration

110 Participant not found error

111 Migration data not found

112 Duplicate participant error

113 Error when deleting a SMP

114 The deletion failed because a migration is planned for the given participant or SMP

Faults specific usages

The tables that follow show the applicability of each error per operation specified in this
specification:

199| Chapter 3. Interface Description DomiSML 4.3 Documentation

ManageServiceMetadata

Error/Operation notFoundFault unauthorizedFault internalErrorFault badRequestFault

Create X X X

Read X X X X

Update X X X X

Delete X X X X

ManageBusinessIdentifier

Error/Operation notFoundFault unauthorizedFault internalErrorFault badRequestFault

Create X X X X

CreateList X X X X

Delete X X X X

DeleteList X X X X

PrepareToMigrat
e

X X X X

Migrate X X X X

List X X X X

BDMSLService

Error/Operation notFoundFault unauthorizedF
ault

internalError
Fault

badRequestFau
lt

PrepareChangeCertificate X X X X

CreateParticipantIdentifier X X X X

IsAlive X X X

BDMSLAdminService

Error/Operation notFoundFault unauthorizedF
ault

internalError
Fault

badRequestFau
lt

SetProperty X X X X

GetProperty X X X X

DeleteProperty X X X X

CreateSuDomain X X X X

UpdateSubDomain X X X X

GetSubDomain X X X X

DeleteSubDomain X X X X

AddSubDomainCertificate X X X X

UpdateSubDomainCertificate X X X X

©2025 eDelivery Chapter 3. Interface Description |200

BDMSLAdminService

ListSubDomainCertificates X X X

AddDNSRecord X X X X

DeleteDNSRecord X X X X

ClearCache X X X

ChangeCertificate X X X X

AddTruststoreCertificate X X X

GetTruststoreCertificate X X X X

DeleteTruststoreCertificate X X X X

ListTruststoreCertificateAliases X X X

ManageServiceMetadaPublisher X X X X

Sample SOAP errors

The following are SOAP faults samples as they are returned to the requester in case of error
encountered by the DomiSML.

▼ Sample NotFoundFault

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring>[ERR-100] The SMP 'testSMPPrepareToMigrate520'
doesn't exist.
[14ojYP8Op4vWs78XmcVtLBVFsbPat1mOE9h8HChQW0O48XbOOZXu!-
2114654990!1469472374542]</faultstring>
 <detail>
 <NotFoundFault
 xmlns:ns2="http://busdox.org/transport/identifiers/1.0/"
 xmlns="http://busdox.org/serviceMetadata/locator/1.0/">
 <FaultMessage>[ERR-100] The SMP
'testSMPPrepareToMigrate520' doesn't exist.</FaultMessage>
 </NotFoundFault>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Sample "BadRequestFault":

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>

201| Chapter 3. Interface Description DomiSML 4.3 Documentation

 <soap:Fault>
 <faultcode>soap:Server</faultcode>
 <faultstring[ERR-106]Participant Identifier value "9999" is
illegal .
[NtsjYc25LzhHUNmQ4_Z6Bv8En5sB2e9WjFhMZrBTUcLHT5QlsR99!-
2114654990!1469472427449]</faultstring>
 <detail>
 <BadRequestFault
 xmlns:ns2="http://busdox.org/transport/identifiers/1.0/"
 xmlns="http://busdox.org/serviceMetadata/locator/1.0/">
 <FaultMessage>[ERR-106] Participant Identifier Value
contains the illegal issuing agency '0185'</FaultMessage>
 </BadRequestFault>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

3.3. Annexes

3.3.1. Interface Message standards

The WSDL and XSD documents can all be downloaded from the eDelivery GIT repository at this
location:

https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-
api/src/main/resources

WSDL’s

▼ ManageBusinessIdentifierService

<!--
(C) Copyright 2018 - European Commission | CEF eDelivery

Licensed under the EUPL, Version 1.2 (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://joinup.ec.europa.eu/sites/default/files/custom-
page/attachment/eupl_v1.2_en.pdf

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

©2025 eDelivery Chapter 3. Interface Description |202

https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-api/src/main/resources
https://ec.europa.eu/digital-building-blocks/code/projects/EDELIVERY/repos/bdmsl/browse/bdmsl-api/src/main/resources

<wsdl:definitions
xmlns:tns="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/"
xmlns:soap11="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:lrs="http://busdox.org/serviceMetadata/locator/1.0/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
name="ManageBusinessIdentifierService"
targetNamespace="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1
.0/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:types>
 <s:schema elementFormDefault="qualified"
targetNamespace="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1
.0/Schema/">
 <s:import namespace="http://busdox.org/serviceMetadata/locator/1.0/"
schemaLocation="ServiceMetadataLocatorTypes-1.0.xsd"/>
 </s:schema>
 </wsdl:types>
 <wsdl:message name="createIn">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:part name="messagePart" element="lrs:CreateParticipantIdentifier"/>
 </wsdl:message>
 <wsdl:message name="createOut">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 </wsdl:message>
 <wsdl:message name="deleteIn">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:part name="messagePart" element="lrs:DeleteParticipantIdentifier"/>
 </wsdl:message>
 <wsdl:message name="deleteOut">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 </wsdl:message>
 <wsdl:message name="listIn">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:part name="messagePart" element="lrs:PageRequest"/>
 </wsdl:message>
 <wsdl:message name="listOut">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:part name="messagePart" element="lrs:ParticipantIdentifierPage"/>
 </wsdl:message>
 <wsdl:message name="prepareMigrateIn">
 <wsdl:part name="prepareMigrateIn" element="lrs:PrepareMigrationRecord"/>
 </wsdl:message>
 <wsdl:message name="prepareMigrateOut">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 </wsdl:message>
 <wsdl:message name="migrateIn">
 <wsdl:part name="migrateIn" element="lrs:CompleteMigrationRecord"/>
 </wsdl:message>
 <wsdl:message name="migrateOut">

203| Chapter 3. Interface Description DomiSML 4.3 Documentation

 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 </wsdl:message>
 <wsdl:message name="createListIn">
 <wsdl:part name="createListIn" element="lrs:CreateList"/>
 </wsdl:message>
 <wsdl:message name="createListOut">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 </wsdl:message>
 <wsdl:message name="deleteListIn">
 <wsdl:part name="deleteListIn" element="lrs:DeleteList"/>
 </wsdl:message>
 <wsdl:message name="deleteListOut">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 </wsdl:message>
 <wsdl:message name="badRequestFault">
 <wsdl:part name="fault" element="lrs:BadRequestFault"/>
 </wsdl:message>
 <wsdl:message name="internalErrorFault">
 <wsdl:part name="fault" element="lrs:InternalErrorFault"/>
 </wsdl:message>
 <wsdl:message name="notFoundFault">
 <wsdl:part name="fault" element="lrs:NotFoundFault"/>
 </wsdl:message>
 <wsdl:message name="unauthorizedFault">
 <wsdl:part name="fault" element="lrs:UnauthorizedFault"/>
 </wsdl:message>
 <wsdl:portType name="ManageBusinessIdentifierServiceSoap">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:operation name="Create">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:input message="tns:createIn"/>
 <wsdl:output message="tns:createOut"/>
 <wsdl:fault message="tns:notFoundFault" name="NotFoundFault"/>
 <wsdl:fault message="tns:unauthorizedFault" name="UnauthorizedFault"/>
 <wsdl:fault message="tns:internalErrorFault" name="InternalErrorFault"/>
 <wsdl:fault message="tns:badRequestFault" name="BadRequestFault"/>
 </wsdl:operation>
 <wsdl:operation name="Delete">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:input message="tns:deleteIn"/>
 <wsdl:output message="tns:deleteOut"/>
 <wsdl:fault message="tns:notFoundFault" name="NotFoundFault"/>
 <wsdl:fault message="tns:unauthorizedFault" name="UnauthorizedFault"/>
 <wsdl:fault message="tns:internalErrorFault" name="InternalErrorFault"/>
 <wsdl:fault message="tns:badRequestFault" name="BadRequestFault"/>
 </wsdl:operation>
 <wsdl:operation name="List">
 <wsdl:documentation xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"/>
 <wsdl:input message="tns:listIn"/>
 <wsdl:output message="tns:listOut"/>
 <wsdl:fault message="tns:notFoundFault" name="NotFoundFault"/>

©2025 eDelivery Chapter 3. Interface Description |204

 <wsdl:fault message="tns:unauthorizedFault" name="UnauthorizedFault"/>
 <wsdl:fault message="tns:internalErrorFault" name="InternalErrorFault"/>
 <wsdl:fault message="tns:badRequestFault" name="BadRequestFault"/>
 </wsdl:operation>
 <wsdl:operation name="PrepareToMigrate">
 <wsdl:input message="tns:prepareMigrateIn"/>
 <wsdl:output message="tns:prepareMigrateOut"/>
 <wsdl:fault message="tns:notFoundFault" name="NotFoundFault"/>
 <wsdl:fault message="tns:unauthorizedFault" name="UnauthorizedFault"/>
 <wsdl:fault message="tns:internalErrorFault" name="InternalErrorFault"/>
 <wsdl:fault message="tns:badRequestFault" name="BadRequestFault"/>
 </wsdl:operation>
 <wsdl:operation name="Migrate">
 <wsdl:input message="tns:migrateIn"/>
 <wsdl:output message="tns:migrateOut"/>
 <wsdl:fault message="tns:notFoundFault" name="NotFoundFault"/>
 <wsdl:fault message="tns:unauthorizedFault" name="UnauthorizedFault"/>
 <wsdl:fault message="tns:internalErrorFault" name="InternalErrorFault"/>
 <wsdl:fault message="tns:badRequestFault" name="BadRequestFault"/>
 </wsdl:operation>
 <wsdl:operation name="CreateList">
 <wsdl:input message="tns:createListIn"/>
 <wsdl:output message="tns:createListOut"/>
 <wsdl:fault message="tns:notFoundFault" name="NotFoundFault"/>
 <wsdl:fault message="tns:unauthorizedFault" name="UnauthorizedFault"/>
 <wsdl:fault message="tns:internalErrorFault" name="InternalErrorFault"/>
 <wsdl:fault message="tns:badRequestFault" name="BadRequestFault"/>
 </wsdl:operation>
 <wsdl:operation name="DeleteList">
 <wsdl:input message="tns:deleteListIn"/>
 <wsdl:output message="tns:deleteListOut"/>
 <wsdl:fault message="tns:notFoundFault" name="NotFoundFault"/>
 <wsdl:fault message="tns:unauthorizedFault" name="UnauthorizedFault"/>
 <wsdl:fault message="tns:internalErrorFault" name="InternalErrorFault"/>
 <wsdl:fault message="tns:badRequestFault" name="BadRequestFault"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="ManageBusinessIdentifierServiceSoap"
type="tns:ManageBusinessIdentifierServiceSoap">
 <soap11:binding transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Create">
 <soap11:operation
soapAction="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:createIn" style="document"/>
 <wsdl:input>
 <soap11:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap11:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="NotFoundFault">

205| Chapter 3. Interface Description DomiSML 4.3 Documentation

 <soap:fault name="NotFoundFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="UnauthorizedFault">
 <soap:fault name="UnauthorizedFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="InternalErrorFault">
 <soap:fault name="InternalErrorFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="BadRequestFault">
 <soap:fault name="BadRequestFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="CreateList">
 <soap11:operation
soapAction="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:createListIn" style="document"/>
 <wsdl:input>
 <soap11:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap11:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="NotFoundFault">
 <soap:fault name="NotFoundFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="UnauthorizedFault">
 <soap:fault name="UnauthorizedFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="InternalErrorFault">
 <soap:fault name="InternalErrorFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="BadRequestFault">
 <soap:fault name="BadRequestFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="Delete">
 <soap11:operation
soapAction="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:deleteIn" style="document"/>
 <wsdl:input>
 <soap11:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap11:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="NotFoundFault">
 <soap:fault name="NotFoundFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="UnauthorizedFault">
 <soap:fault name="UnauthorizedFault" use="literal"/>
 </wsdl:fault>

©2025 eDelivery Chapter 3. Interface Description |206

 <wsdl:fault name="InternalErrorFault">
 <soap:fault name="InternalErrorFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="BadRequestFault">
 <soap:fault name="BadRequestFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="DeleteList">
 <soap11:operation
soapAction="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:deleteListIn" style="document"/>
 <wsdl:input>
 <soap11:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap11:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="NotFoundFault">
 <soap:fault name="NotFoundFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="UnauthorizedFault">
 <soap:fault name="UnauthorizedFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="InternalErrorFault">
 <soap:fault name="InternalErrorFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="BadRequestFault">
 <soap:fault name="BadRequestFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="List">
 <soap11:operation
soapAction="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:listIn" style="document"/>
 <wsdl:input>
 <soap11:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap11:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="NotFoundFault">
 <soap:fault name="NotFoundFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="UnauthorizedFault">
 <soap:fault name="UnauthorizedFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="InternalErrorFault">
 <soap:fault name="InternalErrorFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="BadRequestFault">
 <soap:fault name="BadRequestFault" use="literal"/>

207| Chapter 3. Interface Description DomiSML 4.3 Documentation

 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="PrepareToMigrate">
 <soap11:operation
soapAction="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:prepareMigrateIn" style="document"/>
 <wsdl:input>
 <soap11:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap11:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="NotFoundFault">
 <soap:fault name="NotFoundFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="UnauthorizedFault">
 <soap:fault name="UnauthorizedFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="InternalErrorFault">
 <soap:fault name="InternalErrorFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="BadRequestFault">
 <soap:fault name="BadRequestFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="Migrate">
 <soap11:operation
soapAction="http://busdox.org/serviceMetadata/ManageBusinessIdentifierService/1.0/
:migrateIn" style="document"/>
 <wsdl:input>
 <soap11:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap11:body use="literal"/>
 </wsdl:output>
 <wsdl:fault name="NotFoundFault">
 <soap:fault name="NotFoundFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="UnauthorizedFault">
 <soap:fault name="UnauthorizedFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="InternalErrorFault">
 <soap:fault name="InternalErrorFault" use="literal"/>
 </wsdl:fault>
 <wsdl:fault name="BadRequestFault">
 <soap:fault name="BadRequestFault" use="literal"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="ManageBusinessIdentifierService">
 <wsdl:port name="ManageBusinessIdentifierServicePort"

©2025 eDelivery Chapter 3. Interface Description |208

binding="tns:ManageBusinessIdentifierServiceSoap">
 <soap:address location="unknown"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

▼ ServiceGroupReferenceList.xsd reformed

?xml version="1.0" encoding="utf-8"?>
<!--
(C) Copyright 2018 - European Commission | CEF eDelivery

Licensed under the EUPL, Version 1.2 (the "License");
You may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://joinup.ec.europa.eu/sites/default/files/custom-
page/attachment/eupl_v1.2_en.pdf

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->

<xs:schema xmlns="http://busdox.org/serviceMetadata/publishing/1.0/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://busdox.org/serviceMetadata/publishing/1.0/"
elementFormDefault="qualified" id="ServiceGroupReferenceList">
 <xs:include schemaLocation="ServiceMetadataPublishingTypes-1.0.xsd"/>
 <xs:element name="ServiceGroupReferenceList"
type="ServiceGroupReferenceListType"/>
 <xs:complexType name="ServiceGroupReferenceListType">
 <xs:sequence>
 <xs:element name="ServiceGroupReference"
type="ServiceGroupReferenceType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ServiceGroupReferenceType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="href" type="xs:anyURI"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="CompleteServiceGroup" type="CompleteServiceGroupType"/>
 <xs:complexType name="CompleteServiceGroupType">
 <xs:sequence>

209| Chapter 3. Interface Description DomiSML 4.3 Documentation

 <xs:element ref="ServiceGroup"/>
 <xs:element ref="ServiceMetadata" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

▼ ServiceMetadataLocatorTypes-1.0.xsd

<?xml version="1.0" encoding="utf-8"?>
<!--
(C) Copyright 2018 - European Commission | CEF eDelivery
Licensed under the EUPL, Version 1.2 (the "License");
You may not use this file except in compliance with the License. You may obtain a
copy of the License at
https://joinup.ec.europa.eu/sites/default/files/custom-
page/attachment/eupl_v1.2_en.pdf
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and
limitations under the License.
-->
 <xs:schema xmlns="http://busdox.org/serviceMetadata/locator/1.0/"
xmlns:ids="http://busdox.org/transport/identifiers/1.0/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://busdox.org/serviceMetadata/locator/1.0/"
 elementFormDefault="qualified" id="ServiceMetadataPublisherService">
 <xs:import namespace="http://busdox.org/transport/identifiers/1.0/"
schemaLocation="Identifiers-1.0.xsd"/>
 <xs:element name="ServiceMetadataPublisherID" type="xs:string"/>
<xs:element name="CreateServiceMetadataPublisherService"
type="ServiceMetadataPublisherServiceType"/> <xs:element
name="ReadServiceMetadataPublisherService"
type="ServiceMetadataPublisherServiceType"/> <xs:element
name="UpdateServiceMetadataPublisherService"
type="ServiceMetadataPublisherServiceType"/> <xs:element
name="ServiceMetadataPublisherService" type="ServiceMetadataPublisherServiceType"/>
<xs:complexType name="ServiceMetadataPublisherServiceType">
<xs:sequence>
<xs:element name="PublisherEndpoint" type="PublisherEndpointType"/> <xs:element
ref="ServiceMetadataPublisherID"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="PublisherEndpointType">
<xs:sequence>
<xs:element name="LogicalAddress" type="xs:anyURI"/> <xs:element
name="PhysicalAddress" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ServiceMetadataPublisherServiceForParticipantType">

©2025 eDelivery Chapter 3. Interface Description |210

<xs:sequence>
<xs:element ref="ServiceMetadataPublisherID"/> <xs:element
ref="ids:ParticipantIdentifier"/>
</xs:sequence>
</xs:complexType>
<xs:element name="CreateParticipantIdentifier"
type="ServiceMetadataPublisherServiceForParticipantType"/> <xs:element
name="DeleteParticipantIdentifier"
type="ServiceMetadataPublisherServiceForParticipantType"/> <xs:element
name="ParticipantIdentifierPage" type="ParticipantIdentifierPageType"/>
<xs:element name="CreateList" type="ParticipantIdentifierPageType"/>
<xs:element name="DeleteList" type="ParticipantIdentifierPageType"/>
<xs:complexType name="ParticipantIdentifierPageType">
<xs:sequence>
<xs:element ref="ids:ParticipantIdentifier" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="ServiceMetadataPublisherID" minOccurs="0"/>
<xs:element name="NextPageIdentifier" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:element name="PageRequest" type="PageRequestType"/> <xs:complexType
name="PageRequestType">
<xs:sequence>
<xs:element ref="ServiceMetadataPublisherID"/>
<xs:element name="NextPageIdentifier" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:element name="PrepareMigrationRecord" type="MigrationRecordType"/> <xs:element
name="CompleteMigrationRecord" type="MigrationRecordType"/> <xs:complexType
name="MigrationRecordType">
<xs:sequence>
<xs:element ref="ServiceMetadataPublisherID"/> <xs:element
ref="ids:ParticipantIdentifier"/> <xs:element name="MigrationKey" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:element name="BadRequestFault" type="FaultType"/> <xs:element
name="InternalErrorFault" type="FaultType"/> <xs:element name="NotFoundFault"
type="FaultType"/> <xs:element name="UnauthorizedFault" type="FaultType"/>
<xs:complexType name="FaultType">
<xs:sequence>
<xs:element name="FaultMessage" type="xs:string" minOccurs="0"/>
</xs:sequence> </xs:complexType>
</xs:schema>

▼ ServiceMetadataPublishingTypes-1.0.xsd

<?xml version="1.0" encoding="utf-8"?>
<!--
(C) Copyright 2018 - European Commission | CEF eDelivery
Licensed under the EUPL, Version 1.2 (the "License");
You may not use this file except in compliance with the License. You may obtain a

211| Chapter 3. Interface Description DomiSML 4.3 Documentation

copy of the License at
https://joinup.ec.europa.eu/sites/default/files/custom-
page/attachment/eupl_v1.2_en.pdf
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<xs:schema xmlns="http://busdox.org/serviceMetadata/publishing/1.0/"
xmlns:ids="http://busdox.org/transport/identifiers/1.0/"
xmlns:ds="http://www.w3.org/2000/09/xmldsig#"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:wsa="http://www.w3.org/2005/08/addressing"
targetNamespace="http://busdox.org/serviceMetadata/publishing/1.0/"
elementFormDefault="qualified" id="ServiceMetadataPublishing">
<xs:import namespace="http://www.w3.org/2000/09/xmldsig#" schemaLocation="xmldsig-
core-schema.xsd"/> <xs:import
namespace="http://busdox.org/transport/identifiers/1.0/"
schemaLocation="Identifiers-1.0.xsd"/> <xs:import
namespace="http://www.w3.org/2005/08/addressing" schemaLocation="ws-addr.xsd"/>
<xs:element name="ServiceGroup" type="ServiceGroupType"/>
<xs:element name="ServiceMetadata" type="ServiceMetadataType"/>
<xs:element name="SignedServiceMetadata" type="SignedServiceMetadataType"/>
<xs:complexType name="SignedServiceMetadataType">
<xs:annotation>
<xs:documentation>The SignedServiceMetadata structure is a ServiceMetadata structure
that has been signed by the ServiceMetadataPublisher, according to governance
policies.</xs:documentation> </xs:annotation>
<xs:sequence>
<xs:element ref="ServiceMetadata">
<xs:annotation>
<xs:documentation>The ServiceMetadata element covered by the
Signature.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element ref="ds:Signature"> <xs:annotation>
<xs:documentation>Represents an enveloped XML() Signature over the
SignedServiceMetadata element.</xs:documentation>
</xs:annotation> </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ServiceMetadataType">
<xs:annotation> <xs:documentation>
This data structure represents Metadata about a specific electronic service.
The role of the ServiceMetadata structure is to associate a participant identifier
with the ability to receive a specific document type over a specific transport. It
also describes which business processes a document can participate in, and various
operational data such as service activation and expiration times.
The ServiceMetadata resource contains all the metadata about a service that a sender
Access Point needs to know in order to send a message to that service.
</xs:documentation> </xs:annotation>

©2025 eDelivery Chapter 3. Interface Description |212

<xs:sequence> <xs:choice>
<xs:element name="ServiceInformation" type="ServiceInformationType"> <xs:annotation>
<xs:documentation>Contains service information for an actual service registration,
rather than a redirect to another SMP</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="Redirect" type="RedirectType"> <xs:annotation>
<xs:documentation>
For recipients that want to associate more than one SMP with their participant
identifier,
they may redirect senders to an alternative SMP for specific document types. To
achieve this, the ServiceMetadata element defines the optional element ‘Redirect’.
This element holds the URL of the alternative SMP, as well as the Subject Unique
Identifier of the destination SMPs certificate used to sign its resources.
In the case where a client encounters such a redirection element, the client MUST
follow the first redirect reference to the alternative SMP. If the
SignedServiceMetadata resource at the alternative SMP also contains a redirection
element, the client SHOULD NOT follow that redirect. It is the responsibility of the
client to enforce this constraint.
</xs:documentation> </xs:annotation>
</xs:element>
 </xs:choice> </xs:sequence> </xs:complexType>
<xs:complexType name="ServiceInformationType"> <xs:sequence>
<xs:element ref="ids:ParticipantIdentifier"> <xs:annotation>
<xs:documentation>The participant identifier. Comprises the identifier, and an
identifier scheme. This identifier MUST have the same value of the {id} part of the
URI of the enclosing ServiceMetadata resource.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element ref="ids:DocumentIdentifier"> <xs:annotation>
<xs:documentation>Represents the type of document that the recipient is able to
handle.</xs:documentation> </xs:annotation>
</xs:element>
<xs:element name="ProcessList" type="ProcessListType">
<xs:annotation>
<xs:documentation>Represents the processes that a specific document type can
participate in, and endpoint address
and binding information. Each process element describes a specific business process
that accepts this type of document as() Input and holds a list of endpoint addresses
(in the case that the service supports multiple transports) of services that
implement the business process, plus information about the transport used for each
endpoint.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="Extension" type="ExtensionType" minOccurs="0"> <xs:annotation>
<xs:documentation>The extension element may contain any XML element. Clients MAY
ignore this element.</xs:documentation>
</xs:annotation> </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ProcessListType">
<xs:annotation>
<xs:documentation>List of processes</xs:documentation>
</xs:annotation> <xs:sequence>

213| Chapter 3. Interface Description DomiSML 4.3 Documentation

<xs:element name="Process" type="ProcessType" maxOccurs="unbounded"/> </xs:sequence>
</xs:complexType>
<xs:complexType name="ProcessType">
<xs:sequence>
<xs:element ref="ids:ProcessIdentifier">
<xs:annotation>
<xs:documentation>The identifier of the process.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="ServiceEndpointList" type="ServiceEndpointList"> <xs:annotation>
<xs:documentation>List of one or more endpoints that support this
process.</xs:documentation> </xs:annotation>
</xs:element>
<xs:element name="Extension" type="ExtensionType" minOccurs="0">
<xs:annotation>
<xs:documentation>
 The extension element may contain any XML element. Clients MAY ignore this
element.
</xs:documentation>
</xs:annotation>
</xs:element> </xs:sequence> </xs:complexType>
<xs:complexType name="ServiceEndpointList"> <xs:annotation>
<xs:documentation>Contains a list of all endpoint</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="Endpoint" type="EndpointType" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Endpoint represents the technical endpoint and address type of the
recipient, as an
URL.</xs:documentation> </xs:annotation>
</xs:element> </xs:sequence>
 </xs:complexType>
<xs:complexType name="EndpointType">
<xs:sequence>
<xs:element ref="wsa:EndpointReference">
<xs:annotation>
<xs:documentation>The address of an endpoint, as an WS-Addressing Endpoint
Reference</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="RequireBusinessLevelSignature" type="xs:boolean"> <xs:annotation>
<xs:documentation>Set to "true" if the recipient requires business-level()
Signatures for the message, meaning a() Signature applied to the business message
before the message is put on the transport. This is independent of the transport-
level() Signatures that a specific transport profile, such as the START profile,
might mandate. This flag does not indicate which type of business-level() Signature
might be required. Setting or consuming business-level() Signatures would typically
be the responsibility of the final senders and receivers of messages, rather than a
set of APs.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="MinimumAuthenticationLevel" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:documentation>Indicates the minimum authentication level that recipient

©2025 eDelivery Chapter 3. Interface Description |214

requires. The specific semantics of this field is defined in a specific instance of
the BUSDOX infrastructure. It could for example reflect the value of the
"urn:eu:busdox:attribute:assurance-level" SAML attribute defined in the
START specification.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="ServiceActivationDate" type="xs:dateTime" minOccurs="0">
<xs:annotation>
<xs:documentation>Activation date of the service. Senders should ignore services
that are not yet activated.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="ServiceExpirationDate" type="xs:dateTime" minOccurs="0">
<xs:annotation>
<xs:documentation>Expiration date of the service. Senders should ignore services
that are expired.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="Certificate" type="xs:string"> <xs:annotation>
<xs:documentation>Holds the complete signing certificate of the recipient AP, as a
PEM base 64 encoded X509 DER formatted value.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="ServiceDescription" type="xs:string"> <xs:annotation>
<xs:documentation>A human readable description of the service</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="TechnicalContactUrl" type="xs:anyURI">
<xs:annotation>
<xs:documentation>Represents a link to human readable contact information. This
might also be an email
address.</xs:documentation> </xs:annotation>
</xs:element>
<xs:element name="TechnicalInformationUrl" type="xs:anyURI" minOccurs="0">
<xs:annotation>
<xs:documentation>A URL to human readable documentation of the service format. This
could for example be a web
site containing links to XML Schemas, WSDLs, Schematrons and other relevant
resources.</xs:documentation> </xs:annotation>
</xs:element>
<xs:element name="Extension" type="ExtensionType" minOccurs="0">
<xs:annotation>
<xs:documentation>The extension element may contain any XML element. Clients MAY
ignore this
element.</xs:documentation> </xs:annotation>
</xs:element> </xs:sequence>
<xs:attribute name="transportProfile" type="xs:string"> <xs:annotation>
<xs:documentation>Indicates the type of BUSDOX transport that is being used between
access points, e.g. the BUSDOX START profile. This specification defines the
following identifier URI which denotes the BUSDOX START transport: "busdox-
transport- start"</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:complexType name="ServiceGroupType">

215| Chapter 3. Interface Description DomiSML 4.3 Documentation

<xs:annotation>
<xs:documentation>The ServiceGroup structure represents a set of services
associated with a specific participant identifier that is handled by a specific
Service Metadata Publisher. The ServiceGroup structure holds a list of references to
SignedServiceMetadata resources in the ServiceList structure.</xs:documentation>
</xs:annotation> <xs:sequence>
<xs:element ref="ids:ParticipantIdentifier"> <xs:annotation>
<xs:documentation>Represents the business level endpoint key and key type, e.g. a
DUNS or GLN number that is associated with a group of services. </xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="ServiceMetadataReferenceCollection"
type="ServiceMetadataReferenceCollectionType"> <xs:annotation>
<xs:documentation>The ServiceMetadataReferenceCollection structure holds a list of
references to SignedServiceMetadata structures. From this list, a sender can follow
the references to get each SignedServiceMetadata structure.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="Extension" type="ExtensionType" minOccurs="0"> <xs:annotation>
<xs:documentation>The extension element may contain any XML element. Clients MAY
ignore this element.</xs:documentation>
</xs:annotation> </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ServiceMetadataReferenceCollectionType">
<xs:annotation>
<xs:documentation>Contains the URL to a specific SignedServiceMetadata instance.
Note
that references MUST refer to SignedServiceMetadata records that are signed by the
certificate of the SMP. It must not point to SignedServiceMetadata resources
published by external SMPs.</xs:documentation>
</xs:annotation> <xs:sequence>
<xs:element name="ServiceMetadataReference" type="ServiceMetadataReferenceType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ServiceMetadataReferenceType">
<xs:attribute name="href" type="xs:anyURI"> <xs:annotation>
<xs:documentation>Contains the URL to a specific SignedServiceMetadata
instance.</xs:documentation> </xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:complexType name="RedirectType">
<xs:sequence>
<xs:element name="CertificateUID" type="xs:string">
<xs:annotation>
<xs:documentation>Holds the Subject Unique Identifier of the certificate of the
destination SMP. A client SHOULD
validate that the Subject Unique Identifier of the certificate used to sign the
resource at the destination SMP matches the Subject Unique Identifier published in
the redirecting SMP.</xs:documentation>
</xs:annotation> </xs:element>
<xs:element name="Extension" type="ExtensionType" minOccurs="0"> <xs:annotation>

©2025 eDelivery Chapter 3. Interface Description |216

<xs:documentation>The extension element may contain any XML element. Clients MAY
ignore this element.</xs:documentation>
</xs:annotation> </xs:element>
</xs:sequence>
<xs:attribute name="href" type="xs:anyURI">
<xs:annotation>
<xs:documentation>The destination URL of the redirect.</xs:documentation>
</xs:annotation> </xs:attribute>
</xs:complexType>
<xs:complexType name="ExtensionType">
<xs:annotation>
<xs:documentation>
Child elements of the <smp:Extension> element are known as "custom
extension elements". Extension points may be used for optional extensions
of service metadata. This implies:
* Extension elements added to a specific Service Metadata resource MUST be ignorable
by any client of the transport infrastructure. The ability to parse and adjust
client
behavior based on an extension element MUST NOT be a prerequisite for a client to
locate a service, or to make a successful request at the referenced service.
* A client MAY ignore any extension element added to specific service metadata
resource instances.
</xs:documentation>
</xs:annotation>
<xs:sequence>
<!-- TODO processContents="skip" will be added after 1.1.0 -->
<xs:any/>
</xs:sequence>
</xs:complexType>
</xs:schema>

▼ BDMSLService-1.0.xsds

<?xml version="1.0" encoding="utf-8"?>
<!--
(C) Copyright 2018 - European Commission | CEF eDelivery
Licensed under the EUPL, Version 1.2 (the "License");
You may not use this file except in compliance with the License. You may obtain a
copy of the License at
https://joinup.ec.europa.eu/sites/default/files/custom-
page/attachment/eupl_v1.2_en.pdf
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
-->
<xs:schema xmlns="ec:services:wsdl:BDMSL:data:1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:bd="http://busdox.org/serviceMetadata/locator/1.0/"
xmlns:id="http://busdox.org/transport/identifiers/1.0/"

217| Chapter 3. Interface Description DomiSML 4.3 Documentation

targetNamespace="ec:services:wsdl:BDMSL:data:1.0" elementFormDefault="qualified"
id="BDMSLTypes">
<xs:import namespace="http://busdox.org/serviceMetadata/locator/1.0/"
schemaLocation="ServiceMetadataLocatorTypes-1.0.xsd"/>
<xs:import namespace="http://busdox.org/transport/identifiers/1.0/"
schemaLocation="Identifiers-1.0.xsd"/>
<xs:element name="PrepareChangeCertificate" type="PrepareChangeCertificateType"/>
<xs:element name="SMPAdvancedServiceForParticipantService"
type="SMPAdvancedServiceForParticipantType"/>
<xs:element name="IsAlive" type="IsAliveType"/>
<xs:element name="ExistsParticipant" type="ParticipantsType"/> <xs:element
name="ExistsParticipantResponse"
type="ExistsParticipantResponseType"/>
<xs:complexType name="PrepareChangeCertificateType">
<xs:sequence>
<xs:element name="newCertificatePublicKey" type="xs:string">
<xs:annotation>
<xs:documentation>The new public key contained in the
certificate.</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="migrationDate" type="xs:date" minOccurs="0">
<xs:annotation>
<xs:documentation>The migration date for the new
certificate. Can't be in the past.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
<xs:complexType name="SMPAdvancedServiceForParticipantType"> <xs:sequence>
<xs:element name="CreateParticipantIdentifier"
type="bd:ServiceMetadataPublisherServiceForParticipantType"/>
<xs:element name="serviceName" type="xs:string"> <xs:annotation>
<xs:documentation>The name of the service for the NAPTR record.</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ListParticipantsType">
<xs:sequence>
<xs:element name="participant" type="ParticipantsType"
minOccurs="0" maxOccurs="unbounded"/> </xs:sequence>
</xs:complexType>
<xs:complexType name="ParticipantsType">
<xs:sequence>
<xs:element ref="id:ParticipantIdentifier">
<xs:annotation>
<xs:documentation>The participant
identifier</xs:documentation>
 </xs:annotation>

©2025 eDelivery Chapter 3. Interface Description |218

</xs:element>
<xs:element ref="bd:ServiceMetadataPublisherID">
<xs:annotation>
<xs:documentation>The SMP identifier</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="IsAliveType"/>
<xs:complexType name="ExistsParticipantResponseType"> <xs:sequence>
<xs:element ref="id:ParticipantIdentifier"> <xs:annotation>
<xs:documentation>The participant identifier</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element ref="bd:ServiceMetadataPublisherID"> <xs:annotation>
<xs:documentation>The SMP identifier</xs:documentation> </xs:annotation>
</xs:element>
<xs:element name="Exist" type="xs:boolean">
<xs:annotation>
<xs:documentation>True if the participant is already
 registered on the SMP.</xs:documentation> </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

▼ BDMSLAdminService-1.0.xsd

<?xml version="1.0" encoding="utf-8"?>
<!--
(C) Copyright 2019 - European Commission | CEF eDelivery
Licensed under the EUPL, Version 1.2 (the "License");
You may not use this file except in compliance with the License. You may obtain a
copy of the License at
https://joinup.ec.europa.eu/sites/default/files/custom-
page/attachment/eupl_v1.2_en.pdf
Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.
-->
<xs:schema xmlns="ec:services:wsdl:BDMSL:admin:data:1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:bd="http://busdox.org/serviceMetadata/locator/1.0/"
targetNamespace="ec:services:wsdl:BDMSL:admin:data:1.0"
elementFormDefault="qualified" id="BDMSLAdminTypes">
<xs:element name="GenerateReport" type="GenerateReportType"/>
<xs:element name="GenerateReportResponse" type="GenerateReportResponseType"/>
<xs:element name="GenerateInconsistencyReport"
type="GenerateInconsistencyReportType"/>

219| Chapter 3. Interface Description DomiSML 4.3 Documentation

<xs:element name="GenerateInconsistencyResponse"
type="GenerateInconsistencyResponseType"/>
<xs:element name="CreateSubDomainRequest" type="SubDomainType"/> <xs:element
name="CreateSubDomainResponse" type="SubDomainType"/> <xs:element
name="CreateDomainCertificateRequest"
type="SubDomainType"/>
<xs:element name="UpdateSubDomainRequest" type="UpdateSubDomainType"/> <xs:element
name="UpdateSubDomainResponse" type="SubDomainType"/> <xs:element
name="DeleteSubDomainRequest" type="DeleteSubDomainType"/> <xs:element
name="DeleteSubDomainResponse" type="SubDomainType"/> <xs:element
name="GetSubDomainRequest" type="GetSubDomainType"/> <xs:element
name="GetSubDomainResponse" type="SubDomainType"/> <xs:element
name="AddSubDomainCertificateRequest"
type="AddDomainCertificateType"/>
<xs:element name="AddSubDomainCertificateResponse"
type="DomainCertificateType"/>
<xs:element name="UpdateSubDomainCertificateRequest"
type="UpdateDomainCertificateType"/>
<xs:element name="UpdateSubDomainCertificateResponse"
type="DomainCertificateType"/>
<xs:element name="ListSubDomainCertificateRequest"
type="ListSubDomainCertificateRequestType"/> <xs:element
name="ListSubDomainCertificateResponse"
type="ListSubDomainCertificateResponseType"/> <xs:element
name="AddTruststoreCertificateRequest"
type="TruststoreCertificateType"/>
 <xs:element name="AddTruststoreCertificateResponse"
type="TruststoreCertificateType"/>
<xs:element name="DeleteTruststoreCertificateRequest"
type="DeleteTruststoreCertificateType"/>
<xs:element name="DeleteTruststoreCertificateResponse"
type="TruststoreCertificateType"/>
<xs:element name="GetTruststoreCertificateRequest"
type="GetTruststoreCertificateType"/>
<xs:element name="GetTruststoreCertificateResponse"
type="TruststoreCertificateType"/>
<xs:element name="ListTruststoreCertificateAliasesRequest"
type="ListTruststoreCertificateAliasesRequestType"/>
<xs:element name="ListTruststoreCertificateAliasesResponse"
type="ListTruststoreCertificateAliasesResponseType"/>
<xs:element name="AddDNSRecordRequest" type="DNSRecordType"/> <xs:element
name="AddDNSRecordResponse" type="DNSRecordType"/> <xs:element
name="DeleteDNSRecordRequest" type="DeleteDNSRecordType"/> <xs:element
name="DeleteDNSRecordResponse" type="DNSRecordListType"/> <xs:element
name="SetPropertyRequest" type="PropertyType"/> <xs:element
name="SetPropertyResponse" type="PropertyType"/> <xs:element
name="GetPropertyRequest" type="PropertyKeyType"/> <xs:element
name="GetPropertyResponse" type="PropertyType"/> <xs:element
name="DeletePropertyRequest" type="PropertyKeyType"/> <xs:element
name="DeletePropertyResponse" type="PropertyType"/> <xs:element
name="ChangeCertificate" type="ChangeCertificateType"/> <xs:element

©2025 eDelivery Chapter 3. Interface Description |220

name="ClearCache" type="ClearCacheType"/>
<xs:complexType name="ClearCacheType"/> <xs:complexType
name="ChangeCertificateType">
<xs:sequence>
<xs:element ref="bd:ServiceMetadataPublisherID">
<xs:annotation>
<xs:documentation>The SMP identifier</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="newCertificatePublicKey" type="xs:base64Binary">
<xs:annotation>
<xs:documentation>The new public key contained in the
certificate.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="GenerateInconsistencyReportType">
<xs:sequence>
<xs:element name="ReceiverEmailAddress" type="xs:string">
 <xs:annotation>
 <xs:documentation>Receiver email
address!</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:simpleType name="GenerateInconsistencyResponseType">
<xs:annotation>
<xs:documentation>Status description</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="253"/>
 </xs:restriction>
 </xs:simpleType>
<xs:complexType name="GenerateReportType"> <xs:sequence>
<xs:element name="ReportCode" type="xs:string"> <xs:annotation>
<xs:documentation>Report code. Check documentation for supported
codes!</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="ReceiverEmailAddress" type="xs:string"> <xs:annotation>
 <xs:documentation>Receiver email
address!</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="GenerateReportResponseType">
<xs:annotation>

221| Chapter 3. Interface Description DomiSML 4.3 Documentation

<xs:documentation>Status description</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:minLength value="0"/>
 <xs:maxLength value="253"/>
 </xs:restriction>
</xs:simpleType>
<xs:complexType name="SubDomainType"> <xs:sequence>
<xs:element name="SubDomainName" type="SubDomainNameType"> <xs:annotation>
<xs:documentation>SubDomain name. Name must be unique on SML
server!</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="SubDomainDescription" minOccurs="0"> <xs:annotation>
<xs:documentation>Short SubDomain description</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
<xs:restriction base="xs:string"> <xs:maxLength value="1024"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="DNSZone">
<xs:annotation>
<xs:documentation>Domain (dns zone) for
SubDomain.</xs:documentation>
 </xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
 <xs:maxLength value="512"/>
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
<xs:element name="ParticipantRegularExpression"
type="ParticipantRegularExpressionType">
<xs:annotation>
<xs:documentation>Regex allows specific and described ids only or * instead for
having wildcards.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="DNSRecordType" type="DNSRecordTypeType"> <xs:annotation>
<xs:documentation>Type of DNS Record when registering/updating participant, all
means that both DNS record types are accepted as possible values: [cname, naptr,
all].
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="SmpUrlScheme" type="SmpUrlSchemeType">
<xs:annotation>
<xs:documentation>

©2025 eDelivery Chapter 3. Interface Description |222

Protocol that MUST be used for LogicalAddress when registering new SMP, all means
both protocols are accepted possible values: [http, https, all].
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="CertSubjectRegularExpression"
type="CertSubjectRegularExpressionType" minOccurs="0">
<xs:annotation>
<xs:documentation>Regex validation of Certificate subject for Issuer based
authorization certificates.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="CertPolicyOIDs" type="CertPolicyOIDsType" minOccurs="0">
<xs:annotation>
<xs:documentation>User with issuer-authorized SMP
certificate is granted SMP_ROLE only if one of the certificate policy extension
matches the list. Value is a list of certificate policy OIDs separated by ','.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="MaxParticipantCountForDomain" type="xs:integer" minOccurs="0">
<xs:annotation>
<xs:documentation>Maximum number of participant allowed
to be registered on the domain.
</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="MaxParticipantCountForSMP" type="xs:integer" minOccurs="0">
<xs:annotation>
<xs:documentation>Maximum number of participant allowed
to be registered on the SMP.
</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="PropertyType"> <xs:sequence>
<xs:element name="Key">
<xs:annotation>
<xs:documentation>Property key.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
<xs:restriction base="xs:string"> <xs:maxLength value="512"/> <xs:minLength
value="1"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
<xs:element name="Value">
<xs:annotation>
<xs:documentation>Property Value.</xs:documentation>

223| Chapter 3. Interface Description DomiSML 4.3 Documentation

 </xs:annotation>
 <xs:simpleType>
<xs:restriction base="xs:string"> <xs:maxLength value="4000"/> <xs:minLength
value="1"/>
 </xs:restriction>
 </xs:simpleType>
</xs:element>
<xs:element name="Description" minOccurs="0">
 <xs:annotation>
 <xs:documentation>Property
description.</xs:documentation>
 </xs:annotation>
<xs:simpleType>
<xs:restriction base="xs:string">
 <xs:maxLength value="4000"/>
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="PropertyKeyType">
 <xs:sequence>
 <xs:element name="Key">
<xs:annotation>
<xs:documentation>Property key.</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
<xs:restriction base="xs:string"> <xs:maxLength value="512"/> <xs:minLength
value="1"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="UpdateSubDomainType">
<xs:sequence>
<xs:element name="SubDomainName" type="SubDomainNameType">
<xs:annotation>
<xs:documentation>SubDomain name. Name must be unique on SML server!
</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="ParticipantRegularExpression"
type="ParticipantRegularExpressionType" minOccurs="0">
<xs:annotation>
<xs:documentation>Regex allows specific and described
ids only or * instead for having wildcards.
 </xs:documentation>
 </xs:annotation>
 </xs:element>

©2025 eDelivery Chapter 3. Interface Description |224

<xs:element name="DNSRecordType" type="DNSRecordTypeType" minOccurs="0">
<xs:annotation>
<xs:documentation>Type of DNS Record when
registering/updating participant, all means that both DNS
record types are accepted as possible values:
[cname, naptr, all].
 </xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="SmpUrlScheme" type="SmpUrlSchemeType" minOccurs="0">
<xs:annotation>
<xs:documentation>Protocol that MUST be used for
LogicalAddress when registering new SMP, all means
both protocols are accepted possible values: [
http, https, all].
 </xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CertSubjectRegularExpression"
type="CertSubjectRegularExpressionType" minOccurs="0">
<xs:annotation>
<xs:documentation>Regex validation of Certificate
subject for Issuer based authorization
 certificates.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CertPolicyOIDs" type="CertPolicyOIDsType" minOccurs="0">
<xs:annotation>
<xs:documentation>User with issuer-authorized smp
certificate is granted SMP_ROLE only if one of the certificate policy extension
match the list. Value is in list of certificate policy OIDs separated by ','.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="MaxParticipantCountForDomain" type="xs:integer" minOccurs="0">
<xs:annotation>
<xs:documentation>Maximum number of participant allowed
to be registered on the domain.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="MaxParticipantCountForSMP" type="xs:integer" minOccurs="0">
<xs:annotation>
<xs:documentation>Maximum number of participant allowed
to be registered on the SMP.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>

225| Chapter 3. Interface Description DomiSML 4.3 Documentation

<xs:complexType name="DeleteSubDomainType">
<xs:sequence>
<xs:element name="SubDomainName" type="SubDomainNameType">
 <xs:annotation> <xs:documentation>SubDomain name to be
deleted</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="GetSubDomainType">
<xs:sequence>
<xs:element name="SubDomainName" type="SubDomainNameType">
<xs:annotation> <xs:documentation>SubDomain name to be
retrieved</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:simpleType name="ParticipantRegularExpressionType">
<xs:annotation>
<xs:documentation>Regex allows specific and described ids only
or * instead for having wildcards.
 </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:maxLength value="1024"/>
 <xs:minLength value="1"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="CertSubjectRegularExpressionType">
<xs:annotation>
<xs:documentation>User with issuer-authorized smp certificate
is granted SMP_ROLE only if Subject dn match the regular expression.
</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:maxLength value="1024"/>
 <xs:minLength value="1"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="CertPolicyOIDsType">
<xs:annotation>
<xs:documentation>Value is list of certificate policy OIDs
separated by ','.</xs:documentation> </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:maxLength value="1024"/>
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
<xs:simpleType name="DNSRecordTypeType"> <xs:annotation>
<xs:documentation>Type of DNS Record when registering/updating participant, all

©2025 eDelivery Chapter 3. Interface Description |226

means that both DNS record
types are accepted as possible values: [cname, naptr, all]. </xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:token">
 <xs:minLength value="1"/>
 <xs:maxLength value="128"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="SmpUrlSchemeType">
 <xs:annotation>
<xs:documentation>Protocol that MUST be used for LogicalAddress
when registering new SMP, all means both
protocols are accepted possible values: [http, https, all].
 </xs:documentation>
</xs:annotation>
<xs:restriction base="xs:token">
 <xs:minLength value="1"/>
 <xs:maxLength value="128"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="SubDomainNameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="255"/>
 </xs:restriction>
 </xs:simpleType>
<xs:simpleType name="CertAliasType"> <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="255"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="CertificateDomainType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="255"/>
 </xs:restriction>
 </xs:simpleType>
<xs:simpleType name="DNSNameType"> <xs:annotation>
<xs:documentation>Record name. Must end with valid zone name.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 <xs:maxLength value="253"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="DNSZoneType">
<xs:annotation>
<xs:documentation>DNS zone name.</xs:documentation>
 </xs:annotation>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>

227| Chapter 3. Interface Description DomiSML 4.3 Documentation

 <xs:maxLength value="253"/>
 </xs:restriction>
</xs:simpleType>
<xs:simpleType name="CRLDistributionPointsUrlType">
 <xs:restriction base="xs:anyURI">
 </xs:restriction>
 </xs:simpleType>
<xs:complexType name="DomainCertificateType"> <xs:sequence>
<xs:element name="SubDomainName" type="SubDomainNameType"> <xs:annotation>
<xs:documentation>SubDomain name</xs:documentation> </xs:annotation>
</xs:element>
<xs:element name="IsRootCertificate" type="xs:boolean">
 <xs:annotation>
 <xs:documentation>Flag if certificate is root certificate</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="IsAdminCertificate" type="xs:boolean"> <xs:annotation>
<xs:documentation>Flag if certificate has admin rights. Only non root certificate
could have admin
 rights.
 </xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CertificateDomainId" type="CertificateDomainType">
 <xs:annotation>
 <xs:documentation>Certificate
identifier</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="Alias" type="CertAliasType" minOccurs="0">
<xs:annotation> <xs:documentation>Certificate alias in
truststore</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CRLDistributionPointsUrl" type="CRLDistributionPointsUrlType"
minOccurs="0">
 <xs:annotation>
 <xs:documentation>Certificate
identifier</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="AddDomainCertificateType">
<xs:sequence>
<xs:element name="SubDomainName" type="SubDomainNameType">
<xs:annotation>
<xs:documentation>SubDomain name</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="IsRootCertificate" type="xs:boolean"> <xs:annotation>

©2025 eDelivery Chapter 3. Interface Description |228

<xs:documentation>Flag if certificate is root certificate</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="IsAdminCertificate" type="xs:boolean"> <xs:annotation>
<xs:documentation>Flag if certificate has admin rights. Only non root certificate
can have admin
 rights
 </xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CertificatePublicKey" type="xs:base64Binary"> <xs:annotation>
 <xs:documentation>Domain
certificate.</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="Alias" type="CertAliasType" minOccurs="0">
<xs:annotation>
<xs:documentation>If truststore is enabled this is
Certificate alias for the truststore. If alias is
not given value is generated!
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="TruststoreCertificateType">
<xs:sequence>
<xs:element name="Alias" type="CertAliasType" minOccurs="0">
<xs:annotation>
<xs:documentation>Certificate alias.</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CertificatePublicKey" type="xs:base64Binary"> <xs:annotation>
 <xs:documentation>Domain
certificate.</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GetTruststoreCertificateType">
<xs:sequence>
<xs:element name="Alias" type="CertAliasType">
<xs:annotation>
<xs:documentation>Certificate alias.</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="DeleteTruststoreCertificateType">
<xs:sequence>
<xs:element name="Alias" type="CertAliasType">

229| Chapter 3. Interface Description DomiSML 4.3 Documentation

<xs:annotation>
<xs:documentation>Certificate alias.</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="UpdateDomainCertificateType">
<xs:sequence>
<xs:element name="CertificateDomainId"
type="CertificateDomainType">
 <xs:annotation>
 <xs:documentation>Certificate
identifier</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="IsAdminCertificate" type="xs:boolean" minOccurs="0">
<xs:annotation>
<xs:documentation>Flag if certificate has admin rights.
Only non root certificate can have admin
 rights
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="SubDomainName" type="SubDomainNameType" minOccurs="0">
<xs:annotation>
<xs:documentation>SubDomain name</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CrlDistributionPoint" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:documentation>Certificate revocation list
DistributionPoint URL</xs:documentation> </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="ListSubDomainCertificateRequestType">
<xs:sequence>
<xs:element name="CertificateDomainId"
type="CertificateDomainType" minOccurs="0"> <xs:annotation>
<xs:documentation>'Like' parameter for certificate identifier</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="SubDomainName" type="SubDomainNameType" minOccurs="0">
<xs:annotation>
<xs:documentation>SubDomain name</xs:documentation>
 </xs:annotation>
 </xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="ListSubDomainCertificateResponseType">
<xs:sequence>

©2025 eDelivery Chapter 3. Interface Description |230

<xs:element name="DomainCertificateType"
type="DomainCertificateType" minOccurs="0" maxOccurs="unbounded"/> </xs:sequence>
</xs:complexType>
<xs:complexType name="ListTruststoreCertificateAliasesRequestType">
<xs:sequence>
<xs:element name="ContainsStringInAlias" type="CertAliasType"
minOccurs="0">
<xs:annotation> <xs:documentation>Contains string in
alias</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="ListTruststoreCertificateAliasesResponseType">
<xs:sequence>
<xs:element name="Alias" type="CertAliasType" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="DeleteDNSRecordType">
<xs:sequence>
<xs:element name="Name" type="DNSNameType">
<xs:annotation>
<xs:documentation>Dns name. It must be valid
domain.</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="DNSZone" type="DNSZoneType">
 <xs:annotation>
 <xs:documentation>Dns zone on dns
server.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="DNSRecordListType">
<xs:sequence>
<xs:element name="DNSRecord" type="DNSRecordType" minOccurs="0"
maxOccurs="unbounded">
 <xs:annotation>
<xs:documentation>Dns record list.</xs:documentation> </xs:annotation>
 </xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="DNSRecordType">
<xs:sequence>
<xs:element name="Type" type="xs:token">
<xs:annotation>
<xs:documentation>Supported dns type: A, CName,
Naptr.</xs:documentation>
 </xs:annotation>

231| Chapter 3. Interface Description DomiSML 4.3 Documentation

</xs:element>
<xs:element name="Name" type="DNSNameType">
<xs:annotation>
<xs:documentation>Dns name. It must be valid
domain.</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="DNSZone" type="DNSZoneType">
 <xs:annotation>
 <xs:documentation>Dns zone on dns
server.</xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="Value" type="xs:string">
<xs:annotation>
<xs:documentation>Dns Value. For A type it must be IP
address, for CNAME it must valid Domain, for
 NAPTR it must be regular expresion.
 </xs:documentation>
 </xs:annotation>
</xs:element>
<xs:element name="Service" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:documentation>Service - part of naptr record. If
not given (for naptr) default value is:
 Meta:SMP
 </xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

3.3.2. List of Valid PEPPOL Issuing Agencies

The network specifies a list of organizations that issue identifiers to network participants. The code
is called an International Code Identifier (ICD) and becomes part of the customer identifier. An
example of the list ISO/IEC 6523.

The ISO/IEC 6523 list can also be extended by then network governance body as examples:

• EAS code list: The European standard on eInvoicing defines which code lists may be used for
each business term that has the data type "code", such as electronic address, VAT number,
currency, etc.
List can be found on pages: https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/
Registry+of+supporting+artefacts+to+implement+EN16931

• Peppol: Non-profit organization that provides governaces of the network and a set of document
specifications that integrate global business processes. The ICD list can be found on page:
https://docs.peppol.eu/poacc/billing/3.0/codelist/ICD/

©2025 eDelivery Chapter 3. Interface Description |232

https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Registry+of+supporting+artefacts+to+implement+EN16931
https://ec.europa.eu/digital-building-blocks/wikis/display/DIGITAL/Registry+of+supporting+artefacts+to+implement+EN16931
https://docs.peppol.eu/poacc/billing/3.0/codelist/ICD/

Chapter 4. Support
DomiSML Documentation is maintained by the eDelivery Support Team. For any questions,
comments or requests for change, please contact:

• Email: ec-edelivery-support@ec.europa.eu

• Hours: 8AM to 6PM (Normal EC working days)

233| Chapter 4. Support DomiSML 4.3 Documentation

mailto:ec-edelivery-support@ec.europa.eu

	DomiSML 4.3
	Contents
	Chapter 1. Architecture Description
	Chapter 2. Quick Start Guide
	Chapter 3. Interface Description
	Chapter 4. Support

